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Research Mission

It is becoming increasingly popular for computer programs and systems to incorporate randomness to solve problems
in a wide range of domains. In algorithm and system design, people use randomization to improve efficiency (as in
randomized algorithms) and break symmetry (as in distributed protocols). Many software systems need to deal with
uncertainty; for example, cyber-physical systems operate in the presence of changing environments and sensor errors,
and quantum computers are faced with errors introduced by quantum gates. To model such uncertainty, people
implement probabilistic programs (prob. programs) that manipulate prob. distributions. Moreover, to automate
Bayesian inference, which is an approach to statistical machine learning, people develop statistical prob. programming
systems (such as Pyro [BCJ*"18] and Stan [CGH*17]).

Incorporation of randomness presents new challenges to important software-development tasks such as analysis
of the correctness and efficiency of the programs and design of programming paradigms that are general and
usable. Programming-language techniques—such as semantics, verification, compilation, type systems, and program
abstractions—have been successfully employed in the analysis and design of traditional non-probabilistic programs
and systems. However, those techniques are usually not directly applicable in the probabilistic setting. Rigorously
modeling randomness is complex, and formally analyzing and verifying quantitative properties and statistical
guarantees in the presence of randomness is in many ways more challenging than analyzing non-probabilistic
programs. As a result, there are many open problems and research opportunities in this area.

Mission and Approach My research mission is to develop universal and easy-to-use abstractions and paradigms
for programming randomness in software systems, and programming-language-level integrations to automatically
analyze, optimize, and synthesize prob. programs. My approach is (i) using mathematical rigor to formally describe
the semantics and lay the foundations for developing abstractions of prob. programs, (ii) devising new techniques that
combine research in programming languages, probability theory, and machine learning to automatically analyze and
verify properties of prob. systems, and (iii) applying my research to practical applications that involve randomness.

Research Accomplishments I have developed an effective toolkit for rigorous and automatic analysis of the correctness
and efficiency of multiple kinds of prob. programs. This includes a new algebraic denotational semantics for
incorporating nondeterminism [1], a general and flexible static-analysis framework [2], the first automatic type-
based analysis of expected-cost bounds for prob. functional programs [3], and the first automatic derivation of
symbolic interval bounds on central moments of cost accumulators [4]. Recently, I have investigated statistical
prob. programming languages and proposed a new coroutine-based paradigm for implementing provably correct
programmable inference [5]. As a Ph.D. student, I have also worked on analyzing other quantitative properties, such
as resource consumption of programs [6; 7; 8]. My research involves diverse areas such as domain theory, probability
theory, semantics, formal methods, type systems, constraint solving, Bayesian inference, and program synthesis. My
results have been published in the most prestigious conferences in the area, including PLDI, POPL, and ICFP.

Future Work My plan for the future is to establish a research program around the theory and practice of
incorporating randomness in software systems. I will build on my successful past work on the analysis and design of
prob. programs, and focus on novel applications in areas where the computer programs and systems usually involve
randomness, such as machine learning, cyber-physical systems, intermittent computation, and quantum computing.
I will also continue to work on the most challenging open problems in the foundations for formal reasoning about
randomness in software systems.



Background and Significance

People have been incorporating randomness in software systems via implementing prob. programs that can either
execute to behave randomly, or be used to specify statistical models that describe noisy data. Precise understanding
of the quantitative aspects and statistical properties of prob. programs is essential for reasoning about randomness.

Quantitative Program Analysis for Randomness To model randomness and uncertainty in algorithms and systems,
it is a common approach to implement a prob. program that can draw random samples from prob. distributions and
involve random control flows. Probabilities are quantitative objects; thus, many fundamental and important analysis
tasks for prob. programs are quantitative: What is the probability that an assertion holds? Is there any expression that is
an invariant under expectation? What is the expected time complexity of a program? People can build useful quantitative
analyses upon those kinds of fundamental tasks, such as verifying fairness of decision-making programs [ADD 171,
proving differential privacy [BKO™"12], and analyzing the reliability of approximate programs [CMR13].

In general, it is challenging for software developers to perform quantitative analysis tasks on their code, because
composing simple distributions can quickly complicate the result distribution, and randomness in the control flow
can easily lead to state-space explosion. Moreover, because of the lack of determinacy, multiple runs of a prob.
program can execute different paths and produce different results; therefore, dynamic simulation can be ineffective,
as it may require a considerable number of runs to approach a good approximation for quantitative analysis.

Statistical Probabilistic Programming Bayesian inference is a method of statistical inference that accounts for the
prob. distribution of hypotheses that produce the observed data. It has applications in many fields, including artificial
intelligence [Ghais], cognitive science [GKTo8], and applied statistics [GCS*13]. Traditionally, when a Bayesian
practitioner iterates the design of a statistical model, they need to implement an inference algorithm specific to the
model in the current iteration. Statistical prob. programming aims to separate model specifications and inference
engines, thus speeds up the model-iteration process. The user implements a model as a prob. program that specifies
a prob. distribution p(x, y) on parameters x and observations y, then provides the program and observed data y to
the inference engines, which automatically infer the posterior distribution p(x | y). Statistical prob. programming is
at the intersection of programming languages, machine learning, and statistics.

There are many prob. programming systems in active development; however, balancing between expressibility and
efficiency remains a challenge for their design and implementation. Domain-specific languages enjoy specialized
efficient inference algorithms, but have a restrictive syntax. On the other hand, general-purpose languages extend
existing languages to make programming easier, but are often much slower than specialized inference solutions.
Moreover, many inference algorithms themselves involve random computation, thus it is also difficult for the users to
justify or debug the combination of their model and an inference algorithm.

Research Accomplishments

I have developed an effective toolkit for formal reasoning about prob. programs, and recently proposed a new
programming paradigm for provably sound statistical prob. programming.

Formal Reasoning about Probabilistic Programs Noticing that reasoning systems for prob. programs have usually
been standalone developments, I devised a generic framework for analyzing prob. programs at compile time in a
compositional and flexible way. I proposed a new family of algebraic abstractions, namely Markov algebras, and
developed a compositional denotational semantics based on those abstractions [1]. Contributions of this work include
(i) the novel use of hyper-graphs, where each edge has one source but multiple destinations, to capture the natural
asymmetry in random control-flows, and (ii) the flexibility to instantiate the semantics with different models of
nondeterminism, which can arise naturally from prob. models (e.g., the agent for a Markov decision process). Based
on Markov algebras, I developed a general framework, which I call PMAF, for designing, implementing, and proving
the correctness of static analyses of prob. programs. PMAF can be instantiated from a small analysis specification,
automatically and soundly perform interprocedural analysis, and carry out versatile analyses, such as performing
exact inference or solving Markov decision problems [2]. I also instantiated PMAF with a new analysis that derives
expectation invariants, which can be used to infer the expected running time (i.e., the average-case efficiency).



Apart from formal methods based on algebraic abstractions, I also took inspiration from automatic amortized
resource analysis (AARA) [HJo3; HAH11], which is constraint-based and reduces quantitative analysis to linear
programming. I proposed an extension of AARA and developed the first type system that automatically infers
a polynomial bound on the expected running time of prob. functional programs [3]. A key innovation is the
introduction of a probability-encapsulation type, which allows a prob. program to manipulate symbolic probabilities,
whereas most of other automatic systems only support constant probabilities. Another contribution is a soundness
proof that establishes the correctness of the bounds with respect to a semantics that includes diverging behavior. In
another project, I generalized AARA to reason about central moments (i.e., E[ (X — E[X])¥] for a random variable X
and a natural number k), and developed the first fully automatic analysis that derives symbolic interval bounds on
central moments of cost accumulators (e.g., running time and cash flow) for programs with recursion and continuous
distributions [4]. With central moments, I proposed a technique that bounds probabilities of the form P[X > d] or
P[|X — E[X]| = d], and applied it in a case study to identify side-channel vulnerabilities. I proved the soundness of
the central-moment analysis using a new extension to the Optional Stopping Theorem from probability theory [9].

Towards Sound Statistical Probabilistic Programming One goal of statistical prob. programming is to help
developers who have domain expertise, but lack experience in machine learning or statistics. Because there is not a
single known inference algorithm that works well for all models, several prob. programming systems have recently
added support for programmable inference to allow users to use domain knowledge to customize the inference
process [MSH*18; CSL*19; BCJ"18; GXG18]. One popular customization mechanism involves user-supplied guide
programs, such as proposals for Monte-Carlo methods (e.g., [GGT15]) and approximating distributions for variational
inference (e.g., [FJB*19]). Implementing guide programs is nontrivial and error-prone [Pyr21], and guide programs
must be compatible with model programs for inference to be sound.

I have focused on one pervasive but challenging condition for model-guide compatibility: absolute continuity,
which can be guaranteed from a semantic property that the model and guide programs define prob. distributions
with the same support [5]. I developed a prob. programming system that supports branching and recursion
in its programming paradigm, with novel guide types that ensure well-typed model-guide pairs are guaranteed
to enjoy absolute continuity. In my system, for the first time, model and guide programs are implemented as
coroutines that communicate with each other to synchronize the set of random variables they sample during their
execution. For good usability, the model and guide are still decoupled, but they are bridged via a guide type
that enforces a communication protocol between them. An efficient algorithm infers guide types from code so
that users do not have to specify the types. Other contributions are the proof that guide types ensure safety of
coroutine communication, and the justification of the soundness of importance sampling, Markov-Chain Monte Carlo,
and variational inference, via guide types. In my development, I took inspiration from session types [Hong3] that
account for communication protocols in concurrent systems, and my approach opens the possibility of adapting
programming-language techniques for concurrent computing to reason about the process of Bayesian inference.

Research Plan

My research plan is to establish a research program around sound and efficient incorporation of randomness
in practical applications. I have demonstrated with my work on verification of soundness of statistical prob.
programming [5] that programming-language techniques and proper abstractions can be adapted to tackling
problems in different research areas. At the same time, I will continue to work on foundations of prob. programming.

1. Modeling Noisy Energy Consumption of Intermittent Programs Energy-harvesting systems, which are broadly
used in the internet of things and implantable devices (e.g., [LKB19]), collect energy from their environment to
complete tasks without a battery. It is challenging to implement programs for energy-harvesting devices, because
they operate intermittently when energy becomes available. Task-based intermittent programming [LR15] ensures
correct execution of long-running programs, but require the developer to decompose the program into tasks, where
each task consumes less energy than the energy capacity. However, modeling energy consumption is difficult because
there is much uncertainty in the energy cost, such as environmental noises and unpredictable events from sensors.



I propose to apply quantitative analysis of prob. programs to precisely analyze the energy consumption of task-based
intermittent programs. I plan to divide the problem into two parts: (i) given a basic-block-level statistical energy
model, develop static-analysis techniques to automatically derive moments or tail bounds on the energy consumption
of a task, and (ii) given the architectural specification of a device, develop static and dynamic methods to extract a
device-specific statistical energy model. For the first part, I plan to devise new constructs to encode energy models
into programs, and extend my work on central-moment analysis [4] to derive moments or tail bounds on energy
consumption. Noting that intermittent programs usually do not feature recursion or unbounded loops, it is promising
to use recurrence relations to derive moment bounds of non-polynomial forms, and concentration inequalities (e.g.,
the Chernoff-Hoeffding bound) to bound tail probabilities. For the second part, I plan to explore symbolic simulation
on the hardware specification, dynamic profiling that collects statistics on energy measurements, and statistical
modeling of noises and events. I envision that working in this part, I can take inspiration from and make innovations
in formal verification of large-scale systems and environmental modeling for cyber-physical systems.

This is an ongoing project with Brandon Lucia, Limin Jia, and Jan Hoffmann (Carnegie Mellon University).

2. Diagnosing and Optimizing Programmable Bayesian Inference My work on sound programmable inference [5]
focuses on the compatibility between model and guide programs. However, for a fixed model and a fixed inference
algorithm, different compatible guides can dramatically influence the efficiency of the inference (e.g., [GGT15; Pyr21]).
This fact inspires me to develop static-analysis techniques to diagnose and optimize programmable inference.

For efficiency diagnosis, I plan to research relational static analysis to compare quantitative aspects of two candidate
guide programs for a given model. For example, variational inference usually involves Monte-Carlo estimation of
stochastic gradients, and the efficiency is likely to be poor if the estimation has high variance. To compare two guide
programs used for variational inference, one possible approach is to represent the gradient estimation as a prob.
program with a cost counter that tracks the accumulation of gradients, and then statically bound the variance of
the cost counter via a central-moment analysis [4]. I also want to investigate guide comparison for other inference
algorithms such as Sequential Monte Carlo [DDJo6] with user-implemented proposal distributions.

For optimizing programmable inference, an ambitious approach that I plan to study is to automatically synthesize
a guide program for a given model. Pyro [BCJ*18] has supported automatic guide generation, but it is a runtime
technique and requires that the user provide a strategy (e.g., the guide always samples from a Normal distribution).
Instead, I plan to develop compile-time guide synthesis based on two components: (i) the quantitative relational
analysis for efficiency diagnosis, and (ii) program synthesis that is type based (e.g., from guide types [5]) and
takes quantitative constraints as its input. Together with my collaborators, we have developed an algorithm that
synthesizes programs from resource-aware refinement types [7; 8]. Noting that quantitative constraints generated
from resource analysis are similar to those generated from probabilistic analysis, I plan to investigate how the
techniques for resource-aware synthesis can be adapted to synthesize prob. programs.

3. Taking the Next Steps in Reasoning about Randomness Analysis of randomness in distributed systems. There is
a rise of modern distributed systems such as blockchains, cloud computing platforms, and federal machine learning,
and many of them are naturally probabilistic. For example, distributed algorithms use randomization internally to
break symmetry, and some message-passing systems use prob. distributions to model uncertainty of external events
(e.g., messages being dropped). Formal reasoning about prob. distributed systems is challenging: the difficulty has
been recently demonstrated in a prob. message-passing system by me and my colleagues [10]. I plan to study formal
semantic models for different kinds of prob. distributed systems and develop analysis and verification tools for them.

Foundations of Markov algebras. 1 have proposed Markov algebras as the foundation of my work on the static
analysis framework for prob. programs [1; 2]. As the Kleene algebra [Koz91] becomes an algebraic foundation for
verification of non-probabilistic programs, I plan to develop the theory of Markov algebras to form an algebraic
foundation for verification of prob. programs. To this end, I will investigate how to formulate an axiom system, prove
soundness and completeness, and design a decision procedure of Markov algebras. I also plan to study applications of
Markov algebras in concrete verification tasks, and to extend Markov algebras to reason about quantum computation.

In addition to the research directions described above, I am also open for new ideas and collaborations; in particular,
with researchers outside of my area of expertise.
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