Teaching Statement
Di Wang

The opportunity to teach and work with undergraduate and graduate students is one important reason for me to
choose an academic career. In my opinion, teaching not only provides the crucial means to communicate and share
knowledge with the future generation, but also enjoys the unique advantage of generating novel research ideas.

My research experiences in the analysis and design of software systems that incorporate randomness make me
qualified to teach courses on programming languages, formal methods, and probabilistic programming. They provide
a starting point for interesting graduate-level projects in various and possibly interdisciplinary research areas. My
training at CMU as a Ph.D. student has prepared me well for both teaching and mentoring. I have contributed as a
teaching assistant for two courses (one undergraduate-level and the other graduate-level), and as a guest lecturer for an
advanced graduate course. As a teaching assistant, my duties included holding office hours, and grading assignments
and exams. In a course about quantitative program analysis, I delivered several guest lectures about cutting-edge
research. Moreover, I have mentored several undergraduate students during their research projects. 1look forward to
gaining more experience in teaching and mentoring, as well as sharing knowledge with the students.

Besides teaching and mentoring, I find it enjoyable to develop tools for aiding education in computer science.
In computer science, students usually interact with their machines to learn, so it is important to have properly
designed tools and interfaces for the education. I have developed two tools that help students write code and study
logic, respectively. 1 will keep passionate about creating tools that aid education in computer science in the future.

Teaching Interests

I would enjoy teaching courses in different areas, especially those about programming languages, formal methods,
and probabilistic programming. At the graduate level, I would like to teach program semantics, type systems, static
analysis, quantitative verification, and more broadly programming randomness in software systems and statistical
probabilistic programming. Rather than demonstrating specific technologies, I will present a comprehensive literature
review to help students understand the problem formulation, and focus on developing both the practice and theory
of those technologies. I believe that it is equally important to help students understand how and why.

At the undergraduate level, I would be excited to teach programming in different paradigms, compilation, and
program logics. Rather than focusing on specific languages or tools, I will use them to illustrate the essence that can
guide the students to easily generalize the ideas to other languages and tools. In addition, I feel comfortable teaching
classes on theory, mathematical logic, and discrete math. Once I have gained more teaching experience, I would also
like to teach more freshman courses such as introduction to programming, and functional and imperative languages.

I would also like to teach algorithms and data structures for competitive programming, e.g., International Collegiate
Programming Contest (ICPC). I have been participating in competitive programming since junior high school. I have
also taught high-school students competitive programming. From the experience, I understand how hard it is to
start with computer science, so I developed some techniques to help beginners study algorithms, such as starting
with examples to demonstrate the insights, dividing problem into subparts, and setting up invariants for subparts to
compose the solutions to them. I would also like to work as a coach to help train the students on the ICPC team.

Teaching Philosophy and Experience

Being a teaching assistant for undergraduate and graduate courses, as well as working as a guest lecturer, I learned
that it is crucial for an instructor to keep students motivated on the topic, guide students to explore on their own, and
encourage interdisciplinarity. Moreover, I realized that teaching is not only about guidance and instruction, but also
about collaboration and mutual enlightenment, which can indeed benefit research.

The undergraduate course Bug Catching: Automated Program Verification covers developing program logics to
prove program correctness and using verification tools to write verified code. When I held office hours, I enjoyed
guiding students to verify the correctness of their code, by encouraging them to use theory to guide practice. For



example, verifying code involves annotating the code with loop invariants, and the program logic indicates that
when a loop mutates more variables, the invariants would also become more complex, which makes verification
more difficult. I guided the students to understand such implications of the theory, and they found out (on their
own) how to aid the verification tool via rewriting a loop into smaller pieces. Students had great fun in this and
stayed motivated in learning program verification; two of them became the teaching assistants for the course in the
succeeding year.

The graduate course Programming Language Semantics is about fundamental concepts and mathematical techniques
of programming language semantics. The course is a breadth course: it is meant to be accessible to all computer
science graduate students, and many Ph.D. students from areas other than programming languages would take this
course. The most exciting part for me was to discuss with students from other areas about interdisciplinary research
ideas. For example, a discussion with a student who focuses on machine learning inspired me to think about the
formal semantics of statistical probabilistic programs, and led to a research project later.

In the graduate course Foundations of Quantitative Program Analysis, I delivered three lectures on the cutting-edge
research on resource analysis for probabilistic programs, which is an interdisciplinary topic. I motivated the students
with interesting problems (e.g., average-case complexity) and simple examples (e.g., Gambler’s Ruin). When I
developed the core type system for analyzing the expected cost, I first reviewed the non-probabilistic counterpart, and
then guided the students to explore how to patch the existing system for probabilistic analysis. I also demonstrated
some incorrect patches, and discussed with students why they were incorrect. In addition, collaborating with one of
the students, I even published a paper about resource analysis for probabilistic programs. The success proved that it
is beneficial to combine teaching and research, and I will keep this in mind for my future teaching.

Mentoring Philosophy and Experience

My research on the analysis and design of software systems that incorporate randomness provides a basis for advising
graduate students who work in different areas such as static analysis, type systems, probabilistic programming,
analysis of uncertainty in systems, and design of programming languages. I am also happy to collaborate with
colleagues from other research areas to advise students. My goal for advising students is to help them determine and
succeed in their desired career. I will encourage their own ideas and help them develop a skillset including research,
communication, writing, and presentation. I will try my best to help them overcome difficulties, such as lack of ideas
for their first project or temporary failure from a rejected paper submission.

I have mentored three undergraduate students for different research projects, which are related to my research.
One of them was interested in static analysis for probabilistic programs. We discussed potential research directions
and exchanged our ideas, then decided to develop a static analyzer for finite-state probabilistic programs. He
proposed to analyze the hardness to obtain an acceptable sample from a probabilistic program. I provided him
a comprehensive list of learning materials and related work. We had several follow-up meetings to discuss the
problem formulation and possible solutions. I suggested that he try linear programming, but also pointed out other
possiblities. He devised a better algorithm to analyze unbounded loops and wrote a paper about his findings. During
the research, I successfully motivated him to carry out research in programming languages, and eventually he got
admitted to MIT’s Ph.D. program.

Tool Development for Education

Besides teaching and mentoring, I also enjoy creating tools and interfaces to aid computer-science education.
An undergraduate course at CMU uses Standard ML (SML) to teach functional programming, but there were no
handy editors for SML, so I created a plugin for Visual Studio Code that supports precise syntax highlighting and
formatting. The plugin is popular at CMU and other universities. Another tool I created is a web-based prover for an
undergraduate course which teaches constructive logic. The course is already equipped with a theorem prover, but its
logic is fundamentally different from the logic used in the course, and it provides automation functionalities, which
may lead the students to rely on automation rather than learn by picking proof rules. I implemented the proof rules
for constructive logic and disabled some features that are not suitable for education purpose. The web-based prover
helped students to learn the logic in an interactive way, and eased the burden of checking students’ assignments.



