
66

Probabilistic Resource-Aware Session Types
ANKUSH DAS

∗
, Amazon, USA

DI WANG, Carnegie Mellon University, USA

JAN HOFFMANN, Carnegie Mellon University, USA

Session types guarantee that message-passing processes adhere to predefined communication protocols.

Prior work on session types has focused on deterministic languages but many message-passing systems,

such as Markov chains and randomized distributed algorithms, are probabilistic. To implement and analyze

such systems, this article develops the meta theory of probabilistic session types with an application focus

on automatic expected resource analysis. Probabilistic session types describe probability distributions over

messages and are a conservative extension of intuitionistic (binary) session types. To send on a probabilistic

channel, processes have to utilize internal randomness from a probabilistic branching or external randomness

from receiving on a probabilistic channel. The analysis for expected resource bounds is smoothly integrated

with the type system and is a variant of automatic amortized resource analysis. Type inference relies on

linear constraint solving to automatically derive symbolic bounds for various cost metrics. The technical

contributions include the meta theory that is based on a novel nested multiverse semantics and a type-

reconstruction algorithm that allows flexible mixing of different sources of randomness without burdening

the programmer with complex type annotations. The type system has been implemented in the language

NomosPro with linear-time type checking. Experiments demonstrate that NomosPro is applicable in different

domains such as cost analysis of randomized distributed algorithms, analysis of Markov chains, probabilistic

analysis of amortized data structures and digital contracts. NomosPro is also shown to be scalable by (i)
implementing two broadcast and a bounded retransmission protocol where messages are dropped with a fixed

probability, and (ii) verifying the limiting distribution of a Markov chain with 64 states and 420 transitions.

CCS Concepts: • Theory of computation→Distributed computing models; Probabilistic computation;
Type theory; Operational semantics.

Additional Key Words and Phrases: Session Types, Resource Analysis, Probabilistic Concurrency, Nested

Multiverse Semantics

ACM Reference Format:
Ankush Das, Di Wang, and Jan Hoffmann. 2023. Probabilistic Resource-Aware Session Types. Proc. ACM
Program. Lang. 7, POPL, Article 66 (January 2023), 32 pages. https://doi.org/10.1145/3571259

1 INTRODUCTION
Session types were introduced by Honda [1993] to statically prescribe binary communication

protocols for message-passing processes. As an example, the session type

coins ≜ ⊕{heads : coins, tails : coins}

∗
work completed prior to joining Amazon

Authors’ addresses: Ankush Das, Amazon, USA, daankus@amazon.com; Di Wang, Carnegie Mellon University, USA,

diw3@alumni.cmu.edu; Jan Hoffmann, Carnegie Mellon University, USA, jhoffmann@cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART66

https://doi.org/10.1145/3571259

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

https://doi.org/10.1145/3571259
https://doi.org/10.1145/3571259

66:2 Das et al.

describes a protocol whose provider process generates a stream of coin flips: the process internally

decides a label (either heads or tails) to send out (specified by the type former ⊕), and then

recurses to generate further coin flips. Session-typed systems often enjoy type safety properties

such as absence of deadlocks (global progress) and session fidelity (type preservation) and guarantee

adherence to protocols at runtime [Caires and Pfenning 2010]. Existing work on session types has

focused on deterministic languages [Balzer and Pfenning 2017; Das and Pfenning 2020a; Honda

et al. 2008; Toninho et al. 2013] but many message-passing systems are naturally probabilistic. For
instance, a desirable property of the coins protocol is that its provider process always generates

fair coin flips, i.e., the process sends out heads and tails with the same probability.

In general, distributed algorithms often use randomization as a tool to overcome limitations of

deterministic algorithms (e.g., Itai and Rodeh [1990] leader election protocol and Chaum [1988]

dining cryptographers protocol). In other systems, probability distributions are used to model

uncertainty of external events, e.g., messages being dropped in distributed protocols such as

Helmink et al. [1994] bounded retransmission and Bracha [1987] reliable broadcast. Markov chains

can also be modeled as distributed systems of probabilistic message-passing processes.

This article presents NomosPro, a session-typed concurrent probabilistic programming language

that can be used to analyze and implement probabilistic message-passing systems. In NomosPro,

a process can utilize two sources of randomness: (i) an internal source from a new term former

for probabilistic branching and (ii) an external source from receiving messages on a probabilistic

channel according to some distribution. Our design of NomosPro has focused on two aspects:

• NomosPro is capable of automatically deriving expected cost bounds for concurrent message-passing
systems, parameterized by a cost metric. Expected-cost analyses, also known as average-case
cost analyses, are often precise and more useful than worst-case cost analyses, for probabilistic
systems that exhibits program paths with high cost but low probability.

• NomosPro is a conservative extension of a practical session-typed language [Das et al. 2018]

such that existing code of concurrent protocols can be reused and analyzed directly. In particular,

NomosPro supports both probabilistic and standard choices and higher-order protocols (that in-

volve channel passing). Supporting standard choice operators is especially crucial since symbolic

expected bound analysis often involves concurrent data structures like lists, queues, etc. that are

implemented via standard choice operators (as our examples will show later).

To design a compositional expected-cost analysis, we need to track the probability distributions

of messages being exchanged among processes. Recent work has been integrating session types

with probabilities [Aman and Ciobanu 2019; Inverso et al. 2020], where the key innovation was to

replace choice types with probabilistic variants, e.g., the fcoins protocol below prescribes a protocol

for generating fair coin flips, where each label is annotated with a probability.

fcoins ≜ ⊕P{heads0.5 : fcoins, tails0.5 : fcoins}
Despite their success in modeling probabilities, none of existing approaches are a conservative
extension of their base non-probabilistic session-typed language, which hampers their ability of

implementing and analyzing probabilistic systems. Aman and Ciobanu [2019] considered multiparty

session types, but their system only supported probabilistic internal choices and standard external

choices. Inverso et al. [2020] considered binary session types, but both internal and external choices

in their system can only be probabilistic. In addition, none of them provide an implementation of

their systems.

Supporting both probabilistic and standard choice types may look straightforward, but it turns

out to cause substantial challenges in the development of the meta theory of NomosPro, which is

one of our major contributions. State-of-the-art techniques for proving preservation of probabilistic

programming languages [Avanzini et al. 2019; Inverso et al. 2020; Wang et al. 2020] do not directly

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

Probabilistic Resource-Aware Session Types 66:3

apply to NomosPro. From an operational point of view, the issue is that a probabilistic branch results

in different universes; for example, a coin flip results in two universes, and the flip shows heads

in one universe, but shows tails in the other. These universes cannot be considered in isolation

because the process that performed a coin flip may yield diverged message distributions based on

the result of the coin flip, but other processes may still assume an outdated protocol for message

distributions, which can be inconsistent in the universes after the coin flip. Our solution is to

develop a novel nested-multiverse semantics that manages the divergence of message distributions

to control the impact of randomness in one process on other processes.

Based on the type information on probability distributions of messages, we develop a type-based

expected-cost analysis based on automatic amortized resource analysis (AARA) [Hoffmann et al.

2017; Hofmann and Jost 2003]. Recent advances in AARA have covered expected-cost analysis for

sequential probabilistic programs [Wang et al. 2020] and work analysis for concurrent deterministic

systems [Das et al. 2018]. However, the development of a probabilistic variant of AARA has shown

to be non-trivial due to the complexity in meta theory [Wang et al. 2020]. We address this issue by

flattening the nested-multiverse semantics and proving its soundness with respect to a cost model

using Markov-chain-based reasoning. Similar to other AARA techniques, our implementation of

NomosPro reduces expected-cost bound inference to linear programming (LP).

NomosPro’s expected-cost analysis provides several unique advantages over state-of-the-art

techniques for automated cost analysis for concurrent probabilistic systems [Dehnert et al. 2017;

Kwiatkowska et al. 2011]. First, integrating the probability information with session types enables

a more compositional approach in which different processes can be analyzed in isolation (discussed

in Section 2). Second, amortization allows storing potential within data structures which ultimately

result in symbolic bounds. Such bounds are not simply functions of data-structure sizes but of

interactions between communicating processes, a feature exclusive to NomosPro. Finally, amor-

tization can also interact with probability in non-trivial ways. For instance, we implemented a

concurrent queue (using two lists) receiving insert and delete requests with fixed probabilities and,

using amortization, inferred a linear expected cost bound. In comparison, a naïve analysis would

report a quadratic bound since deletion can be linear-time in the worst case. We are not aware

of other tools that can perform such automated amortized analyses for probabilistic concurrent

programs.

Another exclusive benefit of NomosPro’s expected-cost analysis is that it improves the precision
for the analysis of probability distribution of messages. A probabilistic choice type specifies a

probability distribution where the probability annotations of messages sum up to one, but existing

systems (e.g., [Inverso et al. 2020]) can only interpret the annotations as upper bounds on the actual

probabilities. The reason is that a process might not be terminating at all, thus some portions of

the message distribution cannot be reachable. NomosPro can prove that a probabilistic concurrent

program terminates with probability one by showing that the expected total work of the system is

finite (𝔼[𝑋] < ∞ implies P[𝑋 < ∞] = 1 where 𝑋 is the expected work). In this case, NomosPro

can prove the probabilistic choice types in a program are precise, rather than merely upper bounds.

In addition to the language design, the meta theory, and the expected-cost analysis, a major

technical contribution is a practical implementation of NomosPro. At the core of our implementation

is an efficient linear-time type-reconstruction algorithm that computes the probability distribution

of labels sent on a probabilistic channel. The probabilistic type rules provide a high degree of

flexibility allowing programmers to arbitrarily nest internal and external sources of randomness. We

do not want to burden programmers with providing intermediate type annotations for probabilistic

channels but this flexibility complicates type-reconstruction. We solve this challenge by employing

a bi-directional type checker [Pierce and Turner 2000] that applies the typing rules to reconstruct

the intermediate probabilities for each channel from its initial type. In some situations, NomosPro

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

66:4 Das et al.

can also infer the probability distribution on a given channel. For e.g., if the input probability

distribution for a process is given, the output probability distribution can be inferred automatically.

We have extensively evaluated NomosPro using a diverse probabilistic systems. NomosPro can

infer expected cost bounds on probabilistic distributed protocols, e.g., Itai and Rodeh [1990]’s

leader election protocol. It can verify correctness and limiting distributions of Markov chains,

and infer the expected number of state transitions they incur. We verified the correctness of dice

programs [Knuth and Yao 1976] that model dice from coin flips, and limiting distribution of a

Markov chain modeling the position of a king on a chessboard. NomosPro can also be used to study

the probabilistic behavior of digital contracts such as lotteries and slot machines. The scalability

of NomosPro is evaluated using two broadcast protocols: Bracha [1987] and Srikanth and Toueg

[1987], and a bounded retransmission protocol [Helmink et al. 1994] where messages are dropped

with a fixed probability. Our linear-time type checking and reconstruction algorithm, and the

use of efficient LP solving for bound inference show that NomosPro scales to programs larger

than 800 LOC. However, since the inference engine in our implementation is based on LP solving,

we can only compute linear amortized bounds. But linear bounds are only a limitation of the

implementation, not the formal framework or the type system.

In summary, we make the following contributions.

• The design of NomosPro, a language with probabilistic session types which conservatively extend

deterministic session types. (§4)

• AnAARA for deriving symbolic bounds on the expected cost of NomosPro programs and verifying

that probabilistic distributions are precise (not upper bounds). (§4)

• The soundness proof of the type system with a novel nested-multiverse semantics establishing

type preservation, global progress, and probability consistency. (§5)

• An implementation of NomosPro with linear-time type checking and extensive evaluation. (§6

and §7)

2 OVERVIEW OF NOMOSPRO
We follow the approach and syntax of the Rast language [Das and Pfenning 2020a,b,c], which

implements recursively defined session types and processes. In this approach, every channel has a

unique provider and client. We view the session type as describing the communication from the

provider’s point of view, with the client having to perform dual actions.

Consider the session type bool defined as

bool ≜ ⊕{true : 1, false : 1}
The internal choice type constructor ⊕ dictates that the provider must send either true or false
followed by termination as indicated by the continuation type 1.

Probabilistic Processes. Suppose we wish to define a process TF that outputs true with proba-

bility 𝑝 ∈ [0, 1] and false with probability 1 − 𝑝 . We introduce a probabilistic term flip 𝑝 (H ⇒
𝑃1 | T⇒ 𝑃2), operationally interpreted as flipping a coin that outputs heads (H) with probability 𝑝

and tails (T) with probability 1 − 𝑝 . If the coin outputs heads, we execute 𝑃1, otherwise we execute

𝑃2. We employ this term to define process TF with 𝑝 = 0.6 (we only allow constant probabilities).

decl TF : . ⊢ (b : bool)

proc b ← TF = flip 0.6 (H ⇒ b.true ; close b | T ⇒ b.false ; close b)

On the first line, we declare the TF process showing that it uses an empty context (dot before the

turnstile) and offers the channel 𝑏 of type bool. On the next line, we define the process expression:

term 𝑏 ← TF is the syntax for defining (or spawning) process TF offering on 𝑏 and using no

channels. The TF process first flips a coin with probability of H being 0.6. If the coin flips to H

(resp., T), the process sends the label true (resp., false) using the term 𝑏.true (resp., 𝑏.false) and

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

Probabilistic Resource-Aware Session Types 66:5

terminates by closing the channel 𝑏 using term close 𝑏. Since the probability of H is 0.6, the process

TF outputs true with probability 0.6, and false with probability 1 − 0.6 = 0.4.

Negation. Suppose we consider a negation process neg defined below that takes a channel

𝑏 : bool as input and negates it (output false if input is true and vice-versa).

decl neg : (b : bool) ⊢ (c : bool)

proc c ← neg b = case b (true ⇒ c.false ; wait b ; close c

| false ⇒ c.true ; wait b ; close c)

The declaration describes that the neg process uses channel 𝑏 : bool and provides 𝑐 : bool. This is

similarly denoted in the definition as 𝑐 ← neg 𝑏. The definition branches on the label received on

channel 𝑏: if the process receives true, it sends false on 𝑐 and vice-versa. Then, in either case, the

process waits for the channel 𝑏 to close using the term wait 𝑏 and then closes channel 𝑐 .

Probabilistic Session Types. Although processes can exhibit probabilistic behavior, this infor-

mation is not visible in their session types. Therefore, in this article, we use probabilistic session

types (e.g., [Inverso et al. 2020]) that assign probabilities to the labels in a session type. We introduce

a probabilistic internal choice type operator ⊕P{ℓ𝑝ℓ : 𝐴ℓ } prescribing that the provider sends label
ℓ with probability 𝑝ℓ and continues to provide type 𝐴ℓ . The dual type is NP{ℓ𝑝ℓ : 𝐴ℓ } where the
provider is guaranteed to receive label ℓ with probability 𝑝ℓ . Below presents some examples.

pbool ≜ ⊕P{true0.6 : 1, false0.4 : 1} npbool ≜ ⊕P{true0.4 : 1, false0.6 : 1}
The type pbool outputs true with probability 0.6 and false otherwise. Its negation type npbool

outputs truewith probability 0.4 and false otherwise. With these types,without changing the process
definitions,1 we obtain the following types for the aforementioned processes.

decl TF : . ⊢ (b : pbool) decl neg : (b : pbool) ⊢ (c : npbool)

The soundness theorem ensures that the distribution of the labels sent on a probabilistic channel at

runtime is upper-bounded by the distribution of the labels in the choice types. More importantly,

if a concurrent system is almost-surely terminating (i.e., terminates with probability one), the

distribution of labels on a probabilistic channel exactly matches the type of the channel. We show

later how our resource-aware type system can be used to prove almost-sure termination.

To send on a probabilistic channel, a process can use two sources of randomness: a flip (like in

TF) or case on labels received on another probabilistic channel according to a known distribution

(like in neg). These sources of randomness can be combined and nested as long as the resulting

distributions are valid. For instance, we can define a process debias as follows that uses a biased coin

(𝑏 : pbool) and produces an unbiased coin (𝑐 : ubool ≜ ⊕P{true0.5 : 1, false0.5 : 1}). The process
first branches on the biased coin 𝑏. In the first branch, it flips a biased coin to decide whether to

negate the input or not. In the second branch it just sends false.
decl debias : (b : pbool) ⊢ (c : ubool)

proc c ← debias b = case b (true ⇒ flip 0.166667 (H ⇒ c.false; wait b; close c

| T ⇒ c.true; wait b; close c)

| false ⇒ c.false; wait b; close c)

A contribution of the article is an efficient linear-time type checking algorithm that validates that

implementations produce the distributions defined in the types.

Probabilistic session types are naturally compositional. We can define a negneg process that calls

neg twice to obtain an identity process:

decl negneg : (b : pbool) ⊢ (d : pbool)

proc d ← negneg b = c ← neg b ; d ← neg c

1
In this article, we actually distinguish between standard and probabilistic send and case analysis for clarity. However, it is

not necessary to make this distinction in the surface syntax.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

66:6 Das et al.

Since 1 − (1 − 𝑝) = 𝑝 , we obtain that the input and output types for negneg are equal.

Inference of Probabilities. When the generated constraints are linear, NomosPro can auto-

matically infer the output probabilities of a process given the input probabilities. Recall the TF

process that outputs true with probability 0.6 and false otherwise. We allow the programmer to

define a starred boolean type as sbool ≜ ⊕P{true∗ : 1, false∗ : 1}, where ∗ denotes probability
values that need to be inferred. The type checker internally replaces ∗ with probability variables,

e.g. ⊕P{true𝑝1 : 1, false𝑝2 : 1} with the constraint 𝑝1 + 𝑝2 = 1. Then, the typing rules of NomosPro

are applied which intuitively compute the probability of outputting each label. In the H branch,

the probability of outputting true is 1, while in the T branch, the probability of outputting true is
0. Computing the overall probability of outputting true, the type checker thereby generates the

constraint 𝑝1 = 0.6 × 1 + (1 − 0.6) × 0. Similarly, computing the probability of outputting false
generates the constraint 𝑝2 = 0.6×0+ (1−0.6)×1. The LP solver takes these constraints as input and
produces the satisfying assignment 𝑝1 = 0.6, 𝑝2 = 0.4 which is then substituted back in the program.

In a similar fashion, NomosPro can infer the output probabilities for the neg and debias processes

if the input probabilities are given. Internally, NomosPro employs a linear programming (LP) solver

to compute these probability annotations, and can only be used if the constraints generated by the

type checker are linear. We will explain this further when discussing the probabilistic typing rules

in Section 4.

Recursion. A core feature of NomosPro is its support for recursion, both at the type and process

level. For instance, consider a recursive debiasing process that implements the von Neumann

algorithm to take a stream of biased booleans and produce an unbiased boolean. First, we use

co-inductively interpreted [Das et al. 2021b] types to define an infinite stream as follows, where

the N type constructor stands for external choice, i.e., the client can send either req or done.
pbools ≜ N{req : ⊕P{true0.6 : pbools, false0.4 : pbools}, done : 1}

We define ubool ≜ ⊕P{true∗ : 1, false∗ : 1} so that NomosPro can infer that the output is an

unbiased boolean. Next, we define a recursive process rec_debias:

decl rec_debias : (b : pbools) ⊢ (c : ubool)

proc c ← rec_debias b =

b.req; case b (true ⇒ b.req; case b (true ⇒ c ← rec_debias b

| false ⇒ c.true; b.done; wait b; close c)

| false ⇒ b.req; case b (true ⇒ c.false; b.done; wait b; close c

| false ⇒ c ← rec_debias b))

The process branches on 𝑏 twice and outputs true when input is (true, false), outputs false when
input is (false, true), and recurses in the other two cases. NomosPro can automatically infer that

the output probability annotations of true and false is 0.5 each. This example combines most of
NomosPro’s powerful features: type and process level recursion, nesting of case analysis, probabilistic and
regular choice operators, automatic inference of probabilities, and almost-sure termination verification
(will be discussed later in this section).

Application to Markov Chains. Probabilistic session types are a natural fit for implementing
and analyzing Markov chains. An application of Markov chains are dice programs [Knuth and Yao

1976] that use a fair coin to model a die. The Markov chain for one such program is described in

Figure 1(a). For simplicity of exposition, we consider a 3-faced die, although we have implemented

the complete 6-faced die program (see Section 7).

The Markov chain initiates in state 1, and transitions to states 2 and 3 with probability 0.5 each.

In state 2, with probability 0.5, the chain outputs face 1 and with probability 0.5, it transitions to

back to state 1. State 3 outputs face 2 and 3 with probability 0.5 each.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

Probabilistic Resource-Aware Session Types 66:7

1

3

2
0.5

0.5

0.5 0.5

0.5

0.5

decl P1 : . ⊢ (p : T1)

decl P2 : . ⊢ (p : T2)

decl P3 : . ⊢ (p : T3)

proc p ← P1 = flip 0.5 (H ⇒ p ← P2

| T ⇒ p ← P3)

proc p ← P2 = flip 0.5 (H ⇒ p.one ; close p

| T ⇒ p ← P1)

proc p ← P3 = flip 0.5 (H ⇒ p.two ; close p

| T ⇒ p.three ; close p)

Fig. 1. (a) A Markov chain associated with the 3-faced die program, and (b) its corresponding program.

Probabilistic session types can prove the functional correctness of this die program, i.e., the

modeled die produces each face with equal probability. To this end, we implement the program

corresponding this chain and define three probabilistic types.

𝑇1 ≜ ⊕P{one𝑝1 : 1, two𝑝2 : 1, three𝑝3 : 1} 𝑇2 ≜ ⊕P{one𝑝4 : 1, two𝑝5 : 1, three𝑝6 : 1}
𝑇3 ≜ ⊕P{one𝑝7 : 1, two𝑝8 : 1, three𝑝9 : 1}

Type 𝑇𝑖 denotes the conditional probability of outputting each label from state 𝑖 . Next, we define

process 𝑃𝑖 corresponding to state 𝑖 . Each process 𝑃𝑖 offers type𝑇𝑖 . Figure 1(b) outlines the declaration

and definition of each process. Process 𝑃1 flips with probability 0.5 and calls 𝑃2 in the H branch,

(corresponds to transition to state 2), and calls 𝑃3 in the T branch. Process 𝑃2 flips with probability

0.5 and outputs one in the H branch, and calls 𝑃1 in the T branch. Finally, 𝑃3 flips with probability

0.5 and outputs two in the H branch and three in the T branch, respectively.

Since this Markov chain is mutually recursive, computing the conditional probability of sending

each label from each state is challenging. As a first illustration, consider process 𝑃3. The probability

of sending one for 𝑃3 in either branch is 0. Therefore, the total probability of outputting one is
0.5 × 0 + (1 − 0.5) × 0 = 0 (weighted sum of both branches). Similarly, the probability of outputting

two and three is 0.5×1+ (1−0.5) ×0 = 0.5 and 0.5×0+ (1−0.5) ×1 = 0.5, respectively. Substituting

these values into type 𝑇3, we infer 𝑝7 = 0, 𝑝8 = 0.5, and 𝑝9 = 0.5.

Next, consider the probability of outputting one for process 𝑃1. In the H branch, it calls process

𝑃2 which outputs one with probability 𝑝4. In the T branch, it calls process 𝑃3 which outputs one
with probability 𝑝7. Therefore, the total probability that 𝑃1 outputs one is 0.5 ·𝑝4 + 0.5 ·𝑝7. Applying
a similar argument for labels two and three, we obtain the constraints shown below.

𝑝1 = 0.5 · 𝑝4 + 0.5 · 𝑝7 𝑝2 = 0.5 · 𝑝5 + 0.5 · 𝑝8 𝑝3 = 0.5 · 𝑝6 + 0.5 · 𝑝9 𝑝1 + 𝑝2 + 𝑝3 = 1

We obtain similar linear constraints by equating the probabilities for process 𝑃2 as well.

Practically, the programmer only need define types 𝑇𝑖 with ∗ probability annotations and im-

plement the program in Figure 1(b). The type checker replaces the ∗ annotations with variables,

generates linear constraints, and ships them to the LP solver which returns a satisfying assignment,

which is then substituted back into the program. For the dice program, we obtain the solution:

𝑇1 ≜ ⊕P{one1/3 : 1, two1/3 : 1, three1/3 : 1} 𝑇2 ≜ ⊕P{one2/3 : 1, two1/6 : 1, three1/6 : 1}
𝑇3 ≜ ⊕P{one0 : 1, two1/2 : 1, three1/2 : 1}
As inferred by the LP solver, the probabilities for each label in type 𝑇1 (and therefore, state 1) are

equal, thus proving that the program models a fair 3-faced die.

Automated Expected Cost Analysis. A distinguishing feature of NomosPro is the type-guided

analysis of the expected cost of distributed protocols and Markov chains. For instance, we would

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

66:8 Das et al.

like to automatically compute a bound on the expected number of coin flips when we initiate the

previously defined Markov chain modeling a 3-faced die from state 1 (i.e. process 𝑃1). To perform

the expected cost analysis, we integrate probabilistic session types with existing techniques for

automatic work analysis with session types [Das et al. 2018], which can be seen as an instantiation

of automatic amortized resource analysis (AARA) [Hoffmann et al. 2017; Hofmann and Jost 2003].

The core idea is to statically associate a potential with each process that is used to pay for the

(expected) work performed by it. A key feature is that this potential can also be transferred to other
processes to cover the work incurred by them, thus allowing amortization. Importantly, the amount

of potential transferred with a message or associated with a process can be efficiently inferred by

linear-constraint solving. This technique is parametric in the cost model and can, for e.g., bound

the expected number of spawned processes, messages, flips, or other user-defined quantities.

We build intuition for the type system by revisiting the previously discussed examples. Consider

again the processes TF and neg and assume a cost model in which the cost of sending the label

true is 1 and the cost of sending the label false is 2. Since 𝑝 = 0.6, we can derive the typing

· ⊢1.4 TF :: (𝑏 : bool)
where the number on the turnstile reflects the expected cost. Since we incur cost 1 with probability

0.6, and cost 2with probability 0.4, we deduce that the expected cost of executing TF is 0.6×1+0.4×
2 = 1.4. To infer the expected potential 𝑞 of a probabilistic expression flip 𝑝 (H⇒ 𝑃𝐻 | T⇒ 𝑃𝑇),
we use the second key idea expressed as the equation

𝑞 = 𝑝 · 𝑞𝐻 + (1 − 𝑝) · 𝑞𝑇 ,
where 𝑞𝐻 and 𝑞𝑇 are the expected potentials for processes 𝑃𝐻 and 𝑃𝑇 respectively.

Since the expected cost is inextricably connected to the probabilistic behavior of processes,

expressing them in the type system allows a compositional and tight bound analysis. For example,

we are able to derive the following typing for the neg process (cost of 2 for false, and 1 for true).

(𝑏 : pbool) ⊢2×0.6+1×(1−0.6) neg :: (𝑐 : npbool)
It states that the expected cost of the process is bounded by 2 × 0.6 + 1 × (1−0.6) = 1.6. In the

typing derivation, it is essential to have access to the distribution of messages on the channel 𝑏. If

this information is not available then we have to assume the worst case—the label false is sent on
channel 𝑐—and derive the bound 2:

(𝑏 : bool) ⊢2 neg :: (𝑐 : bool)
Thus, probabilistic session types help us infer precise expected cost, instead of worst-case cost.

For the 3-faced die program, we are interested in the expected cost of the process 𝑃1. For

illustration purposes, it is convenient to consider a cost metric that counts the number of evaluated

flips. Then the expected cost of 𝑃1 is
8

3
. To infer this (tight) bound, the type system assigns potential

𝑞𝑖 to process 𝑃𝑖 . Process 𝑃3 requires only 1 unit of potential, since it performs only one flip. Taking
the 𝑝-weighted sum of the expected cost in both branches, we get

𝑞1 = 1 + 0.5 · 𝑞2 + 0.5 · 𝑞3 = 1.5 + 0.5 · 𝑞2 𝑞2 = 1 + 0.5 · 0 + 0.5 · 𝑞1 = 1 + 0.5 · 𝑞1
For each equation, the summand 1 accounts for the flip at the start of each process. For 𝑞1, the

potential in the H branch is 𝑞2 since we call process 𝑃2 and 𝑞3 in the T branch since we call process

𝑃3. For 𝑞2, the potential in H branch is 0 since it does not involve any flips, and 𝑞1 in the T branch

since we call 𝑃1. Solving these equations leads to the solution 𝑞1 =
8

3
, 𝑞2 =

7

3
, 𝑞3 = 1.

Our implementation (Section 7) automatically generates and solves these linear equations. In

Section 6, we show how we can automatically infer expected cost of randomized distributed

protocols and derive symbolic bounds that depend on the numbers of processes in the network by

employing amortization. For example, NomosPro infers a linear bound for the expected number of

file chunks transmitted in the Helmink et al. [1994] bounded retransmission protocol. NomosPro

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

Probabilistic Resource-Aware Session Types 66:9

also infers a linear bound on the expected cost of probabilistic insert and delete operations on a

concurrent queue even though naïve approaches would produce a quadratic bound. To the best of

our knowledge, NomosPro is the only tool that can compute such amortized bounds on the number

of interactions for probabilistic concurrent programs.

Section 6 also demonstrates the importance of supporting both probabilistic and regular choice

types. Symbolic bounds in bounded retransmission [Helmink et al. 1994] were obtained by represent-

ing file chunks as a list using regular internal choice and an unreliable channel using probabilistic
external choice. Similarly, concurrent data structures from Section 6.2 and the slot machine bench-

mark from Section 6.4 require both choice types. In conclusion, symbolic resource analysis requires

NomosPro to be a conservative extension of resource-aware session types.

Almost-Sure Termination. Recall that in NomosPro, a probabilistic session type describes upper
bounds on the actual distribution of labels sent on a channel, but if we can prove that a concurrent

system is almost-surely terminating, i.e., terminates with probability one, the probabilities in the

session types are indeed precise. A program implemented in NomosPro can be non-terminating,

in general, since it supports recursive process spawning. Therefore, we can rely on NomosPro to
carry out an expected-cost analysis with respect to a cost metric that counts the number of spawned
processes, and a finite expected total number of spawned processes implies almost-sure termination.2

For example, NomosPro derives the following type for the previously discussed rec_debias process:

(𝑏 : pbools) ⊢13/12 rec_debias :: (𝑐 : ubool)
Thus although the process involves recursion, NomosPro verifies that the expected total number

of spawned process is
13

12
, which is finite and implies almost-sure termination. As we discussed

earlier, probabilistic session types enable us to infer precise expected cost, and here we see that the

expected-cost analysis enables us infer precise probabilities. Thus the two fragments (probability

and resource) are not orthogonal and indeed reciprocal in our design of NomosPro.

Standard and Probabilistic Choices. At first, it may seem redundant to support standard

choice operators in NomosPro since we already provide probabilistic choice operators, which

might seem more expressive. However, supporting standard choices is crucial for the practicality of

NomosPro. Most data structures like lists, stacks, queues, trees, unary and binary natural numbers

that are commonly used in concurrent protocols need standard choices and cannot be directly

expressed using only probabilistic choice operators. Intuitively, the beauty of the standard choice

operators is that they allow arbitrary probability distribution over the labels that are sent. In

contrast, probabilistic choice operators only allow a fixed probability over the labels sent.

As an example, recall the coins type from Section 1.

coins ≜ ⊕{heads : coins, tails : coins}
Now, consider the heads − tails process defined as

decl heads-tails : . ⊢ (c : coins)

proc c ← heads-tails = c.heads ; c.tails ; c ← heads-tails

The process simply alternates between sending heads and tails on offered channel 𝑐 . This process

would typecheck successfully if 𝑐 has type coins. However, if 𝑐 has type fcoins ≜ ⊕P{heads0.5 :

fcoins, tails0.5 : fcoins}, then the process would not typecheck. The reason is that fcoins imposes

a strong restriction on a channel: the probability of sending heads or tails has to be 0.5 in each
recursive step. The heads − tails process does not achieve this probability distribution at each step,

only over a sequence of steps. Using the following type,

2
Let random variable𝑇 represent total number of spawned processes. Then 𝔼[𝑇]<∞ implies P[𝑇<∞] = 1 [Ferrer Fioriti

and Hermanns 2015], i.e., the event ‘total number of spawned processes is finite’ happens with probability one. Since non-

termination can only be achieved by an infinite number of process spawns, P[𝑇<∞] = 1 implies almost-sure termination.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

66:10 Das et al.

hcoins = ⊕P{heads1.0 : tcoins, tails0.0 : tcoins}
tcoins = ⊕P{heads0.0 : hcoins, tails1.0 : hcoins}

we can type the process heads-tails : . ⊢ (c : hcoins) since the hcoins type indeed alternates

between heads and tails. Thus, even typing simple processes would mean introducing more and

more complex types if NomosPro only supported probabilistic choice operators.

This issue becomes even more involved when we introduce traditional data structures into the

language. Computing the exact probability distribution of choices in each recursive step can be

complicated even with simple data structures. For example, consider the type nat.

nat = ⊕{zero : 1, succ : nat}
A process two that produces succ, succ, and zero would typecheck with the type nat.

decl two : . ⊢ (n : nat)

proc n ← two = n.succ ; n.succ ; n.zero ; close n

However, a probabilistic session type that typechecks with the process two would need to produce

the first two succ messages with probability 1.0, and then the zero message with probability 1.0.

Such a type called nat2 would be defined as

nat2 = ⊕P{zero0.0 : 1, succ1.0 : ⊕P{zero0.0 : 1, succ1.0 : ⊕P{zero1.0 : 1, succ0.0 : 1}}}
Defining standard functions like add that would add two numbers would become even more

complex since we need to reason about the probability annotations on every succ / zero message

produced. For the same reason, defining standard list functions would also become complicated.

Thus, supporting standard choices are critical for practical programming scenarios. In fact, several

examples from Section 6 like bounded retransmission, amortized queues and slot machines require

using a type called potlist (a list that stores potential) to obtain symbolic bounds which can only be

expressed using standard branching operators.

3 BACKGROUND ON RESOURCE-AWARE SESSION TYPES
We begin with the deterministic fragment of NomosPro [Das et al. 2018]. The types and expressions

of NomosPro are defined by the grammars in Figure 2 (novel probabilistic extension marked in blue).

The symbol ℓ stands for a label (like in a sum type) and the symbols 𝑥 and 𝑦 stand for variables,

which range over channels. The annotations 𝑟 and 𝑟ℓ are non-negative rational numbers, and denote

potential annotations and probabilities.

The base system of session types is derived from a Curry-Howard interpretation [Caires and

Pfenning 2010] of intuitionistic linear logic [Girard and Lafont 1987] which defines the following

judgment for typing processes

𝑥1 : 𝐴1, 𝑥2 : 𝐴2, . . . , 𝑥𝑛 : 𝐴𝑛 ⊢ 𝑃 :: (𝑧 : 𝐶)
This states that process 𝑃 provides a service of session type 𝐶 along channel 𝑧, while using the

services of session types 𝐴1, . . . , 𝐴𝑛 provided along channels 𝑥1, . . . , 𝑥𝑛 , respectively. All these

channels must be distinct. We usually abbreviate the antecedent of the sequent by Δ for brevity.

The typing judgment of NomosPro adds a non-negative rational number 𝑞 (to cover expected

evaluation cost) and a fixed global signature Σ containing type and process definitions.

Δ ⊢
𝑞

Σ 𝑃 :: (𝑥 : 𝐴)
Type definitions have the form 𝑉 = 𝐴 and can be (mutually) recursive. We require 𝐴 to be

contractive [Gay and Hole 2005] meaning 𝐴 should not itself be a type name. Our type definitions

are equirecursive so we can silently replace type names 𝑉 by 𝐴 during type checking, and do not

need explicit rules for recursive types. Process definitions have the form 𝑓 = (Δ, 𝑞, 𝑃, 𝑥, 𝐴), where
𝑓 is the name of the process and 𝑃 its defining expression, with Δ being the channels used by 𝑓

and 𝑥 : 𝐴 being the offered channel, and 𝑞 its potential. For a well-formed signature, we require that

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

Probabilistic Resource-Aware Session Types 66:11

Proc 𝑃,𝑄 ::= 𝑥 .𝑘 ; 𝑃 | case 𝑥 (ℓ ⇒ 𝑃ℓ)ℓ∈𝐿 | send 𝑥 𝑦 ; 𝑃 | 𝑦 ← recv 𝑥 ; 𝑃 | close 𝑥 | wait 𝑥 ; 𝑃

| 𝑥 ↔ 𝑦 | 𝑦 ← 𝑓 𝑥 ; 𝑃 | get𝑥 {𝑟 } | pay𝑥 {𝑟 } | work {𝑟 } ; 𝑃
| flip 𝑝 (H⇒ 𝑃𝐻 | T⇒ 𝑃𝑇) | 𝑥 ..𝑘 ; 𝑃 | pcase 𝑥 (ℓ ⇒ 𝑃ℓ)ℓ∈𝐿

Type 𝐴, 𝐵 ::= ⊕{ℓ : 𝐴ℓ }ℓ∈𝐿 | N{ℓ : 𝐴ℓ }ℓ∈𝐿 | 𝐴 ⊗ 𝐵 | 𝐴 ⊸ 𝐵 | 1 | 𝑉 | ⊲𝑟𝐴 | ⊳𝑟𝐴
| ⊕P{ℓ𝑟ℓ : 𝐴ℓ }ℓ∈𝐿 | NP{ℓ𝑟ℓ : 𝐴ℓ }ℓ∈𝐿

Fig. 2. Process expressions and session types in NomosPro.

(𝑘 ∈ 𝐿) Δ ⊢𝑞 𝑃 :: (𝑥 : 𝐴𝑘)
Δ ⊢𝑞 𝑥 .𝑘 ; 𝑃 :: (𝑥 : ⊕{ℓ : 𝐴ℓ }ℓ∈𝐿)

⊕𝑅
(∀ℓ ∈ 𝐿) Δ, (𝑥 : 𝐴ℓ) ⊢𝑞 𝑄ℓ :: (𝑧 : 𝐶)

Δ, (𝑥 : ⊕{ℓ : 𝐴ℓ }ℓ∈𝐿) ⊢𝑞 case 𝑥 (ℓ ⇒ 𝑄ℓ)ℓ∈𝐿 :: (𝑧 : 𝐶)
⊕𝐿

𝑓 = (𝑦′ : 𝐵, 𝑝, 𝑃, 𝑥 ′, 𝐴) ∈ Σ 𝑟 = 𝑝 + 𝑞 Δ′ = (𝑦 : 𝐵) Δ, (𝑥 : 𝐴) ⊢𝑞 𝑄 :: (𝑧 : 𝐶)
Δ,Δ′ ⊢𝑟 (𝑥 ← 𝑓 𝑦 ; 𝑄) :: (𝑧 : 𝐶)

spawn

𝑞 ≥ 𝑟 Δ ⊢𝑞−𝑟 𝑃 :: (𝑥 : 𝐴)
Δ ⊢𝑞 pay𝑥 {𝑟 } ; 𝑃 :: (𝑥 : ⊲𝑟𝐴)

⊲𝑅
𝑞 ≥ 𝑟 Δ ⊢𝑞−𝑟 𝑃 :: (𝑥 : 𝐴)
Δ ⊢𝑞 work {𝑟 } ; 𝑃 :: (𝑥 : 𝐴)

work

Δ ⊢𝑞+𝑟 𝑃 :: (𝑥 : 𝐴)
Δ ⊢𝑞 𝑃 :: (𝑥 : 𝐴)

weak

Δ, (𝑥 : 𝐴) ⊢𝑞+𝑟 𝑄 :: (𝑧 : 𝐶)
Δ, (𝑥 : ⊲𝑟𝐴) ⊢𝑞 get𝑥 {𝑟 } ; 𝑄 :: (𝑧 : 𝐶)

⊲𝐿
𝑉 = 𝐴𝑉 ∈ Σ Δ ⊢𝑞 𝑃 :: (𝑥 : 𝐴𝑉)

Δ ⊢𝑞 𝑃 :: (𝑥 : 𝑉)
𝜇𝑅

Fig. 3. Selected type rules for resource-aware session types.

Δ ⊢
𝑞

Σ 𝑃 :: (𝑥 : 𝐴) for every process definition 𝑓 = (Δ, 𝑞, 𝑃, 𝑥, 𝐴) in Σ. Like type definitions, process
definitions are mutually recursive. Since Σ is fixed, we often elide it from the typing rules.

Basic Session Types. Type constructors in session types (⊕, N, 1, ⊗, ⊸) are derived from

assigning an operational interpretation to connectives in intuitionistic linear logic (see Figure 2).

We focus on the choice operators—since they set up the development of probabilistic typing rules—

and provide only a brief description for the remaining operators. Our technical report [Das et al.

2021c] contains the complete set of statics and semantics rules.

The internal choice type constructor ⊕{ℓ : 𝐴ℓ }ℓ∈𝐿 is an𝑛-ary labeled generalization of the additive
disjunction 𝐴 ⊕ 𝐵. Operationally, the provider of 𝑥 : ⊕{ℓ : 𝐴ℓ }ℓ∈𝐿 is required to send a label 𝑘 ∈ 𝐿
and then continue to provide 𝐴𝑘 . The corresponding process expression is (𝑥 .𝑘 ; 𝑃) where 𝑃 is the

continuation. Dually, the client must branch based on the label 𝑘 ∈ 𝐿 received from the provider

using the expression (case 𝑥 (ℓ ⇒ 𝑄)ℓ∈𝐿). The corresponding typing rules are ⊕𝑅 and ⊕𝐿 in

Figure 3. The process potential is unaffected and will be equal in the premise and conclusion for all

the basic rules. The external choice constructor N{ℓ : 𝐴ℓ }ℓ∈𝐿 is the dual of internal choice requiring

the provider to branch on one of the labels received from the client. Dual constructors, like this

one, reverse the role of the provider and client.

The remaining constructors are directly adopted from the Rast language [Das and Pfenning

2020a,b,c]. Type 1 indicates termination requiring that the provider send a closemessage followed by

terminating the communication. Dually, the client waits for the close message using (wait 𝑥 ; 𝑄)
and continues to execute 𝑄 . A process can also terminate via a forwarding expression (𝑥 ↔ 𝑦)
unifying the channels 𝑥 and 𝑦. The tensor operator 𝐴 ⊗ 𝐵 prescribes that the provider of 𝑥 : 𝐴 ⊗ 𝐵
sends a channel 𝑦 of type𝐴 and continues to provide type 𝐵. The corresponding process expression

is (send 𝑥 𝑦 ; 𝑃) where 𝑃 is the continuation. Correspondingly, its client must receive a channel

using the expression (𝑦 ← recv 𝑥 ; 𝑄), binding it to variable 𝑦 and continuing to execute 𝑄 . The

dual operator 𝐴 ⊸ 𝐵 allows the provider to receive a channel of type 𝐴 (sent by its client) and

continue to provide type 𝐵.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

66:12 Das et al.

A new instance of a defined process 𝑓 can be spawned with the expression 𝑥 ← 𝑓 𝑦 ; 𝑄 (the

rule spawn in Figure 3). The newly spawned process will use all variables in 𝑦 and provide 𝑥 to the

continuation𝑄 . The potential 𝑟 of the parent process must be equal to the sum of the potential 𝑝 of

the spawned process and 𝑞 of the continuation. If a process invocation is a tail call, i.e. invocation

without a continuation, it is written as 𝑥 ← 𝑓 𝑦.

Type-level recursion in NomosPro is handled in the same fashion as Rast [Das and Pfenning

2020b] (rule 𝜇𝑅 in Figure 3). On encountering a type name 𝑉 , it is silently replaced by its definition

𝐴𝑉 . A similar rule 𝜇𝐿 operates on a channel in the context Δ has been omitted for brevity.

Resource-Aware Types. To describe resource contracts for inter-process communication, the

type system further supports amortized resource analysis [Tarjan 1985] in the same way as resource

aware session types [Das et al. 2018]. The key idea is that processes store potential and messages
carry potential. This potential can either be consumed to perform work or exchanged using special

messages. Selected resource-aware type rules are presented in Figure 3.

The type system provides the programmer with the flexibility to specify what constitutes work.

We use the expression work {𝑟 } ; 𝑃 to define cost 𝑟 . The type rule work requires that the potential

𝑞 is sufficient to pay for the cost 𝑟 and the remaining potential 𝑞 − 𝑟 ≥ 0. Our type system

can automatically instrument the analyzed program with work {𝑟 } expressions based on the user-

specified cost model (e.g., number of messages sent and number of spawned processes). For example,

to count the total number of messages sent, we insert work {1} just before sending every message.

Two dual type constructors ⊲𝑟𝐴 and ⊳𝑟𝐴 are used to transfer potential to allow amortization. The

provider of 𝑥 : ⊲𝑟𝐴 must pay 𝑟 units of potential along 𝑥 using process expression (pay𝑥 {𝑟 } ; 𝑃),
and continue to provide 𝐴 by executing 𝑃 . These 𝑟 units are deducted from the potential stored

inside the sender process. When sending potential, we ensure that the sender has sufficient potential

to pay (premise 𝑞 ≥ 𝑟). Dually, the client must receive the 𝑟 units of potential using the expression

(get𝑥 {𝑟 } ; 𝑄) and add this to its internal stored potential. This is reflected in the type rules ⊲𝑅 and

⊲𝐿. The dual operator ⊳𝑟𝐴 allows the provider to receive potential sent by its client. The complete

set of typing rules is skipped for brevity and provided in the technical report [Das et al. 2021c].

The previously-discussed rules treat potential as a linear resource. As a result, the potential

reflects the exact cost of programs. However, we are most often interested in upper bounds on

the resource usage. For instance, if we treat potential linearly we cannot type a process that has

different work cost in different branches. To treat potential in an affine way, we have to provide

the ability to throw away potential. This can be achieved by the rule weak in Figure 3.

Shared Session Types. Session types were recently extended with sharing constructors [Balzer

and Pfenning 2017] to provide multi-client support imposing an acquire-release discipline on shared

processes. Although our meta theory and formal soundness theorem have been focused on the

linear fragment [Das et al. 2018] of session types, the NomosPro implementation support shared

session types which is crucial for some distributed and contract protocols. We believe our results

will extend to the shared fragment, and the formal development is future work. Sharing in session

types is largely orthogonal to probabilistic behavior since the two novel type formers of NomosPro

(⊕P and NP) only exist in the linear fragment with no interaction with the shared fragment.

4 PROBABILISTIC RESOURCE-AWARE SESSION TYPES
We now discuss the static semantics of the novel aspects of NomosPro. Validating whether messages

sent on a channel follow the distribution prescribed in the type is an interesting aspect of the type

system. Although we could combine probabilistic branching and sending in one atomic approach,

we take a more flexible approach. We decouple the sending of labels from probabilistic branching by

altering the types of the channels in each probabilistic branch. This enables us to combine multiple

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

Probabilistic Resource-Aware Session Types 66:13

Δ = 𝑝 · Δ𝐻 +L (1 − 𝑝) · Δ𝑇 𝐴 = 𝑝 · 𝐴𝐻 +R (1 − 𝑝) · 𝐴𝑇
𝑞 = 𝑝 · 𝑞𝐻 + (1 − 𝑝) · 𝑞𝑇 Δ𝐻 ⊢𝑞𝐻 𝑃𝐻 :: (𝑥 : 𝐴𝐻) Δ𝑇 ⊢𝑞𝑇 𝑃𝑇 :: (𝑥 : 𝐴𝑇)

Δ ⊢𝑞 flip 𝑝 (H⇒ 𝑃𝐻 | T⇒ 𝑃𝑇) :: (𝑥 : 𝐴)
flip

(∀ℓ ∈ 𝐿) Δℓ , (𝑥 : 𝐴ℓ) ⊢𝑞ℓ 𝑄ℓ :: (𝑧 : 𝐶ℓ) 𝑞 = ∑ℓ∈𝐿 𝑝ℓ · 𝑞ℓ Δ = ∑Lℓ∈𝐿 𝑝ℓ · Δℓ 𝐶 = ∑Rℓ∈𝐿 𝑝ℓ ·𝐶ℓ
Δ, (𝑥 : ⊕P{ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿) ⊢𝑞 pcase 𝑥 (ℓ ⇒ 𝑄ℓ)ℓ∈𝐿 :: (𝑧 : 𝐶)

⊕P𝐿

𝑝𝑘 = 1 𝑝 𝑗 = 0 (𝑗 ≠ 𝑘) Δ ⊢𝑞 𝑃 :: (𝑥 : 𝐴𝑘)
Δ ⊢𝑞 𝑥 ..𝑘 ; 𝑃 :: (𝑥 : ⊕P{ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿)

⊕P𝑅
𝑝𝑘 = 1 𝑝 𝑗 = 0 (𝑗 ≠ 𝑘) Δ, (𝑥 : 𝐴𝑘) ⊢

𝑞
𝑃 :: (𝑧 : 𝐶)

Δ, (𝑥 : NP{ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿) ⊢𝑞 𝑥 ..𝑘 ; 𝑃 :: (𝑧 : 𝐶)
NP𝐿

(∀ℓ ∈ 𝐿) Δℓ ⊢𝑞ℓ 𝑄ℓ :: (𝑥 : 𝐴ℓ) 𝑞 = ∑ℓ∈𝐿 𝑝ℓ · 𝑞ℓ Δ = ∑Lℓ∈𝐿 𝑝ℓ · Δℓ

Δ ⊢𝑞 pcase 𝑥 (ℓ ⇒ 𝑄ℓ)ℓ∈𝐿 :: (𝑥 : NP{ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿)
NP𝑅

Fig. 4. Type rules for probabilistic resource-aware session types.

sources of randomness (local and from communication) or to use a single source of randomness for

multiple sends. The type rules for the novel fragment are given in Figure 4.

Probabilistic Branching. The expression flip 𝑝 (H⇒ 𝑃𝐻 | T⇒ 𝑃𝑇) operationally corresponds
to flipping a coin with probability 𝑝 (of outputting H, and T otherwise) and executing 𝑃𝐻 if the

coin flips to H and executing 𝑃𝑇 otherwise. The corresponding typing rule is flip in Figure 4.

This expression together with the deterministic fragment of NomosPro from Section 3 results

in a probabilistic session-typed language where the probabilistic split of the types (in blue) can

be ignored. As a simplification, consider the following rule simple-flip that is a special case and

identical to flip in the deterministically-typed fragment of NomosPro, where both branches 𝑃𝐻 and

𝑃𝑇 of the probabilistic branching, are typed with the initial context Δ and have to offer on the same

channel 𝑥 of type 𝐴.

𝑞 = 𝑝 · 𝑞𝐻 + (1 − 𝑝) · 𝑞𝑇 Δ ⊢𝑞𝐻 𝑃𝐻 :: (𝑥 : 𝐴) Δ ⊢𝑞𝑇 𝑃𝑇 :: (𝑥 : 𝐴)
Δ ⊢𝑞 flip 𝑝 (H⇒ 𝑃𝐻 | T⇒ 𝑃𝑇) :: (𝑥 : 𝐴)

simple-flip

Notably, the probabilistic behavior of a process is not visible in its type. The interesting aspect of

rule is the treatment of potential. The initial potential 𝑞 is in general not identical to 𝑞𝐻 and 𝑞𝑇
(unlike rule ⊕𝐿 or rule N𝑅 in Figure 3). Instead, 𝑞 is the weighted sum 𝑝 · 𝑞𝐻 + (1 − 𝑝) · 𝑞𝑇 which

corresponds to the potential needed to cover the expected cost of the probabilistic branch. The rule
simple-flip can already be used in conjunction with the deterministic rules to derive interesting

and non-trivial bounds on the expected cost.

Probabilistic Choices. Using probabilistic branching, processes can send labels according to a

certain probability distribution. To reflect such a distribution in session types, we introduce the

type formers ⊕P{ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿 and NP{ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿 for probabilistic internal and external choice,

respectively. The types are similar to their deterministic versions but labels are annotated with

probabilities 𝑝ℓ . In a well-formed type, we have 𝑝ℓ ∈ [0, 1] and
∑

ℓ∈𝐿 𝑝ℓ = 1. The internal choice

⊕P{ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿 (resp., the external choice NP{ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿) requires the provider (resp., the client)
to send label 𝑘 ∈ 𝐿 with probability 𝑝𝑘 .

It is instructive to first discuss the type rule ⊕P𝑅 for probabilistic send. The sender uses expression

(𝑥 ..𝑘) to send label 𝑘 on channel 𝑥 . We require that the probability 𝑝𝑘 of the label 𝑘 be 1. For example,

in the derivation of the process TF (introduced in Section 2), channel 𝑏 has type ⊕P{true1 : 1, false0 :
1} in the H branch of the flip and type ⊕P{true0 : 1, false1 : 1} in the T branch. To arrive at such

a trivial distribution, we need to apply probabilistic branching to alter the probabilities on the

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

66:14 Das et al.

channel. The probability distribution on true and false labels on channel 𝑏 implemented by the

process is P where P(true) = 0.6 and P(false) = 0.4.

Receiving on a probabilistic channel can be seen as an external version of a probabilistic branch.

We again first consider a simplified version that is a special case of the rule ⊕P𝐿 in Figure 4.

(∀ℓ ∈ 𝐿) Δ, (𝑥 : 𝐴ℓ) ⊢𝑞ℓ 𝑄ℓ :: (𝑧 : 𝐶) 𝑞 = ∑ℓ∈𝐿 𝑝ℓ · 𝑞ℓ
Δ, (𝑥 : ⊕P{ℓ𝑝ℓ : 𝐴ℓ }ℓ∈𝐿) ⊢𝑞 pcase 𝑥 (ℓ ⇒ 𝑄ℓ)ℓ∈𝐿 :: (𝑧 : 𝐶)

simple-⊕P𝐿

The rule simple-⊕P𝐿 is similar to the rule ⊕𝐿 but takes the weighted sum 𝑞 = ∑ℓ∈𝐿 𝑝ℓ · 𝑞ℓ as
initial potential instead of the maximum; such treatment of potential is similar to the rule flip. The

additional premises in the rule ⊕P𝐿 involve weighted sums of session types, which are used to enable

probabilistic combination of the behavior for subsequent cases 𝑄ℓ (ℓ ∈ 𝐿).
Weighted Sums of Types. To type a probabilistic branch, we need to define a weighted-sum

relation for session types. For example, the derivation of the process TF is sound because of the

following relation on the type of channel 𝑏.

⊕P{true0.6 : 1, false0.4 : 1} = 0.6 · ⊕P{true1 : 1, false0 : 1} +R 0.4 · ⊕P{true0 : 1, false1 : 1}
The types on the right side of the equation are the types of the channel 𝑏 in the branches of the flip.

The probabilities 0.6 and 0.4 are the probabilities of the branches. The operation 𝑝 ·𝐴 +R (1 − 𝑝) · 𝐵
combines the label probabilities pointwise. Due to duality, we introduce two weighted-sum relations:

+L and +R, depending on if the type appears on the left or right of the turnstile.

We provide the two interesting cases of the definition. In both cases, we apply the weighted

sum 𝑝 · 𝑞ℓ + (1 − 𝑝) · 𝑟ℓ to the probabilities of the outermost labels. For all other possible types, we

simply define 𝑝 · 𝐴 +◦ (1 − 𝑝) · 𝐴 = 𝐴 for ◦ ∈ {L,R}.
𝑝 · ⊕P{ℓ𝑞ℓ : 𝐴ℓ }ℓ∈𝐿 +R (1 − 𝑝) · ⊕P{ℓ𝑟ℓ : 𝐴ℓ }ℓ∈𝐿 = ⊕P{ℓ𝑝 ·𝑞ℓ+(1−𝑝) ·𝑟ℓ : 𝐴ℓ }ℓ∈𝐿
𝑝 ·NP{ℓ𝑞ℓ : 𝐴ℓ }ℓ∈𝐿 +L (1 − 𝑝) ·NP{ℓ𝑟ℓ : 𝐴ℓ }ℓ∈𝐿 = NP{ℓ𝑝 ·𝑞ℓ+(1−𝑝) ·𝑟ℓ : 𝐴ℓ }ℓ∈𝐿

We generalize the notion of weighted sums to n-ary sums (∑R𝑖∈I 𝑝𝑖 · 𝐴𝑖 and ∑L𝑖∈I 𝑝𝑖 · 𝐴𝑖) and also

extend this relation pointwise to contexts.

Weighted sums are employed in rules ⊕P𝐿, NP𝑅, and flip, adding a great degree of flexibility to

the type system. For example, in the ⊕P𝐿 rule, we allow arbitrary contexts Δℓ and types𝐶ℓ for each

branch. We only require that the weighted sum of the types in each branch matches the context Δ
and type 𝐶 (third and fourth premise). The potential also follows this weighted sum relation. To

account for expected costs, the potential of a probabilistic branch is the sum of the potential in

each branch weighted with its corresponding probability (instead of the maximum in the rule ⊕𝐿
in Figure 3). Similarly, in the flip rule, we allow arbitrary contexts Δ𝐻 and Δ𝑇 and succedent types

𝐴𝐻 and 𝐴𝑇 in the H and T branches, respectively. Then we apply the weighted sum relation for the

context (first premise), the succedent type (second premise), and the potential (third premise).

Importantly, note that the weighted sum relation does not uniquely determine the types of

channels in each branch. More formally, given 𝑝 and 𝐴 and the constraint 𝐴 = 𝑝 · 𝐵 +◦ (1 − 𝑝) ·𝐶 ,
we cannot compute 𝐵 and 𝐶 deterministically. Instead, our novel type-reconstruction algorithm

(Section 7) uses a bottom-up approach to resolve this non-determinism.

The Necessity of Non-Recursive Weighted Sums. At first, one might be tempted to recursively

extend the weighted sum relation to the continuation types, e.g.,

(The rule is unsound) 𝑝 · ⊕{ℓ :𝐴ℓ }ℓ∈𝐿 +R (1−𝑝) · ⊕{ℓ :𝐵ℓ }ℓ∈𝐿 = ⊕{ℓ :(𝑝 · 𝐴ℓ +R (1−𝑝) · 𝐵ℓ)}ℓ∈𝐿
However, a closer examination reveals that this generalization is generally not compatible with the

intended semantics of probabilistic choice types. Distributions at deeper level of the types (e.g., 𝐴ℓ ,

𝐵ℓ) should not be altered in different branches. Intuitively, the interaction of probabilistic choices

with standard choices renders such a generalization unsound.

To demonstrate the issue, consider the following type.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

Probabilistic Resource-Aware Session Types 66:15

𝐵 ≜ ⊕{true : ⊕P{H0.5
: 1,T0.5

: 1}, false : ⊕P{H0.5
: 1,T0.5

: 1}}
A process that offers on a channel of type 𝐵 should first send a Boolean and then provide a fair

coin flip. However, if we would allow a nested weighted sum of probabilities, e.g.,

(The weighted sum is unsound)
𝐵 = 0.5 · ⊕{true : ⊕P{H1

: 1,T0
: 1}, false : ⊕P{H1

: 1,T0
: 1}}

+R 0.5 · ⊕{true : ⊕P{H0
: 1,T1

: 1}, false : ⊕P{H0
: 1,T1

: 1}}
the following undesirable implementation would type check. The problem is that a process that

uses channel 𝑏 does not receive a fair distribution after receiving the Boolean label.

decl bad : . ⊢ (b : 𝐵)

proc b ← bad = flip 0.5 (H ⇒ b.true ; b..H; close b | T ⇒ b.false ; b..T; close b)

The Necessity of Dual Weighted Sums. Our type system has two dual weighted sum relations

+L and +R. One might be tempted to think the two relations are equivalent, and allow rules like

(The rule is unsound) 𝑝 · ⊕P{ℓ𝑞ℓ : 𝐴ℓ } +L (1 − 𝑝) · ⊕P{ℓ𝑟ℓ : 𝐴ℓ }ℓ∈𝐿 = ⊕P{ℓ𝑝 ·𝑞ℓ+(1−𝑝) ·𝑟ℓ : 𝐴ℓ }ℓ∈𝐿
However, changing the probabilities on internal choices which are provided by other processes

would lead to unsound behavior. Consider for example the following process bad
′
. It offers a

channel 𝑥 : ⊕P{H0.5
: 1,T0.5

: 1} with a fair probabilistic internal choice. However, we could

justify the following unsound typing if we allowed the type ⊕P{H0.5
: 1,T0.5

: 1} of 𝑦 to be split as

0.5 · ⊕P{H1
: 1,T0

: 1} +L 0.5 · ⊕P{H0
: 1,T1

: 1} in the two branches of the flip; in this case, the

type of channel 𝑥 says the process bad
′
always sends H, which is not correct.

decl bad' : (y : ⊕P{H0.5
: 1,T0.5 : 1}) ⊢ (x : ⊕P{H1

: 1,T0 : 1})
proc x ← bad' y = flip 0.5 (H ⇒ pcase y (H ⇒ x..H; x ↔ y | T ⇒ x..T; x ↔ y)

| T ⇒ pcase y (H ⇒ x..T; x ↔ y | T ⇒ x..H; x ↔ y))

Probability-Polymorphic Typing. NomosPro only supports constant probabilities. This is not

a severe limitation for implementing probabilistic systems because one can implement a program

that simulates other distributions, which can possibly rely on runtime values. A non-constant

probability distribution of labels can then be type-checked with respect to a standard choice type.

Support for non-constant probabilities in the type system is beyond the scope of this article;

nevertheless, NomosPro’s type system allows probability-polymorphic typing. In the type judgment

Δ ⊢
𝑞

Σ 𝑃 :: (𝑥 : 𝐴), the process signature Σ can include multiple possible process typings (instead
of a single one) for a process definition. For example, the neg process defined in Section 2 can be

assigned a set of typing judgments such that one can spawn neg with an arbitrary distribution on

Booleans as input:

{(𝑏 : ⊕P{true𝑝 : 1, false1−𝑝 : 1}) ⊢0 neg :: (𝑐 : ⊕P{true1−𝑝 : 1, false𝑝 : 1}) | 𝑝 ∈ [0, 1]} ,
Note that efficient type checking as well as our methods for inference of expected-cost bounds and

probabilities do not extend to probability-polymorphic typing. Such an extension is beyond the

scope of this article but worth future research.

5 META THEORY
In this section, we introduce the novel probabilistic nested-multiverse semantics of NomosPro. Our

main results are type preservation, global progress, probability consistency, and that NomosPro is a

conservative extension of resource-aware session types [Das et al. 2018].

Difficulty in Using Existing Semantics. Operationally, a state of a concurrent system is a

configuration of running processes in the system. One common semantic construction for probabil-

ities is based on distributions (e.g., [Borgström et al. 2016; Kozen 1981]); in our setting, evaluation

rules of the semantics should transition from configurations to distributions on configurations. The

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

66:16 Das et al.

Fig. 5. A standard distribution-based semantics would fail to prove type preservation.

Fig. 6. The nested-multiverse semantics of a probabilistic flip.

distribution-based semantics has been used in the meta theory of a session-type concurrent system

where choices can only be probabilistic [Inverso et al. 2020]. The idea behind that work is that

proving type preservation for a probabilistic-flip expression requires to first construct new type

derivations for all possible configurations after the probabilistic flip, and then combine the types via

a “weighted sum” with respect to the result distribution on configurations. This approach is global,
in the sense that after a local coin flip in a process, one has to re-type the whole configuration with

other unchanged processes. However, this approach would fail already in proving preservation

if one attempts to integrate standard choices (⊕ and N) with probabilistic choices (⊕P and NP).

Our technical report [Das et al. 2021c] includes a counterexample and Figure 5 demonstrates

the difficulty: after a local flip in the process 𝑃 , the type of channel 𝑦 in one subsequent universe

diverges from the original type of channel 𝑦, thus neither universes are guaranteed to be well-typed.

A Nested-Multiverse Semantics. To overcome the difficulty, our key innovation is to make

probabilistic branching as local as possible. The influence of a coin flip should remain within the

source process, until the process communicates with other processes. With this intuition, we devise

nested-multiverse semantic objectsO, of the form (i) proc(𝑐,𝑤, 𝑃) for a process 𝑃 that provides along

channel 𝑐 and has performed work𝑤 , or (ii) proc(𝑐, {C𝑖 : 𝑝𝑖 }𝑖∈I), for a distribution—resulted from

flip expressions—of local configurations C𝑖 ’s that are provided along channel 𝑐 , where ∑𝑖∈I 𝑝𝑖 = 1.

A configuration C is a sequence of semantic objects O1 ∥ · · · ∥ O𝑛 . Intuitively, nested objects

collect information from multiple universes, where each universe represents a possible outcome of

executed probabilistic flips.

We develop a small-step operational semantics that manipulates the nested-multiverse objects.

Figure 7 presents selected rules for the semantics, and all rules are presented in the technical

report [Das et al. 2021c]. We distinguish two kinds of operational judgments, which we denote by

C ↦→ C′ and C
𝑑,𝜅
Z===⇒ C′, for single-process evaluation and communication, respectively. The single-

process judgment C ↦→ C′ means that a process in C makes a step without communicating with

other processes resulting in C′. To evaluate a coin flip flip 𝑝 (H⇒ 𝑃𝐻 | T⇒ 𝑃𝑇) while keeping the
randomness local in the flipped process, the rule (E:Flip) creates a local distribution object, whose

support contains two process objects: 𝑃𝐻 with probability 𝑝 and 𝑃𝑇 with probability 1 − 𝑝 . Figure 6
illustrates the semantics of a coin flip in our system for the system shown in Figure 5. If the flipped

process (𝑃𝐻 or 𝑃𝑇) can further evaluate probabilistic-flip expressions, the configuration will become

nested naturally. We will later prove type preservation that ensures the nested configuration on

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

Probabilistic Resource-Aware Session Types 66:17

(E:Flip) proc(𝑐,𝑤, flip 𝑝 (H⇒ 𝑃𝐻 | T⇒ 𝑃𝑇)) ↦→ proc(𝑐, {proc(𝑐,𝑤, 𝑃𝐻) : 𝑝, proc(𝑐,𝑤, 𝑃𝑇) : 1 − 𝑝})
(E:Work) proc(𝑐,𝑤,work {𝑟 } ; 𝑃) ↦→ proc(𝑐,𝑤 + 𝑟, 𝑃)

(C:⊕P) proc(𝑐,𝑤𝑐 , pcase 𝑑 (ℓ ⇒ 𝑄ℓ)ℓ∈𝐿) ∥ proc(𝑑,𝑤𝑑 , 𝑑 ..𝑘 ; 𝑃)
𝑑,⊕PZ=====⇒ proc(𝑐,𝑤𝑐 , 𝑄𝑘) ∥ proc(𝑑,𝑤𝑑 , 𝑃)

(C:NP) proc(𝑐,𝑤𝑐 , 𝑑 ..𝑘 ; 𝑄) ∥ proc(𝑑,𝑤𝑑 , pcase 𝑑 (ℓ ⇒ 𝑃ℓ)ℓ∈𝐿)
𝑑,NPZ=====⇒ proc(𝑐,𝑤𝑐 , 𝑄) ∥ proc(𝑑,𝑤𝑑 , 𝑃𝑘)

(C:⊕) proc(𝑐,𝑤𝑐 , case 𝑑 (ℓ ⇒ 𝑄ℓ)ℓ∈𝐿) ∥ proc(𝑑,𝑤𝑑 , 𝑑 .𝑘 ; 𝑃)
𝑑,det
Z=====⇒ proc(𝑐,𝑤𝑐 , 𝑄𝑘) ∥ proc(𝑑,𝑤𝑑 , 𝑃)

(C:N) proc(𝑐,𝑤𝑐 , 𝑑 .𝑘 ; 𝑄) ∥ proc(𝑑,𝑤𝑑 , case 𝑑 (ℓ ⇒ 𝑃ℓ)ℓ∈𝐿)
𝑑,det
Z=====⇒ proc(𝑐,𝑤𝑐 , 𝑄) ∥ proc(𝑑,𝑤𝑑 , 𝑃𝑘)

proc(𝑐, {(C𝑖 ∥ proc(𝑑, {C′𝑗 : 𝑝
′
𝑗 } 𝑗∈J)) : 𝑝𝑖 }𝑖∈I)

𝑑,⊕PZ=====⇒ C′′

proc(𝑐, {C𝑖 : 𝑝𝑖 }𝑖∈I) ∥ proc(𝑑, {C′𝑗 : 𝑝
′
𝑗 } 𝑗∈J)

𝑑,⊕PZ=====⇒ C′′
(C:BDist:L)

proc(𝑐, {(proc(𝑐, {C𝑖 : 𝑝𝑖 }𝑖∈I) ∥ C′𝑗) : 𝑝
′
𝑗 } 𝑗∈J)

𝑑,NPZ=====⇒ C′′

proc(𝑐, {C𝑖 : 𝑝𝑖 }𝑖∈I) ∥ proc(𝑑, {C′𝑗 : 𝑝
′
𝑗 } 𝑗∈J)

𝑑,NPZ=====⇒ C′′
(C:BDist:R)

proc(𝑐, {(C𝑖 ∥ C′𝑗) : 𝑝𝑖 · 𝑝
′
𝑗 }𝑖∈I, 𝑗∈J)

𝑑,det
Z=====⇒ C′′

proc(𝑐, {C𝑖 : 𝑝𝑖 }𝑖∈I) ∥ proc(𝑑, {C′𝑗 : 𝑝
′
𝑗 } 𝑗∈J)

𝑑,det
Z=====⇒ C′′

(C:BDist:D)

Fig. 7. Selected rules for the nested-multiverse semantics of NomosPro.

the right of the arrow in Figure 6 is well-typed. In the rule (E:Work) for work tracking, we simply

increment the work counter of the process.

(a) (left) proc(𝑑, {C′
1
: 0.7, C′

2
: 0.3}); (right)

proc(𝑐, {C1 : 0.4, C2 : 0.6}).

(b) Decompose the receiver: proc(𝑐, {(C1 ∥
proc(𝑑, {C′

1
: 0.7, C′

2
: 0.3})) : 0.4, (C2 ∥

proc(𝑑, {C′
1
: 0.7, C′

2
: 0.3})) : 0.6}).

Fig. 8. An example of (C:BDist:L).

The communication judgment C
𝑑,𝜅
Z===⇒ C′ means

that two processes in C communicate on a channel

𝑑 with sort 𝜅. The sort 𝜅 ∈ {det, ⊕P,NP} categorizes
the communication on a channel: ⊕P and NP stand

for probabilistic internal choices (rule (C:⊕P)) and ex-

ternal choices (rule (C:NP)), whereas det represents

all other communication (rules (C:⊕) and (C:N)). The

communication is synchronous: the sender blocks un-
til the message is delivered to the receiver. The sorts

come into play when two communicating semantic ob-

jects are distribution objects. For example, in the rule

(C:BDist:L), the underlying communication is of sort

⊕P, i.e., proc(𝑑, {C′𝑗 : 𝑝′𝑗 } 𝑗∈J) sends probabilistically
on channel 𝑑 , and proc(𝑐, {C𝑖 : 𝑝𝑖 }𝑖∈I) receives on
channel 𝑑 . To make a step from a pair of distributions,

we need to first decompose one of the distributions,
i.e., extract out some inner configurations. Intuitively,

proc(𝑑, {C′𝑗 : 𝑝′𝑗 } 𝑗∈J) results from one or more prob-

abilistic flips and describes processes from multiple

universes that send labels on channel 𝑑 . The receivers

must group these senders from multiple universes together to obtain the probability distribution on

the ⊕P-typed channel. Thus, in the premise, we keep proc(𝑑, {C′𝑗 : 𝑝′𝑗 } 𝑗∈J) (sender) intact, but de-
compose proc(𝑐, {C𝑖 : 𝑝𝑖 }𝑖∈I) (receiver). Figure 8 demonstrates an example of this rule. Dually, the

rule (C:BDist:R) works on NP-sorted communications by decomposing the senders. For det-sorted

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

66:18 Das et al.

∀𝑖 ∈ I : Δ𝑖
𝑞𝑖
⊩ C𝑖 :: (𝑐 : 𝐴𝑖) ∑L𝑖∈I 𝑝𝑖 · Δ𝑖 = Δ ∑R𝑖∈I 𝑝𝑖 · 𝐴𝑖 = 𝐴 ∑𝑖∈I 𝑝𝑖 · 𝑞𝑖 = 𝑞

Δ
𝑞
⊩ proc(𝑐, {C𝑖 : 𝑝𝑖 }𝑖∈I) :: (𝑐 : 𝐴)

(T:Dist)

Δ ⊢𝑞 𝑃 :: (𝑐 : 𝐴)

Δ
𝑞+𝑤
⊩ proc(𝑐,𝑤, 𝑃) :: (𝑐 : 𝐴)

(T:Proc)

Δ1,Δ
′ 𝑞1⊩ O :: (𝑐 : 𝐴) Δ2

𝑞2
⊩ C :: (Δ,Δ′)

Δ1,Δ2

𝑞1+𝑞2
⊩ (O ∥ C) :: (Δ, (𝑐 : 𝐴))

(T:Compose)

Fig. 9. Type rules for configurations.

(i.e., non-probabilistic) communications, the rule (C:BDist:D) can decompose both the senders and

the receivers, as the type for a non-probabilistic communication is also non-probabilistic.

Configuration Typing. We extend our type system to configurations (rules are given in Figure 9).

The judgment Δ
𝑞

⊩ C :: Γ means that the configuration C uses the channels in the context Δ and

provides the channels in Γ, and the nonnegative number 𝑞 denotes the expected value of the sum of

the total potential and work done by the system. The rule (T:Proc) connects configurations with

the original NomosPro processes, e.g., if an initial process is given by Δ ⊢𝑞 𝑃 :: (𝑐 : 𝐴), then an initial

configuration is defined by proc(𝑐, 0, 𝑃) with the configuration typing Δ
𝑞

⊩ proc(𝑐, 0, 𝑃) :: (𝑐 : 𝐴).
Type Safety. We prove type preservation by induction on evaluation judgments.

Theorem 1 (Preservation). If Δ
𝑞

⊩ C :: Γ, C ↦→ C′ or C
𝑑,𝜅
Z===⇒ C′ for some 𝑑, 𝜅, then Δ

𝑞

⊩ C′ :: Γ.

To aid the proof of progress, we define relations to characterize the status of semantic objects:

• C poised means that all processes in C are communicating along their providing channels.

• C live means that there exists a process in C that can make a step without communication.

• C (𝑑, 𝜅)-comm means that there exist two processes in C that are going to communicate along

channel 𝑑 of sort 𝜅.

Formal definitions of the characterizations are included in the technical report [Das et al. 2021c].

We first prove that those characterizations are sufficient for a configuration to make a step in

the semantics (Lem. 1(i)). We then prove that a well-typed configuration always admits a suitable

characterization (Lem. 1(ii)).

Lemma 1.

(i) If C live, then C ↦→ C′ for some C′. If (·)
𝑞

⊩ C :: Γ, C (𝑑, 𝜅)-comm, then 𝐶
𝑑,𝜅
Z===⇒ C′ for some C′.

(ii) If (·)
𝑞

⊩ C :: Γ, then either (a) C poised; or (b) C live, or C (𝑑, 𝜅)-comm for some 𝑑, 𝜅.

Theorem 2 (Progress). If (·)
𝑞

⊩ C :: Γ, then either (i) C poised; or (ii) C ↦→ C′ for some C′, or
C

𝑑,𝜅
Z===⇒ C′ for some C′, 𝑑, 𝜅.

We also formulate a result about probability consistency. Our approach of showing consistency is

analogous to the common approach of proving the consistency of refinement types (e.g., [Knoth

et al. 2019]): instead of showing intermediate values satisfy the refinement constraints, people

usually prove a lemma for well-typed closed values. In our setting, this approach suggests reasoning

about poised configurations that do not use any channels. Our technical report [Das et al. 2021c]

includes the details.

Theorem 3 (Consistency). Suppose (·)
𝑞

⊩ C :: (𝑐 : ⊕P{ℓ𝑝ℓ : 1}ℓ∈𝐿). By composing C with a
monitor that collects the messages received on channel 𝑐 , we show that if C evaluates to a poised
configuration C′ then the monitored message distribution on 𝑐 in C′ matches the type ⊕P{ℓ𝑝ℓ : 1}ℓ∈𝐿 .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

Probabilistic Resource-Aware Session Types 66:19

(FL:Proc)

proc(𝑐,𝑤, 𝑃) ≈ {proc(𝑐,𝑤, 𝑃) : 1}

(FL:Dist)

∀𝑖 ∈ I : C𝑖 ≈ 𝜇𝑖
proc(𝑐, {C𝑖 : 𝑝𝑖 }𝑖∈I) ≈ ∑𝑖∈I 𝑝𝑖 · 𝜇𝑖

(FL:Compose)

O ≈ 𝜇1 C ≈ 𝜇2
(O ∥ C) ≈ {(D1 ∥ D2 : 𝜇1 (D1) · 𝜇2 (D2)}D1∈dom(𝜇1),D2∈dom(𝜇2)

Fig. 10. Rules for the “flattening” procedure.

Connectionwith Distribution-based Semantics. To justify our design of the nested-multiverse

semantics, we apply the standard distribution-based construction to developing a small-step opera-

tional semantics on non-nested configurationsD of the form proc(𝑐1,𝑤1, 𝑃1) ∥ · · · ∥ proc(𝑐𝑛,𝑤𝑛, 𝑃𝑛),
and then prove that if a nested configuration can make an evaluation step, its corresponding dis-

tribution of non-nested configurations can also make a step. The non-nested semantics is based

on a synchronous semantics for resource-aware session types [Balzer and Pfenning 2017; Das

et al. 2018]. We introduce two kinds of operational judgments, which we denote by D det↦−−→ D′ and
D

prob

↦−−−→ 𝜇, for deterministic and probabilistic evaluation, respectively, where 𝜇 is a distribution on

configurations. Below presents selected rules for the semantics.

(S:Work) proc(𝑐,𝑤,work {𝑟 } ; 𝑃) det↦−−→ proc(𝑐,𝑤 + 𝑟, 𝑃)
(S:⊕P) proc(𝑐,𝑤𝑐 , 𝑐 ..𝑘 ; 𝑃), proc(𝑑,𝑤𝑑 , pcase 𝑐 (ℓ ⇒ 𝑄ℓ)ℓ∈𝐿)

det↦−−→ proc(𝑐,𝑤𝑐 , 𝑃), proc(𝑑,𝑤𝑑 , 𝑄𝑘)
(S:NP) proc(𝑐,𝑤𝑐 , pcase 𝑐 (ℓ ⇒ 𝑃ℓ)ℓ∈𝐿), proc(𝑑,𝑤𝑑 , 𝑐 ..𝑘 ; 𝑄) det↦−−→ proc(𝑐,𝑤𝑐 , 𝑃𝑘), proc(𝑑,𝑤𝑑 , 𝑄)
(S:⊕) proc(𝑐,𝑤𝑐 , 𝑐 .𝑘 ; 𝑃), proc(𝑑,𝑤𝑑 , case 𝑐 (ℓ ⇒ 𝑄ℓ)ℓ∈𝐿) ↦→ proc(𝑐,𝑤𝑐 , 𝑃), proc(𝑑,𝑤𝑑 , 𝑄𝑘)
(S:N) proc(𝑐,𝑤𝑐 , case 𝑐 (ℓ ⇒ 𝑃ℓ)ℓ∈𝐿), proc(𝑑,𝑤𝑑 , 𝑐 .𝑘 ; 𝑄) ↦→ proc(𝑐,𝑤𝑐 , 𝑃𝑘), proc(𝑑,𝑤𝑑 , 𝑄)

(SP:Det) D
prob

↦−−−−→ {D′ : 1}

(SP:Flip) proc(𝑐,𝑤𝑐 , flip 𝑝 (H⇒ 𝑄𝐻 | T⇒ 𝑄𝑇))
prob

↦−−−−→ {proc(𝑐,𝑤𝑐 , 𝑄𝐻)) : 𝑝, proc(𝑐,𝑤𝑐 , 𝑄𝑇) : 1 − 𝑝}

We lift the configuration-to-distribution relation

prob

↦−−−→ to a distribution-to-distribution relation

Z⇒ in a standard way. Details of the distribution-based non-nested semantics are included in the

technical report [Das et al. 2021c].

We then develop a “flattening” procedure that translates a nested configuration to a distribution

of non-nested configurations. We formulate the translation as a simulation relation C ≈ 𝜇 and

Figure 10 presents rules for the relation, where the weighted sum of distributions ∑𝑖∈I 𝑝𝑖 · 𝜇𝑖
is defined as 𝜆D. ∑𝑖∈I (𝑝𝑖 · 𝜇𝑖 (D)). We can now formulate the connection between our nested-

multiverse semantics and the standard distribution-based semantics as follows.

Theorem 4. If C ≈ 𝜇, C′ ≈ 𝜇′, and C ↦→ C′ or C
𝑑,𝜅
Z===⇒ C′, then 𝜇 Z⇒ 𝜇′.

Expected Work Analysis. To reason about the expected amount of work done by a probabilistic

program, we construct a Markov chain that reflects NomosPro’s non-nested distribution-based

semantics, which, as we have shown above, simulates the original nested-multiverse semantics.

Thus, the states of the Markov chain are the non-nested configurations. We define the expected

total work with respect to the Markov chain and prove that our system derives a sound upper
bound on the expected total work. We denote the total work done by a non-nested configuration

D = proc(𝑐𝑖 ,𝑤𝑖 , 𝑃𝑖) by work(D) B ∑𝑖 𝑤𝑖 . Details of the expected work analysis are included in the

technical report [Das et al. 2021c].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

66:20 Das et al.

Theorem 5. Suppose that (·)
𝑞

⊩ C :: Γ. Then we can construct a Markov chain {D𝑛}𝑛∈ℕ that
reflects the computation with C as the initial configuration. The expected total work is defined as
etw(C) B lim𝑛→∞ 𝔼[work(D𝑛)]. Then etw(C) ≤ 𝑞.

6 APPLICATIONS OF NOMOSPRO
We demonstrate applications from four categories: (i) implementating randomized distributed algo-

rithms along with inferring linear bound for most benchmarks, (ii) computing expected operational

cost of amortized data structures, (iii) verifying limiting distributions of Markov chains, and (iv)
analyzing expected behavior of digital contracts. Further benchmarks are described in Section 7.

6.1 Randomized Distributed Algorithms
Synchronous Leader Election. A leader election protocol operates on a network of 𝑁 processes

that communicate with each other to designate a unique process among them as the leader. Itai and

Rodeh [1990] proved that if the processes are indistinguishable, then there exists no deterministic
protocol to elect a leader. They also proposed a randomized protocol for leader election in a ring
network which proceeds in rounds. In each round, each process (independently) chooses a random

number in the range {1, . . . , 𝐾} for some parameter 𝐾 as an id. The processes then pass their

ids around the ring. If there is a unique maximum id, then that process is elected as the leader.

Otherwise, the processes initiate a new round. This protocol terminates with probability one

because eventually the random numbers chosen by the processes will have a unique maximum.

We intuitively describe how NomosPro models the two main aspects of the protocol: choosing

the process id, and then determining the leader. To model ids, we introduce the following session

type (assume 𝐾 = 3):

ids ≜ ⊕P{one1/3 : 1, two1/3 : 1, three1/3 : 1}
This type produces one of the labels one, two, and three representing the three possible ids. Next,

the following two processes are used to choose an id and determine the maximum id (for 𝑁 = 4):

decl choose-id : . ⊢ (id : ids)

decl maximum : (id1 : ids) (id2 : ids) (id3 : ids) (id4 : ids) ⊢ (max : ids)

Each process calls the choose − id process, which produces one of the three labels with equal

probability. Next, the maximum process case analyzes on the id value of each process; if a unique

maximum is determined, it is returned, otherwise a new round is initiated.

We have implemented this protocol in NomosPro which automatically infers its expected cost.

In this protocol, we have used a special cost model that counts the number of rounds. Figure 11(a)

plots the expected number of rounds versus 𝐾 . We have implemented this protocol for 2 ring

networks with 3 and 4 processes, respectively. Intuitively, the expected number of rounds is directly

proportional to 𝑁 and inversely proportional to 𝐾 . Both these observations are confirmed by

Figure 11(a): for a given 𝐾 , the number of rounds for 𝑁 = 4 is greater than that for 𝑁 = 3; and for a

fixed 𝑁 , the expected rounds decreases as 𝐾 increases.

Bounded Retransmission Protocol. This protocol is used for delivery of a file over an unreliable
channel [Helmink et al. 1994]. The sender splits the file into several small chunks and sends them

over one-by-one in sequence. Upon getting a chunk, the receiver sends an acknowledgment with

the chunk id. Until the sender receives this acknowledgment, they retransmit the same chunk up

to a given bounded number of times (hence, the name bounded retransmission).

NomosPro automatically computes the expected number of chunks that need to be transmitted

to ensure reliable delivery. We model this protocol for an unreliable channel with a 20% probability

of dropping a chunk. Figure 11(b) plots the expected number of transmitted chunks for different

numbers of allowed retries for 𝑁 = 4, 5 where 𝑁 is the number of file chunks to be transmitted. We

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

Probabilistic Resource-Aware Session Types 66:21

Fig. 11. (a) Expected number of rounds in leader election of Itai and Rodeh [1990] vs K, and (b) Expected

number of chunks transmitted in Bounded Retransmission [Helmink et al. 1994] vs R (# retries).

observe that the expected value increases as the number of retries increases. Moreover, a standard

result of this protocol is that the expected number of chunks converges to (1

1−𝑝)𝑁 where 𝑝 is the

drop probability and 𝑁 is the number of chunks. This is indeed confirmed by NomosPro for the case

when 𝑁 ∈ {4, 5}, since the 𝑁 = 4 line converges at 5 and 𝑁 = 5 line converges at 6.25 respectively.

NomosPro can also derive a symbolic upper bound by representing the file chunks as a list of

arbitrary length and the retransmission bound with an argument 𝑅. To obtain a symbolic bound,

we employ amortization by introducing a list type defined as

potlist ≜ ⊕{cons : ⊲∗potlist, nil : 1}
Each element of the list represents a file chunk and stores a fixed but unknown amount of potential.

In each protocol iteration, an element is removed from potlist and transmitted. If the transmission

is successful, we move to the next chunk, otherwise, we insert the chunk back into potlist and try

again up to 𝑅 times. For 𝑝 = 0.2, NomosPro infers the value of 1.25 for the ∗ in the potlist type,

thereby deriving the symbolic bound 1.25𝑁 , which is tight since 𝑅 is unbounded.

Byzantine Broadcast Protocols. Broadcast protocols like Srikanth and Toueg [1987] authen-

ticated broadcast and Bracha [1987] reliable broadcast are commonly used to reach consensus

among a leader and a set of followers, where a given number of parties are subject to Byzantine

faults. They involve the leader broadcasting a message𝑚 to all its followers which are then echoed

amongst each other by the followers. Once a follower receives a threshold number of echoes, it

commits to 𝑚. Both these protocols have numerous applications in cryptography by ensuring

secure broadcast even in the presence of failures. We implemented probabilistic variants of both

protocols in NomosPro where messages are dropped with a fixed probability. We introduce the

following optional message type omsg.

omsg ≜ ⊕P{none𝑝 : 1, some1−𝑝 : msg}
The optional message produces none (equivalent to dropping) with probability 𝑝 . We use this as

the message type for all communication among all parties for both protocols. The two protocols

amount to 397 and 732 lines of code, respectively. Owing to its bi-directional nature, our type

checker is quite efficient in practice and checks the two programs in 1.03ms and 1.78ms respectively.

We report more details in Table 1. We leave inferring cost bounds for these protocols as future

work since the NomosPro implementation currently only support linear bounds while the message

complexity for both these broadcast protocols is quadratic.

6.2 Concurrent Amortized Data Structures
Amortized Queues. A classical example of amortization is a concurrent queue implemented

using two lists: an inlist and an outlist. Elements are inserted into the inlist and deleted from the

outlist. For deletion, if the outlist is empty, all elements from the inlist are removed and inserted

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

66:22 Das et al.

into the outlist in reverse order. Though insertion is constant-time, deletion can be linear-time in

the worst case.

Notably, NomosPro can automatically infer that deletion has a constant amortized expected cost.
We illustrate this by considering a probabilistic variant of a queue with the type

queue𝐴 ≜ NP{ins𝑝 : ⊳∗ (𝐴 ⊸ queue𝐴), del1−𝑝 : ⊕{none : 1, some : 𝐴 ⊗ queue𝐴}}

A queue offers a probabilistic choice (indicated by NP) of either receiving an ins or del request with
probabilities 𝑝 and 1 − 𝑝 respectively. In the case of insert, the queue receives some fixed potential

(denoted by ⊳∗) and a channel of type 𝐴 (denoted by⊸) to insert into the queue. In the latter case,

the queue has a choice (indicated by ⊕) of either responding with the label none (if there is no
element in the queue) and closing the channel (indicated by 1), or the label some followed by an

element of type 𝐴 (denoted by ⊗) and recursing to await the next round of interactions.

To obtain the constant amortized bound, we allow the client to pay extra potential during

insertion using the ⊳∗ operator which is stored in the inlist. During deletion, this extra potential is

used to pay for the cost of reversal, thereby amortizing the linear cost.

Remarkably, the amortized cost of insertion is inversely proportional to the probability 𝑝 of insert

requests. As the expensive delete operations become more frequent, the cost of insertion rises. This

is indeed validated by NomosPro. When we count all message exchanges: if 𝑝 = 0.1, the cost is

58; if 𝑝 = 0.3, the cost is 18; if 𝑝 = 0.8, the cost is 5.5. To obtain a symbolic bound as a function

of the number of operations, we employ amortization by relying on the potlist type introduced

earlier. For each element of this list, a client flips a coin to decide whether to send an insert or delete

request. The ∗ on the ⊲ operator signals the inference engine to compute the expected potential.

Even more remarkably, the potential inferred by NomosPro for potlist is ⊲7, irrespective of the

probability 𝑝! This is due to the fact that as 𝑝 increases, the cost of insertion reduces but the total

number of insert requests also increases, canceling out each other’s effect. Thus, the expected cost

for 𝑛 operations on the concurrent queue is 7𝑛 independent of the value of 𝑝 , which is indeed

confirmed by NomosPro.

Unreliable Data Structures. Another scenario for expected amortized cost analysis is to reason

about unreliable server processes that provide data-structure manipulation services. For example,

suppose that a server process implements a non-probabilistic version of the concurrent queue

described earlier in the section, but the server will fail to respond to a connection with some

probability 𝑝 < 1. Therefore, the client has to resend a request repeatedly until the server accepts

the connection. A non-probabilistic amortized cost analysis would yield infinity, because it is

possible for the server to refuse an unbound number of connections. On the other hand, a non-

amortized expected cost analysis would indicate that a deletion can be linear-time, because the

queue is implemented using an inlist and an outlist.

NomosPro can automatically infer that each operation has a constant amortized expected cost,
and the cost depends on the failure probability 𝑝 . The unreliable queue is implemented with the type

uqueue𝐴 ≜ ⊕P{fail𝑝 : uqueue𝐴, succ
1−𝑝

: queue𝐴}
queue𝐴 ≜ N{ins : ⊳∗ (𝐴 ⊸ uqueue𝐴), del : ⊳∗ ⊕ {none : 1, some : 𝐴 ⊗ uqueue𝐴}}

The actual non-probabilistic queue has type queue𝐴, and is wrapped in a probabilistic interface (the

type uqueue𝐴) to model unreliability. To complete a request on the actual queue, we implement a

recursive try-until-success process as follows.

decl try_request : (uq : uqueue) ⊢∗ (q : queue)

proc q ← try_request uq =

work {1} ; pcase uq (fail ⇒ q ← try_request uq | succ ⇒ q ↔ uq)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

Probabilistic Resource-Aware Session Types 66:23

In essence, the process try_request simulates a geometric distribution whose success rate is 1 − 𝑝 ;
thus, the exact expected cost in terms of the failure probability 𝑝 is proportional to

1

1−𝑝 . Indeed,

when we use a cost model specified by work expressions, NomosPro automatically derives that if

𝑝 = 0.8, the expected cost of try_request is 5; and if 𝑝 = 0.2, the expected cost is 1.25.

Similar to the analysis described earlier in the section, we can obtain a symbolic bound as a

function of the number of operations, by introducing a list type of requests defined as

reqlist𝐴 ≜ ⊕{ins : ⊲∗𝐴 ⊗ reqlist𝐴, del : ⊲
∗
reqlist𝐴, nil : 1}

The list stores a fixed but unknown amount of potential per request, and the ∗’s on the ⊲ operators

signal the type checker to compute the expected amortized costs. When we count all message

exchanges, NomosPro automatically infers that if 𝑝 = 0.8, the potential annotations for ins and
del in type reqlist𝐴 are ⊲11 and ⊲12, respectively; and if 𝑝 = 0.2, the annotations are ⊲7.25 and ⊲8.25.

Therefore, the expected cost for 𝑛 operations on the unreliable concurrent queue is linear in 𝑛 in

both cases, and the expected cost gets larger when the failure probability 𝑝 gets larger.

6.3 Markov Chains
Limiting Distributions of Markov Chains. One of the most common problems studied about

Markov chains is their asymptotic behavior. Google’s PageRank algorithm [Page et al. 1999], for

instance, represents webpages as states in a giant Markov chain and utilizes its limiting distribution

to rank the webpages in search results. The limiting distribution of a Markov chain𝑀 is a vector 𝜋

where 𝜋𝑖 denotes the fraction of time spent in state 𝑖 . A chain is often described using a transition

probability matrix P such that P𝑖 𝑗 denotes the probability of transitioning from state 𝑖 to state 𝑗 .

Then, the limiting distribution satisfies the equations 𝜋 · P = 𝜋 and

∑
𝑖 𝜋𝑖 = 1.

We can implement a Markov chain in NomosPro and use the type system to verify its limiting

distribution. A standard example of limiting distributions is the position of a king wandering in

an otherwise empty 8-by-8 chessboard. At any step, the king can move from its current position

to any of its neighboring squares with equal probability. It is known that the limiting positional

distribution of this king is
3

420
for a corner square,

5

420
for an edge square, and

8

420
for an internal

square. To verify this distribution in NomosPro, we define a type limit abbreviated as follows

limit ≜ ⊕P{. . . , Sab3/420 : 1, . . . , Scd5/420 : 1, . . . , Sef 8/420 : 1, . . .}

The type contains 64 branches, one for each square on the chessboard. Labels Sab, Scd, and Sef
denote one representative corner, edge, and internal square respectively. The probability annotation

of each label exactly matches the limiting probability of the corresponding square. The transition

probability matrix is represented using the following process

decl transition : (in : limit) ⊢ (out : limit)

proc out ← transition in = pcase in (

S11 ⇒ u ← uniform3 ; pcase u (one ⇒ out..S12 ; wait u ; out ↔ in

| two ⇒ out..S21 ; wait u ; out ↔ in

| three ⇒ out..S22 ; wait u ; out ↔ in) ...)

This transition process exactly implements the equation 𝜋 · P = 𝜋 . We showcase one such branch

in the process (which exceeds 600 lines!) representing the corner square (1, 1). We call a process

uniform3 (not shown) that generates a uniform distribution with three possibilities: one, two, and
three. Depending on the output of u, we transition to neigboring squares (1, 2), (2, 1), or (2, 2)

respectively, guaranteeing that each neighboring transition is equally probable. The validity of type

limit enforces that

∑
𝑖 𝜋𝑖 = 1. The successful type checking of transition verifies that limit indeed

represents the limiting positional distribution of the king’s position.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

66:24 Das et al.

6.4 Digital Contracts
NomosPro can be used to inject probabilistic behavior into digital contracts [Das et al. 2021a]. To

illustrate, consider the mechanism of slot machines where a player uses a ticket to play and can

win with probability 𝑝 to receive the entire money stored in the machine, or lose otherwise.

Notably, we can use potential to represent money in digital contracts: a player pays one unit of

potential to play, and all the potential stored in the machine is paid to the winner.

slot ≜↑S
L
⊳1 ⊕P {won0.2 : ⊲∗ ↓S

L
slot, lost0.8 :↓S

L
slot}

The session type slot represents the interface to a slot machine. To allow multiple players, the

type is shared: the ↑S
L
represents that the channel must be acquired to play. Once acquired, the

player must deposit the ticket by paying 1 unit of potential, as represented with ⊳1. Then, the type

transitions to a probabilistic internal choice, denoting that the player can win with probability 0.2.

Thus, the player is guaranteed a 20% chance of winning. If the player wins, the type sends the won
label followed by an unknown (∗) amount of potential. The ∗ indicates that we would like the type

system to infer how much potential the player wins. On the other hand, if the player loses, the

type only sends the lost label. Then, in either case, the type detaches with the ↓S
L
operator issuing a

release, and the session recurses to type slot.

NomosPro automatically computes the potential to be paid to the winner by inferring the type

slot ≜↑S
L
⊳1 ⊕P {won0.2 : ⊲5 ↓S

L
slot, lost0.8 :↓S

L
slot}

Thus, the player wins 5 times the price of a ticket. This matches our expectation as the winning

probability is 0.2 = 1/5. In general, NomosPro infers the win amount to be 1/𝑝 when the win

probability is 𝑝 for any fixed 𝑝 .

The above analysis works when the slot machine itself makes no money; the winner obtains the

entire pot stored in the slot. Interestingly, we can modify the slot session type to allow the machine

to make money. For instance, suppose we modify the slot type to

slot ≜↑S
L
⊳1 ⊕P {won0.2 : ⊲4 ↓S

L
slot, lost0.8 :↓S

L
slot}

so that the winner obtains only 4 units. The remaining potential can be stored in an internal list

inside the slot machine using the potlist type again.

potlist ≜ ⊕{cons : ⊲∗potlist, nil : 1}
NomosPro infers the ∗ annotation in potlist as ⊲1, confirming that the slot makes 1 unit of money

in expectation. However, the winner cannot be paid more than 5 units. So, if we set the type for the

slot machine as

slot ≜↑S
L
⊳1 ⊕P {won0.2 : ⊲𝑟 ↓S

L
slot, lost0.8 :↓S

L
slot}

where 𝑟 > 5, then the program fails to typecheck! Intuitively, this makes sense since money (or

potential) cannot be generated out of thin air. The expected money going into the slot machine

must be greater than or equal to the expected money coming out.

7 IMPLEMENTATION AND EVALUATION
We have implemented an open-source prototype for NomosPro in OCaml (7622 lines of code). In

this section, we describe the main components of the implementation.

Type Reconstruction. We implemented a bi-directional type checker [Pierce and Turner 2000]

for NomosPro specifically focusing on the quality of error messages. The programmer provides the

initial type for each process in the declaration, and the intermediate types are reconstructed while

type checking the corresponding definition. This aids in localizing the source of the error as the

program location where type reconstruction fails.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

Probabilistic Resource-Aware Session Types 66:25

The critical aspect of reconstruction is handling the non-determinism in the rules for flip and

pcase. To typecheck a probabilistic branch, we need to guess the types of each channel in each

branch (e.g., Δℓ ,𝐶ℓ in ⊕P𝐿 and Δ𝐻 , 𝐴𝐻 ,Δ𝑇 , 𝐴𝑇 in flip). This problem is exacerbated further when

such branches are arbitrarily nested. Consider the debias process again that involves such a nesting

from Section 2, where pbool ≜ ⊕P{true0.6 : 1, false0.4 : 1} and ubool ≜ ⊕P{true0.5 : 1, false0.5 : 1}.
(𝑏 : 1) ⊢ 𝑐..false ; . . . :: (𝑐 : A1) (𝑏 : 1) ⊢ 𝑐..true ; . . . :: (𝑐 : A2) A = 0.166667 · A1 +R 0.833333 · A2

(𝑏 : 1) ⊢ flip 0.166667 (H⇒ 𝑐..false ; . . . | T⇒ 𝑐..true ; . . .) :: (𝑐 : A)
(𝑏 : pbool) ⊢ pcase 𝑏 (true⇒ flip 0.166667 (H⇒ . . . | T⇒ . . .) | false⇒ . . .) :: (𝑐 : ubool)

We show a part of the derivation tree of the debias process (false branch not shown). Although we

know the initial type 𝑐 : ubool (conclusion at the bottom), we need to guess its intermediate type in

the true and false branches. Suppose we guess type A for 𝑐 in the true branch and similarly type B
in the false branch (not shown). We would obtain the constraint ubool = 0.6 · A +R 0.4 · B taking

the probability of each branch into account. We again need to typecheck a flip expression. So, we

again guess types A1 and A2 in the H and T branches respectively. Then, we obtain the constraint

A = 0.166667 ·A1 +R 0.833333 ·A2 as shown in the derivation. The outcome of the type checking of

this process would depend on the satisfaction of these constraints.

Our type checker solves this issue using a 2-phase reconstruction algorithm. Before initiating the

type checking algorithm, we perform a simple pass on the process code and replace all ∗ annotations
with variables. These variables later become a part of the linear constraints that are generated by

the type checker.

The first phase of type checking is top-down where all probability values are ignored and the

remaining basic session typing rules are checked. NomosPro’s type system is based on syntax-

directed typing rules. In other words, given a process typed as Δ ⊢ 𝑃 :: (𝑥 : 𝐴), the rule that needs
to be applied depends on the structure of 𝑃 . For instance, if 𝑃 = 𝑥 .𝑘 ; 𝑄 , i.e., send a label 𝑘 on

channel 𝑥 and continue with 𝑄 , then the ⊕𝑅 rule is applied. If 𝐴 is a type name, its definition is

looked up in the signature and expanded. Since 𝐴 must expand to an internal choice type (if it does

not, a type error is reported), suppose its definition is ⊕{ℓ : 𝐴ℓ }ℓ∈𝐿 . Then, the continuation type

for 𝑥 after sending label 𝑘 is 𝐴𝑘 . Therefore, the type checker proceeds to typing the expression

Δ ⊢ 𝑄 :: (𝑥 : 𝐴𝑘). The other non-probabilistic rules follow a similar pattern.

The second phase of type checking is bottom-up where we apply the probabilistic typing rules

(Figure 4). We explain this phase on the debias process by recalling the implementation

decl debias : (b : pbool) ⊢ (c : ubool)

proc c ← debias b = pcase b (true ⇒ flip 0.166667 (H ⇒ c..false; wait b; close c

| T ⇒ c..true; wait b; close c)

| false ⇒ c..false; wait b; close c)

As described earlier, suppose the type of 𝑐 is A in the true branch and B in the false branch. We

know that ubool = 0.6 · A +R 0.4 · B, which implies that A and B have the same type structure as
ubool, but only differ in the probability annotations. We then introduce probability variables to

stand in for the annotations (which will later be inferred). Suppose we define

A ≜ ⊕P{true𝑝𝐴 : 1, false𝑝
′
𝐴 : 1} B ≜ ⊕P{true𝑝𝐵 : 1, false𝑝

′
𝐵 : 1}

The validity of these types straight away derive the constraint 𝑝𝐴 + 𝑝′𝐴 = 1 and 𝑝𝐵 + 𝑝′𝐵 = 1. And

from the constraint ubool = 0.6 · A +R 0.4 · B, we obtain the constraints 0.6𝑝𝐴 + 0.4𝑝𝐵 = 0.5 and

0.6𝑝′
𝐴
+ 0.4𝑝′

𝐵
= 0.5. Moving to type checking the flip expression, we assign types A1 and A2 to

channel 𝑐 in the H and T branches respectively. Again, we define

A1 ≜ ⊕P{true𝑝1 : 1, false𝑝
′
1 : 1} A2 ≜ ⊕P{true𝑝2 : 1, false𝑝

′
2 : 1}

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

66:26 Das et al.

Again, we obtain 𝑝1 + 𝑝′1 = 1 and 𝑝2 + 𝑝′2 = 1. Also, simplifying the constraint A = 0.166667 · A1 +R
0.833333 · A2, we derive 𝑝𝐴 = 0.166667𝑝1 + 0.833333𝑝2 and 𝑝′𝐴 = 0.166667𝑝′

1
+ 0.833333𝑝′

2
. But also,

in the H branch, when we type check sending the label false on 𝑐 , we derive 𝑝1 = 0 and 𝑝′
1
= 1.

Similarly, from the T branch, we get 𝑝2 = 1 and 𝑝′
2
= 0. With a similar argument, from the false

branch, we get 𝑝𝐵 = 0 and 𝑝′
𝐵
= 1. Solving all these constraints, we obtain

𝑝𝐴 = 0.833333 𝑝′
𝐴
= 0.166667 𝑝𝐵 = 0 𝑝′

𝐵
= 1 𝑝1 = 0 𝑝′

1
= 1 𝑝2 = 1 𝑝′

2
= 0

The second phase generates linear constraints (as described above) on the probability annotations

which are shipped to Coin-Or [Clp team 2022], an off-the-shelf LP solver. Coin-Or either returns a

satisfying assignment which is substituted into the typing derivation, or reports that the constraints

are unsatisfiable which is interpreted as a type checking failure.

Potential and Probability Inference. A note-worthy point here is that Coin-Or also acts as our

inference engine to compute both potential and probability annotations automatically. Unknown

(probability or potential) annotations are indicated using ∗ in the source program which are first

substituted with variables (just like intermediate channel types). Application of bidirectional typing

rules generates linear constraints for both the probability annotations and potential. The type-

checker separately collects the potential constraints and adds an additional optimization which

minimizes the total sum of potential annotations to achieve tight bounds. The constraints w.r.t.

probabilities are solved first and partially substituted into the constraints w.r.t. potential. This

ensures that we can at least verify the program’s probabilistic behavior even if we are unable to

infer a cost bound (which is undecidable in general). Since the exact potential annotations depend

on the cost assigned to each operation and are difficult to predict statically, we found inference to

be extremely useful to make NomosPro practically applicable.

Evaluation. We implemented all examples presented so far and several other benchmarks in

the NomosPro prototype. Table 1 compiles the results of our experiments run on an Intel Core

i5 2.7 GHz processor with 16 GB 1867 MHz DDR3 memory. For each benchmark, we present the

expected execution cost determined by NomosPro’s inference engine. Additionally, for the Markov

chain benchmarks, we also verify their limiting distribution and/or correctness.

The program leader is the Itai and Rodeh [1990] synchronous leader election where the number

of processes is 3 and maximum id is 3. The bdd ret. examples implement the bounded retransmis-

sion protocol [Helmink et al. 1994] that drops messages with 20% probability with 𝑁 = 4 and 5

respectively. Correspondingly, bdd sym. implements the symbolic variant of the same protocol

representing the file chunks as a list. The Srikanth and Toueg [1987] and Bracha [1987] broadcast

protocols are implemented in auth. broad. and bracha respectively. All these protocols demon-

strate that NomosPro scales to large programs due to its linear-time type checker and efficient LP

solver. The din. crypto. benchmark implements the Chaum [1988] dining cryptographers protocol

used for exchanging secure messages with sender and receiver untraceability. Briefly, the protocol

involves 3 cryptographers who flip an unbiased coin and communicate their coin’s outcome with

one of their neighbors. Crucial to the correctness of this protocol is the use of an unbiased coin

which can be statically guaranteed using NomosPro’s type system.

The queue benchmark implements the amortized queue from Section 6. The programs 3 die and
6 die implement the 3-faced and 6-faced die from Section 2 using a coin [Knuth and Yao 1976]. The

fair coin process recursively flips a biased coin to produce a fair coin. The program exp. trials
recursively flips a fair coin until it outputsH. The bound shows the expected number of flips needed

in either case. The programs rnd walk, repair, and weather describe Markov chains representing

a random walk along a 1D line, a faulty machine, and probabilistic weather patterns, respectively.

NomosPro infers that if the random walker moves forward with probability 0.6, they will cover

𝑛 steps in 4𝑛 time units on average. NomosPro also infers that the faulty machine spends 0.11𝑛

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

Probabilistic Resource-Aware Session Types 66:27

Table 1. Evaluation of NomosPro. LOC = lines of code; Defs = #type and process definitions; T (ms) = type

checking time in milliseconds; Vars = #unknown ∗ annotations replaced by variables; Cons = #constraints

generated during type checking; I (ms) = inference time in milliseconds; Bound = expected execution cost

counting total number of message exchanges (unless explicitly stated in text).

Program LOC Defs T (ms) Vars Cons I (ms) Bound

leader 161 18 0.3 144 360 3.1 1.8 (𝑁 = 3, 𝐾 = 3)

bdd ret. 646 122 906.7 403 1323 353.6 5 (𝑁 = 4)

bdd ret. 806 152 11676.8 503 1652 4403.6 6.25 (𝑁 = 5)

bdd sym. 79 14 0.1 86 276 3.6 1.25𝑁

auth 397 32 0.9 454 1436 — —

bracha 736 58 1.7 559 1731 — —

din. crypto. 99 5 0.7 291 870 4.2 2

queue 118 14 0.4 158 484 3.7 7𝑛

3 die 37 6 0.3 24 72 2.9 2.667

6 die 109 14 0.3 54 160 4.9 3.667

fair coin 17 2 0.3 20 54 2.9 4.167 (bias prob. is 0.4)

exp. trials 10 2 0.2 8 24 2.8 2

rnd walk 27 3 0.1 32 96 3.4 4𝑛 (move prob. is 0.6)

repair 22 3 0.3 39 118 2.9 0.11𝑛

weather 23 2 0.3 35 84 2.9 2

chessboard 811 16 28.5 3371 8354 70.2 5.847

nat add 25 5 0.3 33 90 3.2 𝑛

nat double 28 6 0.3 31 95 3.6 0.4 + 2.4𝑛
lottery 16 2 0.3 19 52 2.8 10 (win prob. is 0.1)

slots 17 2 0.4 21 58 3.3 5 (win prob. is 0.2)

days out of 𝑛 in repair. For the repair and weather benchmarks, NomosPro also verifies their

limiting distribution estimating the fraction of time the faulty machine spends in repair, and the

expected fraction of rainy and sunny days, respectively. The chessboard Markov chain described

in Section 6.3 is implemented in chessboard. We also implemented probabilistic unary natural

numbers that send successor and zero with a fixed probability. Programs nat add and nat double
study the expected behavior of adding and doubling them respectively. For nat add, the bound
is a function of the number of bits in the first addend. The lottery contract guarantees a certain

winning probability (10%) in its session type. Finally, slots implements slot machines from Section 6.

In both examples, the bound describes the amount received by the winner.

8 RELATEDWORK
Probabilistic Session Types. Aman and Ciobanu [2019] propose a typing system extending

multiparty session types [Honda et al. 2008] with probabilistic internal choice and non-deterministic

external choice. Their session typing discipline contains probabilistic intervals as opposed to Nomo-

sPro, where probabilities are exact. Inverso et al. [2020] developed a system with probabilistic binary

session types. Their system does not support non-probabilistic internal/external choices and chan-

nel passing, whereas NomosPro is a conservative extension of intuitionistic session types [Caires

and Pfenning 2010]. Another distinguishing feature of NomosPro from all the aforementioned work

is that we automatically infer expected cost and probabilities.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

66:28 Das et al.

Probabilistic Process Algebras. Probabilities were introduced in process algebras [Bergstra and

Klop 1984] by a probabilistic internal choice operator and extended with parallel composition [An-

dova 1999]. Herescu and Palamidessi [2000] later proposed an extension of the asynchronous

𝜋-calculus with a notion of random choice distinguishing between probabilistic choice internal to a

process and non-deterministic external choice made by an adversarial scheduler. They further use

these techniques to prove probabilistic correctness of the leader election protocol under any possible

scheduler. Other extensions to model time [Hansson and Fredlund 1994] and performance [Hillston

1996] have also been proposed working on the same principle of a probabilistic choice operator.

NomosPro differs from these work by describing probabilistic behavior in a compositional type

system.

Horne [2019] uses a processes-as-formulae paradigm and introduces sub-additives ⊕P and NP

as term formers to construct processes. For instance, their ⊕P term former is similar to the flip

expression in our work. Despite the surface similarity, NomosPro is fundamentally different, as our

⊕P and NP are type formers and NomosPro follows a Curry-Howard interpretation of intuitionistic

linear logic [Caires and Pfenning 2010], where processes are proofs and types are formulae.

Probabilistic Model Checking. Probabilistic model checkers (such as PRISM [Kwiatkowska

et al. 2011] and Storm [Dehnert et al. 2017]) support analysis of both discrete- and continuous-

time Markov chains [Kwiatkowska et al. 2007a], Markov decision processes [Forejt et al. 2011],

probabilistic timed automata [Kwiatkowska et al. 2007b], 𝜋-calculus [Norman et al. 2007], and

randomized distributed algorithms [Norman 2004], including dining cryptographers protocol

by Chaum [1988]. Instead of using type systems, those model checkers provide a state-based

language and a specification logic to specify the model and property to be checked. Unlike PRISM

or Storm, the symbolic bounds produced by NomosPro are not simply functions of numbers or sizes

but of interactions between communicating processes. Moreover, probabilistic session types serve as

compositional specifications that enable the analysis of different processes in isolation. NomosPro

also supports amortization (e.g. functional queue) to infer constant-time bounds even where certain

operations can be linear-time, all while using efficient LP solvers. Typing derivations in NomosPro

also provide a succinct proof of the probabilistic behavior of concurrent programs along with their

expected cost which can be verified efficiently in linear-time. Bertrand et al. [2019] extend threshold

automata to model randomized algorithms parameterized by the number of processes and failures

under round-rigid schedules. In contrast, the linear fragment of NomosPro guarantees deadlock
freedom.

Semantics of Probabilistic Languages. Several denotational models combining probabilistic

and non-deterministic choices have been developed [Jones 1989; Mislove et al. 2004; Tix et al. 2009;

Varacca 2002; Varacca and Winskel 2006; Wang et al. 2019b], and some of them are focused on

probabilistic concurrency [Mislove 2000; Varacca 2003; Varacca and Yoshida 2007]. In NomosPro,

we use an operational semantic model. Trace-based operational semantics have been used to

analyze probabilistic concurrent programs [Hart et al. 1983; Tassarotti and Harper 2019]. There,

the semantics maps a concurrent program to a distribution of execution traces, but each trace is

reasoned about separately and traces are connected in the final phase of the analysis. In contrast,

our nested-multiverse semantics accounts for connections among traces in different universes via

nested distributions.

Reasoning About Probabilistic Programs. There exist some studies on automatic expected

cost analysis of sequential (imperative) probabilistic programs [Chatterjee et al. 2016; Kura et al.

2019; Ngo et al. 2018; Wang et al. 2019a]. They can be seen as an automation of Kozen’s weakest pre-

expectation calculus [Kaminski et al. 2016; Kozen 1981]. An automated type-based variant of this idea

has been introduced [Wang et al. 2020] in the context of amortized resource analysis [Hoffmann et al.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

Probabilistic Resource-Aware Session Types 66:29

2017; Hofmann and Jost 2003]. The novelty of our work, is an automatic analysis for a probabilistic

language with concurrency. It builds on prior work on work analysis via (deterministic) resource-

aware session types [Das et al. 2018].

We are not aware of any other automated rule-based system for deriving resource bounds

for concurrent probabilistic programs. However, there are multiple systems that can be used

for manually deriving expected cost bounds [Hansson and Jonsson 1994; Tassarotti and Harper

2018, 2019]. Recent work on analyzing probabilistic networks [Foster et al. 2016; Gehr et al. 2018;

Smolka et al. 2019] can be viewed as reasoning systems for probabilistic message passing systems.

However, the work on networks focuses on finite state systems and global properties. In contrast,

the contribution of this article is the integration of (local) probability distributions in session types

and the automatic expected resource analysis for message-passing processes.

9 CONCLUSION
This article presented NomosPro, a probabilistic concurrent language relying on novel probabilistic
resource-aware session types. We introduced a novel nested-multiverse semantics to prove type

safety, correctness of expected bounds, and probability consistency. We employed NomosPro to

implement and verify correctness of Markov chains, infer expected cost of randomized distributed

algorithms, and analyze expected behavior of digital contracts and amortized data structures. We

currently only support constant probabilities. In the future, we would like to explore symbolic

probability annotations which are common in distributed algorithms. We also plan to enhance

the inference engine with non-linear solvers to produce higher-degree polynomial expected cost

bounds.

ACKNOWLEDGMENTS
This article is based on research supported by DARPA under AA Contract FA8750-18-C-0092 and

by the National Science Foundation under awards 1801369, 1845514, and 2007784. Any opinions,

findings, and conclusions contained in this document are those of the authors and do not necessarily

reflect the views of the sponsoring organizations.

REFERENCES
Bogdan Aman and Gabriel Ciobanu. 2019. Probabilities in Session Types. Electronic Proceedings in Theoretical Computer

Science 303 (Sep 2019), 92–106. https://doi.org/10.4204/eptcs.303.7

Suzana Andova. 1999. Process Algebra with Probabilistic Choice. In Formal Methods for Real-Time and Probabilistic Systems,
Joost-Pieter Katoen (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 111–129.

Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen. 2019. Type-Based Complexity Analysis of Probabilistic Functional

Programs. In Logic in Computer Science (LICS’19). https://doi.org/10.1109/LICS.2019.8785725

Stephanie Balzer and Frank Pfenning. 2017. Manifest Sharing with Session Types. Proc. ACM Program. Lang. 1, ICFP, Article
37 (Aug. 2017), 29 pages. https://doi.org/10.1145/3110281

J.A. Bergstra and J.W. Klop. 1984. Process algebra for synchronous communication. Information and Control 60, 1 (1984), 109
– 137. https://doi.org/10.1016/S0019-9958(84)80025-X

Nathalie Bertrand, Igor Konnov, Marijana Lazic, and Josef Widder. 2019. Verification of Randomized Consensus Algorithms

Under Round-Rigid Adversaries. In 30th International Conference on Concurrency Theory (CONCUR 2019) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 140), Wan Fokkink and Rob van Glabbeek (Eds.). Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 33:1–33:15. https://doi.org/10.4230/LIPIcs.CONCUR.2019.33

Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. 2016. A Lambda-Calculus Foundation for

Universal Probabilistic Programming. In Int. Conf. on Functional Programming (ICFP’16). https://doi.org/10.1145/2951913.

2951942

Gabriel Bracha. 1987. Asynchronous Byzantine agreement protocols. Information and Computation 75, 2 (1987), 130–143.

https://doi.org/10.1016/0890-5401(87)90054-X

Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In Proceedings of the 21st
International Conference on Concurrency Theory (CONCUR 2010), P.Gastin and F.Laroussinie (Eds.). Springer LNCS 6269,

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

https://doi.org/10.4204/eptcs.303.7
https://doi.org/10.1109/LICS.2019.8785725
https://doi.org/10.1145/3110281
https://doi.org/10.1016/S0019-9958(84)80025-X
https://doi.org/10.4230/LIPIcs.CONCUR.2019.33
https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1016/0890-5401(87)90054-X

66:30 Das et al.

Paris, France, 222–236.

Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. 2016. Termination Analysis of Probabilistic Programs

Through Positivstellensatz’s. In Computer Aided Verif. (CAV’16). https://doi.org/10.1007/978-3-319-41528-4_1

David Chaum. 1988. The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceability. J. Cryptology
1 (1988), 65–75. https://doi.org/10.1007/BF00206326

Clp team. 2022. COIN-OR Linear Programming Solver. Available on https://projects.coin-or.org/Clp.

A. Das, S. Balzer, J. Hoffmann, F. Pfenning, and I. Santurkar. 2021a. Resource-Aware Session Types for Digital Contracts. In

2021 IEEE 34th Computer Security Foundations Symposium (CSF). IEEE Computer Society, 111–126.

Ankush Das, Henry DeYoung, Andreia Mordido, and Frank Pfenning. 2021b. Nested Session Types. In 30th European
Symposium on Programming, N. Yoshida (Ed.). Springer LNCS, Luxembourg, Luxembourg, 178–206. http://www.cs.cmu.

edu/~fp/papers/esop21.pdf Extended version available as arXiv:2010.06482.

Ankush Das, Jan Hoffmann, and Frank Pfenning. 2018. Work Analysis with Resource-Aware Session Types. In Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (Oxford, United Kingdom) (LICS ’18). ACM, New

York, NY, USA, 305–314. https://doi.org/10.1145/3209108.3209146

Ankush Das and Frank Pfenning. 2020a. Rast: Resource-Aware Session Types with Arithmetic Refinements (System

Description). In 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 167), Zena M. Ariola (Ed.). Schloss Dagstuhl–Leibniz-Zentrum für

Informatik, Dagstuhl, Germany, 33:1–33:17. https://doi.org/10.4230/LIPIcs.FSCD.2020.33

Ankush Das and Frank Pfenning. 2020b. Session Types with Arithmetic Refinements. In 31st International Conference on
Concurrency Theory (CONCUR 2020) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 171), Igor Konnov
and Laura Kovács (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 13:1–13:18. https:

//doi.org/10.4230/LIPIcs.CONCUR.2020.13

Ankush Das and Frank Pfenning. 2020c. Verified Linear Session-Typed Concurrent Programming. In Proceedings of the 22nd
International Symposium on Principles and Practice of Declarative Programming (Bologna, Italy) (PPDP ’20). Association
for Computing Machinery, New York, NY, USA, Article 7, 15 pages. https://doi.org/10.1145/3414080.3414087

Ankush Das, Di Wang, and Jan Hoffmann. 2021c. Probabilistic Resource-Aware Session Types. https://arxiv.org/abs/2011.

09037

Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, andMatthias Volk. 2017. A Storm is Coming: AModern Probabilistic

Model Checker. In Computer Aided Verif. (CAV’17). https://doi.org/10.1007/978-3-319-63390-9_31

Luis María Ferrer Fioriti and Holger Hermanns. 2015. Probabilistic Termination: Soundness, Completeness, and Composi-

tionality. In Princ. of Prog. Lang. (POPL’15). https://doi.org/10.1145/2676726.2677001

Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. Automated Verification Techniques for
Probabilistic Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 53–113. https://doi.org/10.1007/978-3-642-21455-

4_3

Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexandra Silva. 2016. Probabilistic netkat. In

European Symposium on Programming. Springer, 282–309.
Simon Gay and Malcolm Hole. 2005. Subtyping for session types in the pi calculus. Acta Informatica 42, 2 (01 Nov 2005),

191–225. https://doi.org/10.1007/s00236-005-0177-z

Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever, Pascal Wiesmann, and Martin Vechev. 2018. Bayonet:

probabilistic inference for networks. ACM SIGPLAN Notices 53, 4 (2018), 586–602.
J. Y. Girard and Y. Lafont. 1987. Linear logic and lazy computation. In TAPSOFT ’87, Hartmut Ehrig, Robert Kowalski, Giorgio

Levi, and Ugo Montanari (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 52–66.

Hans Hansson and Bengt Jonsson. 1994. A Logic for Reasoning about Time and Reliability. Formal Aspects of Computing 6

(1994), 102–111.

Hans A. Hansson and Lars-Ake Fredlund. 1994. Time and Probability in Formal Design of Distributed Systems. Elsevier
Science Inc., USA.

Sergiu Hart, Micha Sharir, and Amir Pnueli. 1983. Termination of Probabilistic Concurrent Program. Trans. on Prog. Lang.
and Syst. 5 (July 1983). Issue 3. https://doi.org/10.1145/2166.357214

L. Helmink, M. P. A. Sellink, and F. W. Vaandrager. 1994. Proof-checking a data link protocol. In Types for Proofs and
Programs, Henk Barendregt and Tobias Nipkow (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 127–165.

Oltea Mihaela Herescu and Catuscia Palamidessi. 2000. Probabilistic Asynchronous 𝜋-Calculus. In Foundations of Software
Science and Computation Structures, Jerzy Tiuryn (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 146–160.

Jane Hillston. 1996. A Compositional Approach to Performance Modelling. Cambridge University Press, USA.

Jan Hoffmann, Ankush Das, and Shu-Chun Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL 2017).
Association for Computing Machinery, New York, NY, USA, 359–373. https://doi.org/10.1145/3009837.3009842

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/BF00206326
https://projects.coin-or.org/Clp
http://www.cs.cmu.edu/~fp/papers/esop21.pdf
http://www.cs.cmu.edu/~fp/papers/esop21.pdf
https://doi.org/10.1145/3209108.3209146
https://doi.org/10.4230/LIPIcs.FSCD.2020.33
https://doi.org/10.4230/LIPIcs.CONCUR.2020.13
https://doi.org/10.4230/LIPIcs.CONCUR.2020.13
https://doi.org/10.1145/3414080.3414087
https://arxiv.org/abs/2011.09037
https://arxiv.org/abs/2011.09037
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1145/2676726.2677001
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1145/2166.357214
https://doi.org/10.1145/3009837.3009842

Probabilistic Resource-Aware Session Types 66:31

Martin Hofmann and Steffen Jost. 2003. Static Prediction of Heap Space Usage for First-Order Functional Programs. In 30th
Symposium on Principles of Programming Languages (POPL’03). 185–197.

Kohei Honda. 1993. Types for dyadic interaction. In CONCUR’93, Eike Best (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 509–523.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asynchronous Session Types. In Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco, California, USA)

(POPL ’08). ACM, New York, NY, USA, 273–284. https://doi.org/10.1145/1328438.1328472

Ross Horne. 2019. The Sub-Additives: A Proof Theory for Probabilistic Choice extending Linear Logic. In Formal Struct. for
Comput. and Deduction (FSCD’19). https://doi.org/10.4230/LIPIcs.FSCD.2019.23

Omar Inverso, Hernán Melgratti, Luca Padovani, Catia Trubiani, and Emilio Tuosto. 2020. Probabilistic Analysis of Binary

Sessions. In 31st International Conference on Concurrency Theory (CONCUR 2020) (Leibniz International Proceedings in
Informatics (LIPIcs), Vol. 171), Igor Konnov and Laura Kovács (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik,

Dagstuhl, Germany, 14:1–14:21. https://doi.org/10.4230/LIPIcs.CONCUR.2020.14

Alon Itai and Michael Rodeh. 1990. Symmetry breaking in distributed networks. Information and Computation 88, 1 (1990),

60 – 87. https://doi.org/10.1016/0890-5401(90)90004-2

Claire Jones. 1989. Probabilistic Nondeterminism. Ph. D. Dissertation. University of Edinburgh.

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest Precondition

Reasoning for Expected Run–Times of Probabilistic Programs. In European Symp. on Programming (ESOP’16). https:

//doi.org/10.1007/978-3-662-49498-1_15

Tristan Knoth, Di Wang, Nadia Polikarpova, and Jan Hoffmann. 2019. Resource-Guided Program Synthesis. In Prog. Lang.
Design and Impl. (PLDI’19). https://doi.org/10.1145/3314221.3314602

Donald E. Knuth and Andrew Chi-Chih Yao. 1976. The complexity of nonuniform random number generation.

Dexter Kozen. 1981. Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22 (June 1981). Issue 3. https://doi.org/10.
1016/0022-0000(81)90036-2

Satoshi Kura, Natsuki Urabe, and Ichiro Hasuo. 2019. Tail Probability for Randomized Program Runtimes via Martingales

for Higher Moments. In Tools and Algs. for the Construct. and Anal. of Syst. (TACAS’19). https://doi.org/10.1007/978-3-

030-17465-1_8

Marta Kwiatkowska, Gethin Norman, and David Parker. 2007a. Stochastic Model Checking. Springer Berlin Heidelberg,

Berlin, Heidelberg, 220–270. https://doi.org/10.1007/978-3-540-72522-0_6

Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verification of Probabilistic Real-Time Systems.

In Computer Aided Verification, Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 585–591.

Marta Kwiatkowska, Gethin Norman, Jeremy Sproston, and Fuzhi Wang. 2007b. Symbolic model checking for probabilistic

timed automata. Information and Computation 205, 7 (2007), 1027 – 1077. https://doi.org/10.1016/j.ic.2007.01.004

Michael W. Mislove. 2000. Nondeterminism and Probabilistic Choice: Obeying the Laws. In Int. Conf. on Concurrency Theory
(CONCUR’00). https://doi.org/10.1007/3-540-44618-4_26

Michael W. Mislove, Joël Ouaknine, and James Worrell. 2004. Axioms for Probability and Nondeterminism. Electr. Notes
Theor. Comp. Sci. 96 (June 2004). https://doi.org/10.1016/j.entcs.2004.04.019 Proceedings of the 10th International

Workshop on Expressiveness in Concurrency.

Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. 2018. Bounded Expectations: Resource Analysis for Probabilistic

Programs. In Prog. Lang. Design and Impl. (PLDI’18). https://doi.org/10.1145/3192366.3192394

Gethin Norman. 2004. Analysing Randomized Distributed Algorithms. Springer Berlin Heidelberg, Berlin, Heidelberg,

384–418. https://doi.org/10.1007/978-3-540-24611-4_11

G. Norman, C. Palamidessi, D. Parker, and P. Wu. 2007. Model checking the probabilistic pi-calculus. In Fourth International
Conference on the Quantitative Evaluation of Systems (QEST 2007). 169–178.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The PageRank Citation Ranking: Bringing Order
to the Web. Technical Report 1999-66. Stanford InfoLab. http://ilpubs.stanford.edu:8090/422/ Previous number =

SIDL-WP-1999-0120.

Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference. ACM Trans. Program. Lang. Syst. 22, 1 (Jan. 2000), 1–44.
https://doi.org/10.1145/345099.345100

Steffen Smolka, Praveen Kumar, David M Kahn, Nate Foster, Justin Hsu, Dexter Kozen, and Alexandra Silva. 2019. Scalable

Verification of Probabilistic Networks. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 190–203.

T. K. Srikanth and Sam Toueg. 1987. Simulating Authenticated Broadcasts to Derive Simple Fault-Tolerant Algorithms.

Distributed Comput. 2, 2 (1987), 80–94. https://doi.org/10.1007/BF01667080

RE Tarjan. 1985. Amortized computational complexity. SIAM J. Algebraic Discrete Methods 6, 2 (1985), 306–318.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

https://doi.org/10.1145/1328438.1328472
https://doi.org/10.4230/LIPIcs.FSCD.2019.23
https://doi.org/10.4230/LIPIcs.CONCUR.2020.14
https://doi.org/10.1016/0890-5401(90)90004-2
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1145/3314221.3314602
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1007/978-3-030-17465-1_8
https://doi.org/10.1007/978-3-030-17465-1_8
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1016/j.ic.2007.01.004
https://doi.org/10.1007/3-540-44618-4_26
https://doi.org/10.1016/j.entcs.2004.04.019
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1007/978-3-540-24611-4_11
http://ilpubs.stanford.edu:8090/422/
https://doi.org/10.1145/345099.345100
https://doi.org/10.1007/BF01667080

66:32 Das et al.

Joseph Tassarotti and Robert Harper. 2018. Verified Tail Bounds for Randomized Programs. In Interactive Theorem Proving -
9th International Conference, ITP 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12,
2018, Proceedings (Lecture Notes in Computer Science, Vol. 10895), Jeremy Avigad and Assia Mahboubi (Eds.). Springer,

560–578. https://doi.org/10.1007/978-3-319-94821-8_33

Joseph Tassarotti and Robert Harper. 2019. A Separation Logic for Concurrent Randomized Programs. Proc. ACM Program.
Lang. 3, POPL, Article 64 (Jan. 2019), 30 pages. https://doi.org/10.1145/3290377

Regina Tix, Klaus Keimel, and Gordon D. Plotkin. 2009. Semantic Domains for Combining Probability and Non-Determinism.

Electr. Notes Theor. Comp. Sci. 222 (February 2009). https://doi.org/10.1016/j.entcs.2009.01.002

Bernardo Toninho, Luís Caires, and Frank Pfenning. 2013. Higher-Order Processes, Functions, and Sessions: A Monadic

Integration. In European Symp. on Programming (ESOP’13). https://doi.org/10.1007/978-3-642-37036-6_20

Daniele Varacca. 2002. The Powerdomain of Indexed Valuations. In Logic in Computer Science (LICS’02). https://doi.org/10.

1109/LICS.2002.1029838

Daniele Varacca. 2003. Probability, Nondeterminism and Concurrency: Two Denotational Models for Probabilistic Computation.
Ph. D. Dissertation. University of Aarhus.

Daniele Varacca and Glynn Winskel. 2006. Distributing Probability over Nondeterminism. Math. Struct. Comp. Sci. 16
(February 2006). Issue 1. https://doi.org/10.1017/S0960129505005074

Daniele Varacca and Nobuko Yoshida. 2007. Probabilistic 𝜋-Calculus and Event Structures. Electronic Notes in Theoretical
Computer Science 190, 3 (2007), 147 – 166. https://doi.org/10.1016/j.entcs.2007.07.009 Proceedings of the Fifth Workshop

on Quantitative Aspects of Programming Languages (QAPL 2007).

Di Wang, Jan Hoffmann, and Thomas Reps. 2019b. A Denotational Semantics for Low-Level Probabilistic Programs with

Nondeterminism. Electr. Notes Theor. Comp. Sci. 347 (November 2019). https://doi.org/10.1016/j.entcs.2019.09.016

Proceedings of the Thirty-Fifth Conference on the Mathematical Foundations of Programming Semantics.

Di Wang, David M. Kahn, and Jan Hoffmann. 2020. Raising Expectations: Automating Expected Cost Analysis with Types.

Peixin Wang, Hongfei Fu, Amir Kafshdar Goharshady, Krishnendu Chatterjee, Xudong Qin, and Wenjun Shi. 2019a. Cost

Analysis of Nondeterministic Probabilistic Programs. In Prog. Lang. Design and Impl. (PLDI’19). https://doi.org/10.1145/

3314221.3314581

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 66. Publication date: January 2023.

https://doi.org/10.1007/978-3-319-94821-8_33
https://doi.org/10.1145/3290377
https://doi.org/10.1016/j.entcs.2009.01.002
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1109/LICS.2002.1029838
https://doi.org/10.1109/LICS.2002.1029838
https://doi.org/10.1017/S0960129505005074
https://doi.org/10.1016/j.entcs.2007.07.009
https://doi.org/10.1016/j.entcs.2019.09.016
https://doi.org/10.1145/3314221.3314581
https://doi.org/10.1145/3314221.3314581

	Abstract
	1 Introduction
	2 Overview of NomosPro
	3 Background on Resource-Aware Session Types
	4 Probabilistic Resource-Aware Session Types
	5 Meta Theory
	6 Applications of NomosPro
	6.1 Randomized Distributed Algorithms
	6.2 Concurrent Amortized Data Structures
	6.3 Markov Chains
	6.4 Digital Contracts

	7 Implementation and Evaluation
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

