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Type-Guided Worst-Case Input Generation

DI WANG, Carnegie Mellon University, USA

JAN HOFFMANN, Carnegie Mellon University, USA

This paper presents a novel technique for type-guided worst-case input generation for functional programs.

The technique builds on automatic amortized resource analysis (AARA), a type-based technique for deriving

symbolic bounds on the resource usage of functions. Worst-case input generation is performed by an algorithm

that takes as input a function, its resource-annotated type derivation in AARA, and a skeleton that describes

the shape and size of the input that is to be generated. If successful, the algorithm fills in integers, booleans,

and data structures to produce a value of the shape given by the skeleton. The soundness theorem states that

the generated value exhibits the highest cost among all arguments of the functions that have the shape of the

skeleton. This cost corresponds exactly to the worst-case bound that is established by the type derivation. In

this way, a successful completion of the algorithm proves that the bound is tight for inputs of the given shape.

Correspondingly, a relative completeness theorem is proved to show that the algorithm succeeds if and only if

the derived worst-case bound is tight. The theorem is relative because it depends on a decision procedure

for constraint solving. The technical development is presented for a simple first-order language with linear

resource bounds. However, the technique scales to and has been implemented for Resource Aware ML, an

implementation of AARA for a fragment of OCaml with higher-order functions, user-defined data types, and

types for polynomial bounds. Experiments demonstrate that the technique works effectively and can derive

worst-case inputs with hundreds of integers for sorting algorithms, operations on search trees, and insertions

into hash tables.
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1 INTRODUCTION
An important characteristic of a computer program is its resource requirements, that is, the amount

of resource such as time, memory, power, etc. that the program needs to execute. Analyzing

the worst-case resource usage of a program has many applications such as finding performance

bottlenecks, detecting algorithmic complexity vulnerabilities, and identifying information leaks

through side channels.

Besides an analysis of the worst-case behavior, it is often desirable to obtain specific inputs such

that executing the analyzed program on these inputs exhibits the worst-case performance. For

instance, consider algorithmic complexity attacks where an adversary can construct inputs that

result in unexpected space or time usage that can break or slow down critical software systems.
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As emphasized in DARPA’s STAC program [Website 2015], worst-case inputs are instrumental for

programmers to understand what could trigger the unexpected behavior and fix the problem to

improve performance. To give a concrete example, the PHP community noticed a Denial-of-Service

vulnerability [Website 2011] that has been fixed [Website 2012b] after an analysis found that it was

based on hash collisions [Website 2012a].

Despite of their usefulness, manual construction of worst-case inputs can be cumbersome,

because (i) programs can be complex, large, and rely on unfamiliar or unavailable library code,

(ii) the worst-case inputs do not seem to follow any universal pattern, e.g., a worst-case quicksort

requires specific ordering [McIlroy 1999] while a worst-case hash table requires maximal number

of collisions [Crosby and Wallach 2003], and (iii) even if a candidate input is present, it can be still

difficult to prove the input does exhibit the worst-case resource usage.

As a result, automatic methods for worst-case input generation are highly desirable and have

received a lot of attention. On the one hand, there is a large field of fuzz testing [Forrester and

Miller 2000; Godefroid et al. 2008] and symbolic execution [Godefroid et al. 2005; Sen et al. 2005].

Combinations of these methods have been recently studied for dynamicworst-case analysis [Burnim

et al. 2009; Noller et al. 2018; Petsios et al. 2017]. These dynamic approaches are quite universal in the

sense that they can be applied to arbitrary programs implemented in a widely used programming

language such as Java, but they usually do not formally guarantee that the resulting input exposes

the worst resource usage. On the other hand, there is an active community that employs static

methods such as type systems [Hoffmann et al. 2017; Jost et al. 2010] and abstract interpretation

[Albert et al. 2011; Gulwani 2009] to compute upper bounds on the worst-case resource usage.

These static analyses provide sound resource bounds, but they do not generate a concrete witness

to show the derived resource bound is tight.

In this paper, we develop a novel type-guided worst-case input generation algorithm for a purely

functional fragment of Resource Aware ML (RaML) [Hoffmann et al. 2017], a resource-aware version

of a subset of the functional programming language OCaml that features higher-order functions

and user-defined data structures. Based on automatic amortized resource analysis (AARA) [Hofmann

and Jost 2003], RaML infers concrete multivariate-polynomial upper bounds, parametrized with a

resource metric, as functions of sizes of the inputs. Our algorithm takes in a RaML function f of

type A→ B along with its resource-annotated typing derivation and a first-order input skeleton of

type A, which specifies the shape of the input (e.g., the length of a list),
1
and then either produces a

concretization of the skeleton (e.g., a concrete list with the specified length), which is guaranteed

to expose the worst-case resource usage of the function f , or reports a generation failure. Our

algorithm also enjoys relative completeness, in the sense that if the inferred bound in RaML is tight

for an input skeleton (i.e., there does exist a concretization of the skeleton that exhibits the resource

usage exactly as the inferred bound), our generation algorithm always succeeds.
2

From the perspective of automatic resource analysis, our work also mitigates a longstanding issue

with current techniques for worst-case resource bound analysis. Existing analysis techniques [Albert

et al. 2015; Brockschmidt et al. 2014; Carbonneaux et al. 2017; Gulwani et al. 2009; Hofmann and

Jost 2003; Kincaid et al. 2017; Sinn et al. 2014] are sound and the derived bounds are thus always

upper bounds on the worst-case behavior. However, there does not exist any guarantee on the

tightness of the result. That includes the constant factors in the bounds as well as the asymptotic

behavior. As a result, users often find it difficult to interpret the result of the analysis. With this

view, our result can be seen as a way of automatically proving that a bound derived by RaML is

tight for inputs of a given shape or size. From the relative completeness result follows also the

1
We focus on first-order inputs in the sense that we do not consider the generation of an unknown function in this paper.

2
In fact, our generation algorithm is complete modulo constraint solving. See §5 for details.
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Type-Guided Worst-Case Input Generation 13:3

other direction: If we use an oracle for satisfiability and are not able to generate a worst-case input

then the derived bound is not tight for the inputs described by the given skeleton.

A key challenge in the development of the worst-case input generation is to ensure soundness—for

a given input skeleton, the generation result must expose the worst resource usage among all

possible concretizations of the skeleton. It is intractable to compare the generation result with all

other concretizations, because it usually requires exploration of the space of all concretizations, the

number of which could be infinite, or enumeration of all the execution paths in the program, the

number of which could be exponential in the size of the input. To address this challenge, we need

to develop a mechanism to generate a worst-case input without exploring the complete space of

candidate concretizations.

The other challenge is to exploit compositionality during the input generation—in order to scale

the worst-case input generation to large input skeletons, it is usually more efficient to generate a

worst-case input by composing its generated subparts. For example, to generate a worst-case input

for a recursive function, it seems natural to generate a worst-case input for each recursive call, and

then combine them to generate a worst-case input for the function body. However, combining the

results from the recursive calls can be nontrivial: different calls can involve the same fragment of

the input and the recursively generated results might not be compatible.

To address the first challenge, we define symbolic input skeletons and develop a generation

algorithm based on symbolic execution, which searches the space of all execution paths of a program

and collects path constraints that suffices for a concretization of the input skeleton to trigger the

worst-case resource usage. The major novelty of our generation algorithm is that it is type-guided—

it makes use of the typing derivation derived by RaML to guide the search as well as prune the

search space. RaML’s type system is based on amortized analysis, in the sense that it specifies the

potential functions before and after the evaluation of a subexpression to account for resource usage.

Because RaML derives upper bounds on resource usage, these potentials are conservative and allow

for potential waste. If such waste occurs then the corresponding path cannot coincide with the

derived upper bound. Our type-guided generation algorithm utilizes the resource-annotated typing

derivation to detect potential waste as early as possible to prune partial executions that cannot be

extended to expose the resource usage indicated by the derived worst-case bound.

To address the second challenge, we propose the novel concept of compositional input generation

and devise two search heuristics based on the concept. First, we describe uniform execution, which

corresponds to programs that have worst-case inputs that always execute the same branch of each

conditional expression. Second, we introduce skeleton similarity, which corresponds to recursive

functions that have worst-case inputs that execute the same path in the function body for all calls

to itself with inputs of the same shape. Note that skeleton similarity is more general than uniform

execution and includes for instance alternating shapes in recursive calls.

We evaluate our type-guided worst-case input generation algorithm on more than 20 case studies,

including time usage for sorting algorithms, operations in search trees, etc., memory usage for

list operations, and customized resource metrics such as the number of collisions for hash tables.

The experiments show that our algorithm is able to derive nontrivial worst-case inputs, as well as

scale to large input skeletons in some of the case studies, e.g., sorting algorithms with hundreds of

integers.

Contributions. Our work makes four main contributions.

• We develop a novel resource-parametric type-guided worst-case input generation algorithm

for a considerable fragment of purely functional RaML.

• We prove the nontrivial soundness and relative completeness of our generation algorithm.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 13. Publication date: January 2019.
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let rec lpairs l = match l with
| []→ []
| x1 :: xs→ match xs with
| []→ []
| x2 :: xs’→ if (x1:int) < (x2:int) then (x1, x2) :: lpairs xs’ else lpairs xs’

Fig. 1. The function lpairs will serve as a running example in this paper.

• We propose novel concepts about compositional worst-case input generation, as well as

devise and prove the correctness of two search heuristics to improve scalability.

• We implement our generation algorithm in the existing RaML system that features higher-

order functions, user-defined data types, and polynomial resource bounds, and evaluate its

effectiveness and efficiency on a broad suite of case studies.

2 OVERVIEW
In this section, we illustrate our type-guided worst-case input generation algorithm using a simple

example. The function lpairs in Fig. 1 collects adjacent ordered pairs of integers. For example, the

expression lpairs([1, 2, 3, 4]) evaluates to [⟨1, 2⟩, ⟨3, 4⟩] and lpairs([2, 1, 3, 4]) evaluates to [⟨3, 4⟩].
We write the type of the function as L(int) → L(int × int), where→,× are the standard function

and product types, respectively, and L(T ) is the type of lists with elements of type T . We want to

generate inputs for the function such that it exposes the worst heap-space usage. In this example,

we use a slightly different memory model from OCaml’s and assume each datatype constructor

creates a boxed value with a header of length 2, as well as a tuple only consumes the same amount

of resources as its length. Specifically, we assume a nil-node (i.e., an empty list) consumes 2 units

of resource, a cons-node (i.e., a list constructed by a head element and a tail list) consumes 4 units,

a pair constructor consumes 2 units. We do not consider garbage collection.

Resource Bound Analysis. First of all, we use RaML to compute an upper bound on the worst-

case heap space usage, as well as the corresponding typing derivation that our input generation

algorithm demands. RaML derives a linear bound (2 + 3M) for the function lpairs, whereM is the

number of cons-nodes of the argument, i.e., the length of the input list.

The resource analysis in RaML is based on the potential method of amortized analysis [Tarjan

1985]. The intuition is to introduce potential functions that depend on data structures, and the

potential at a program point should be sufficient to pay for the cost of the next evaluation step

as well as the potential at the next program point. In RaML, a set of fixed potential functions is

fixed for every data type [Hoffmann et al. 2011, 2017; Hoffmann and Hofmann 2010; Hofmann and

Jost 2003]. Types of inductive data structures are annotated with nonnegative rational numbers

p ∈ Q+
0
. For example, Lp (A) is an annotated list type where A is another annotated type. The

potential of a value a is then defined with respect to its annotated type. If a = [a1, · · · ,an] is a
list of values of type A, its potential Φ(a : Lp (A)) is defined as

∑n
i=1(p + Φ(ai : A)), or equivalently,

n · p +
∑n

i=1 Φ(ai : A). The function types are also annotated and have the form A1

q/q′
−−−→ A2 where

A1 and A2 are annotated argument and result types, and q,q′ ∈ Q+
0
stand for the constant potential

before a call to the function and after the call, respectively. For the function lpairs in Fig. 1, RaML

derives a resource-annotated type L3(int)
2/0
−−→ L0(int × int).

A type with positive potential on the result type like in the type L5(int)
3/1
−−→ L2(int × int) is

needed to type an application of lpairs in a composed function like f (lpairs(l)) if f has type

L2(int × int)
1/0
−−→ A for some type A. In general, the type of a function can be described with

variables for the potential annotations and linear constraints that describe their relations.
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The typing rules of RaML’s type system manipulates the coefficients q associated with data

types to ensure that the correct potential is assigned to new data structures or used to pay for

resource usage. RaML’s resource-annotated typing judgment has the form Γ q′
q
e : A where e is an

expression, q,q′ ∈ Q+
0
stand for constant potential before and after the evaluation of the expression,

respectively, Γ is a resource-annotated typing context that maps program variables to annotated

types, and A is a resource-annotated result type. Intuitively, if the initial potential is at least the

amount specified by Γ, then it is sufficient to evaluate e to a value and the leftover potential after

the evaluation is at least the amount specified by A. For the program in Fig. 1, two examples of

typing judgements are

x1 : int, x2 : int 0

2

⟨x1, x2⟩ : int × int and xs ′ : L3(int)
0

2 lpairs xs ′ : L0(int × int).
The first typing judgment indicates the evaluation of the pair construction needs 2 units of potential

because the resource metric specifies the pair construction consumes 2 units of heap space. The

second typing judgment indicates that if xs ′ is a list of length N , then the potential (2+ 3N ) suffices

for the evaluation of the expression lpairs xs ′.

Worst-Case Input Generation. Before describing the input generation algorithm, we informally

analyze the worst-case heap-space usage of the program in Fig. 1. Because all memory operations

are constructions of the result list of pairs, and the total number of adjacent pairs that can be

constructed is ⌊M
2
⌋ whereM is the length of the input list, we deduce that the heap space usage is

at most 2 + (2 + 4) · ⌊M
2
⌋: the first 2 pays for the nil-node, the second 2 pays for the pair, and the 4

is used to pay for a cons-node. It is the exact usage when all available pairs are ordered—hence the

resource bound derived by RaML (2 + 3M) is tight ifM is even.

To generate a worst-case input for a program, the user needs to specify an input skeleton. For

the function lpairs, a skeleton can be represented as a list of indeterminate integers. For example,

[int1, int2, int3, int4] is a skeleton of an integer list of length four. A basic approach for worst-case

input generation is to evaluate the program on the input skeleton symbolically: search all possible

execution paths and record path constraints.

We write symbolic executions of an expression e under a skeleton environment γ that maps

program variables to skeletons as judgments of the form γ ⊢ e ⇒ ⟨ϕ, S⟩, where ϕ is the path

constraint of this execution, and S is a value that might contain indeterminates, representing the

evaluation result of e . For example, the symbolic execution of the conditional expression can be

formalized as two rules:

SE-Cond-True

γ ⊢ e1 ⇒ ⟨ϕ, S⟩

γ ⊢ if e then e1 else e2 ⇒ ⟨([γ ]e) ∧ ϕ, S⟩

SE-Cond-False

γ ⊢ e2 ⇒ ⟨ϕ, S⟩

γ ⊢ if e then e1 else e2 ⇒ ⟨¬([γ ]e) ∧ ϕ, S⟩
where [γ ]e transforms e to a symbolic constraint under the environment γ , e.g., if e = (x1 < x2) and
γ (x1) = int1,γ (x2) = int2, then [γ ]e = (int1 < int2). After collecting all possible execution paths

from a symbolic execution of the program, the basic input generation algorithm picks a worst-case

execution path with the largest resource usage with respect to the resource metric, as well as a

satisfiable path constraint. For the function lpairs, an example of worst-case execution paths is

l 7→ [int1, int2, int3, int4] ⊢ lpairs l ⇒ ⟨(int1 < int2) ∧ (int3 < int4), [⟨int1, int2⟩, ⟨int3, int4⟩]⟩ (1)

Finally, an SMT solver can be invoked to find a model for the path constraint. For the execution

path (1), one model is {int1 7→ 0, int2 7→ 1, int3 7→ 0, int4 7→ 1}, which corresponds to a concrete

input list [0, 1, 0, 1] that indeed triggers the worst heap space usage.

The major novelty of our worst-case input generation algorithm is to make use of the resource-

annotated typing derivation during the symbolic execution. RaML’s type system is an affine type

system, which means that each resource in the typing context can be used at most once. Potential
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waste happens when some resources in the context are never used but carry positive potential.

Our input generation algorithm is designed to find an execution path with imposed linearity,

i.e., without potential waste. During the symbolic execution, the algorithm relies on the typing

derivation to check if there is any potential waste. If such waste is detected then partial executions

that involve the respective path can be pruned from the search. For example, the typing judgment

of the conditional expression in the function lpairs is

x1 : int, x2 : int, xs ′ : L3(int) 0

8 if (x1 < x2) then (⟨x1, x2⟩ :: lpairs xs ′) else (lpairs xs ′) : L0(int× int)
(2)

and the typing judgments of two branches of the conditional expression are

x1 : int, x2 : int, xs ′ : L3(int) 0

8

⟨x1, x2⟩ :: lpairs xs ′ : L0(int × int) (3)

xs ′ : L3(int)
0

2 lpairs xs ′ : L0(int × int) (4)

Suppose the input skeleton is [int1, int2, int3, int4]. When our algorithm evaluates the conditional

expression for the first time, the symbolic environment γ is

x1 7→ int1, x2 7→ int2, xs ′ 7→ [int3, int4]
and the potential at the program point with respect to the typing judgment (2) is 8+0+0+3 ·2 = 14.

The then-branch needs 8+ 0+ 0+ 3 · 2 = 14 units of potential to proceed with respect to (3), and the

else-branch needs only 2 + 3 · 2 = 8 units with respect to (4). Hence our algorithm detects potential

waste in the else-branch and decides to only explore the then-branch. By this means our algorithm

is able to prune the search space to contain only one execution path as (1), and know that this

path is the only one that can expose the worst-case resource as given by the initial potential. More

generally, every time our algorithm finds an execution path without potential loss, the associated

path constraint suffices for the input skeleton to trigger the worst-case resource usage.

Let us try another input skeleton for the function lpairs: a singleton list [int1]. Note that because
the length of the list is odd, the resource bound derived by RaML is not tight. The typing judgment

of the inner match expression is

x1 : int, xs : L3(int) 0

5 match xs with [] → [] | · · · : L0(int × int) (5)

and the typing judgment of the nil-case of this match expression is

·
0

2

[] : L0(int × int) (6)

When our input generation algorithm evaluates the inner match expression, the symbolic environ-

ment γ is

x1 7→ int1, xs 7→ []
and the potential at the program point is 5 + 3 · 0 = 5, with respect to the typing judgment (5).

Because xs is mapped to [], the nil-case of the match expression is evaluated in the next step.

However, the nil-case needs only 2 units of potential to proceed with respect to (6), hence this

execution path contains potential waste. For this input skeleton, our algorithm reports a generation

failure, which suggests the resource bound is not tight when the input is a singleton list.

Compositional Input Generation. Our type-guided worst-case input generation algorithm provides

new opportunities to develop search heuristics. In this paper, we focus on heuristics that exploit

compositionality. Intuitively, compositional generation produces a worst-case input for a function

by first generating subparts of the input that are used in function calls and then combining them.

Because in the function body, different function calls can involve the same fragment of the input,

it is more reasonable to generate path constraints that suffice for an input skeleton to trigger

the worst-case resource usage, by combining path constraints on subparts of the input generated

from the function calls. Then the major obstacle to compositionality is the exponential number of
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let rec wc_lpairs l = match l with
| []→ (⊤, [])
| x1 :: xs→ match xs with
| []→ (⊥, [])
| x2 :: xs’→ let (ϕ, ret) = wc_lpairs xs’ in ((x1 < x2) ∧ ϕ, (x1, x2) :: ret)

Fig. 2. Pseudo-code of a compositional input generation procedure for the function lpairs in Fig. 1

combinations of branch choices of conditional expressions. To reduce the number of combinations

that the algorithm needs to investigate, we propose two different heuristics.

The first heuristic, named uniform execution, is based on the observation that many programs have

worst-case inputs that trigger the evaluation of the same branch of each conditional expression. For

example, the function lpairs in Fig. 1 always evaluates the then-branch of the conditional expression

to expose its worst-case heap space usage. Therefore, this heuristic enumerates the combinations

of branch choices of conditional expressions in the code and then runs the type-guided symbolic

execution to check whether it has potential waste. Because the number of conditional expressions

in the code is independent of the size of the input, the heuristic can scale to large inputs. We can

use the heuristic for the function lpairs, to derive an input generation procedure for the function

that computes a sufficient constraint for worst-case inputs from an input skeleton. Fig. 2 presents

the pseudo-code of this procedure, takes in a symbolic input and returns a path constraint as well

as a symbolic result. The symbols ⊤ and ⊥ stands for true and false, respectively.

The second heuristic, named skeleton similarity, is based on the observation that a recursive

function usually has worst-case inputs such that for all the calls to this function with the same

shape of inputs, it executes the same path in the function body. For example, Fig. 3 shows a

modified version of the function lpairs in Fig. 1. The function lpairs_alt takes an extra boolean

argument d to pick either an ordered pair or a reversely ordered pair. Then this function collects

adjacent pairs of integers, and these pairs should be ordered and reversely ordered alternatively. The

uniform-execution heuristic does not work here—although the first two branches of the conditional

expression do not waste potential, both of them should be executed on a worst-case input because

inside these branches the boolean argument d is inverted. Instead, the function lpairs_alt has
worst-case inputs for skeletons of even lengths, such that if the length of the argument list is a

multiple of four, the function evaluates the second branch, and otherwise, it evaluates the first

branch. For example, if the argument list has four elements, a worst-case input is ⟨false, [1, 0, 0, 1]⟩,
and if the argument list has two elements, a worst-case input is ⟨true, [0, 1]⟩. Operationally, this
heuristic records satisfiable execution paths for different shapes of the inputs of the recursive

function. If it encounters a call to the function with an input skeleton of the shape it has already

explored then it tries the recorded execution path first.

let rec lpairs_alt d l = match l with
| []→ []
| x1 :: xs→ match xs with
| []→ []
| x2 :: xs’→
if d && (x1:int) < (x2:int) then (x1, x2) :: lpairs_alt (not d) xs’
else if (not d) && (x1:int) > (x2:int) then (x1, x2) :: lpairs_alt (not d) xs’
else lpairs_alt d xs’

Fig. 3. A modified version of the function lpairs in Fig. 1
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3 SETTING THE STAGE: RESOURCE AWARE ML
In this section, we introduce a purely functional first-order fragment of RaML that includes booleans,

integers, pairs, lists, binary trees, recursion, and pattern match. We then present a resource-aware

type systemwith linear potential for upper bounds.Wewill use this language to define and formalize

our type-guided worst-case input generation algorithm in §5. The restriction to this fragment in

the technical development is only for brevity. Our results carry over to the full purely functional

fragment of RaML, which includes multivariate polynomial potential functions, user-defined types,

and higher-order functions [Hoffmann et al. 2017]. The reason is that the technical development

is, in principle, independent of the shape of potential functions. Our worst-case input generation

tool has also been implemented for this larger fragment (see §7.1).

Syntax. The expressions are in share-let-normal-form [Hoffmann et al. 2011], which means that

syntactic forms allow only variables rather than arbitrary terms whenever possible, without loss of

expressivity. Fig. 4 presents the grammar of expressions via abstract binding trees [Harper 2016].

The syntactic form op^(x1, x2) represents expressions that perform primitive binary operations ^
on booleans and integers. The syntactic form share(x, x1.x2.e) has to be used to introduce multiple

occurrences of a variable x in an expression. We skip the standard notions of integer constants

n ∈ Z, variable identifiers x ∈ VID, and function identifiers f ∈ FID.

Simple Types. The language has a usual ML-like type system, where well-typed expressions are

assigned with a simple type without resource annotations. As defined in Fig. 4, simple types are

data types A and first-order types F . A set of semantic values is assigned to each data type A in an

obvious way, written JAK. For example, JT (int × int)K is the set of finite binary trees, each node of

which contains a pair of integers. First-order types F are types of functions. For example, the type

of the function lpairs in Fig. 1 is L(int) → L(int × int).
A typing context Γ is a finite partial mapping from variable identifiers to data types. A signature

Σ is a finite partial mapping from function identifiers to first-order types. The typing judgment

Σ; Γ ⊢ e : A states that the expression e has type A under the signature Σ and context Γ. The typing
rules are standard and in fact, a subset of the resource-aware typing rules in Fig. 6 by omitting the

resource annotations. Then a program consists of a signature Σ and a family {λx f .e f }f ∈dom(Σ) of
top-level function definitions with a distinguished variable identifier as the formal parameter, such

that Σ;x f : A ⊢ e f : B if Σ(f ) = A→ B.

Big-Step Operational Cost Semantics. The resource usage of a program is determined by a big-step

operational cost semantics. The cost is parametric in the resource metric and can measure every

quantity whose usage in a single evaluation step can be bounded by a constant. The semantics

is formulated with respect to an environment as usual. A value v ∈ Val is either a null value

null, a boolean constant b ∈ {true, false}, an integer constant n ∈ Z, or a pair of values ⟨v1,v2⟩.
It is convenient to identify tuples like ⟨v1,v2,v3⟩ with the pair ⟨v1, ⟨v2,v3⟩⟩. An environment

e F ⟨⟩ | true | false | n | x | op^(x1, x2) | app(f , x) | let(e1, x .e2) | pair(x1, x2)

| matp(x, x1.x2.e) | nil | cons(xh, xt ) | matl(x, e1, xh .xt .e2) | leaf | node(x0, x1, x2)

| matt(x, e1, x0.x1.x2.e2) | if(x, e1, e2) | share(x, x1.x2.e)

^ ∈ {+,−,×, div,mod,=,,, <, >,∧,∨}

A F unit | bool | int | A1 ×A2 | L(A) | T (A)

F F A1 → A2

Fig. 4. Syntax of the language
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Type-Guided Worst-Case Input Generation 13:9

V : VID ⇀ Val is a finite partial mapping from variables to values. The operational evaluation

judgment has the formV q′
q
e ⇓ v whereq,q′ ∈ Q+

0
are nonnegative rational numbers. The intuitive

meaning is that under the environment V and q units of available resource, e evaluates to the

value v without running out of resource and q′ units of resource are available after the evaluation.
Then the evaluation consumes δ = q − q′ units of resource. Fig. 5 show the evaluation rules of the

big-step semantics where K is a resource metric that maps syntactic forms to nonnegative rational

numbers.
3
For example, to compute heap space usage, we specify Knil = 2, Kcons = 4, Kpair = 2,

and other syntactic forms are assigned with a zero cost. The evaluation is deterministic in the

sense that there is at most one combination of q′,v such that V q′
q

e ⇓ v for a given expression

e , an environment V , and q units of initial resource. If v is a value, A is a type, and a ∈ JAK is a
semantic value of type A, we write |= v 7→ a : A to mean that v defines a. We also write |= v : A to

indicate that there exists a semantic value a ∈ JAK satisfying |= v 7→ a : A. We write |= V : Γ, if
|= V (x) : Γ(x) for every x ∈ dom(Γ).

Resource-Aware Type System. To apply the potential method of amortized analysis [Tarjan 1985],

one has to establish a mapping from program points to potentials. The potential at a program

point should suffice for the cost of any possible evaluation step as well as the potential at the next

program point. Potential functions are usually defined with respect to data structures used in the

program. To assign linear potentials to data structures, inductive data types (i.e., lists and binary

trees) are annotated with a nonnegative rational number p ∈ Q+
0
[Hofmann and Jost 2003]. The

intuitive meaning is that every internal constructor in the inductive data structure is assigned with

p units of potential. The following grammar defines the resource-annotated data types A.

AF unit | bool | int | A1 ×A2 | L
p (A) | T p (A) where p ∈ Q+

0

Formally, the potential Φ(a : A) of a semantic value a ∈ JAK, where A is a resource-annotated data

type, is defined as follows.
4
For a binary tree t ∈ JT (A)K, we write elems(t) for its elements in

pre-order.

Φ(a : A) = 0 if A ∈ {unit, bool, int}

Φ(a : A1 ×A2) = Φ(a1 : A1) + Φ(a2 : A2) if a = ⟨a1,a2⟩

Φ(l : Lp (B)) = n · p +
∑n

i=1 Φ(ai : B) if l = [a1, · · · ,an]

Φ(t : T p (B)) = n · p +
∑n

i=1 Φ(ai : B) if elems(t) = [a1, · · · ,an]
Let v ∈ Val be a value such that |= v 7→ a : A, then the potential Φ(v : A) of v is defined as

Φ(v : A)
def
= Φ(a : A). Further, letV be an environment and Γ be a resource-annotated typing context

that maps variables to resource-annotated data types such that |= V : Γ, then the potential of Γ

under V is defined as ΦV (Γ)
def
=
∑

x ∈dom(Γ) Φ(V (x) : Γ(x)).

Example 3.1. Let an environment be V = {l 7→ ⟨0, ⟨1, ⟨0, ⟨1, null⟩⟩⟩⟩} and a resource-annotated
typing context be Γ = {l : L3(int)}. Then |= V (l) 7→ [0, 1, 0, 1] : L(int). The potential of the typing
context Γ under V is computed as ΦV (Γ) = Φ(V (l) : L3(int)) = Φ([0, 1, 0, 1] : L3(int)) = 4 × 3 = 12.

The resource-annotated first-order types are then defined with respect to the following grammar.

The intuitive meaning is that q and q′ are constant potentials before a call to the function and after

3
The resource usage can also be negative, which means the evaluation releases some resources, e.g., memory could become

available during evaluation [Hoffmann et al. 2011, 2017].

4
The potential of trees depends on the elements but not on the structure of the tree. We inherit this design choice from RaML.

It keeps the type rules simple and ensures compositionality because the potential is invariant under tree transformations.
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V q′
q

e ⇓ v e evaluates to v with q′ units of resource left over under V and q units of resource

(E-Triv)

V q
q+Kunit

⟨⟩ ⇓ null

(E-Bool)

b ∈ {true, false}

V q
q+Kbool

b ⇓ b

(E-Int)

n ∈ Z

V q
q+K int

n ⇓ n

(E-Var)

x ∈ dom(V )

V q
q+K var

x ⇓ V (x )

(E-Op)

x1, x2 ∈ dom(V )
v = V (x1) ^ V (x2)

V q
q+Kop

op^(x1, x2) ⇓ v

(E-App)

V (x ) = v
V [x f 7→ v] q′

q
e f ⇓ v ′

V q′
q+Kapp

app(f , x ) ⇓ v ′

(E-Let)

V q1
q

e1 ⇓ v1

V [x 7→ v1] q′
q1 e2 ⇓ v2

V q′
q+K let

let(e1, x .e2) ⇓ v2

(E-Pair)

x1, x2 ∈ dom(V )
v = ⟨V (x1),V (x2)⟩

V q
q+Kpair

pair(x1, x2) ⇓ v

(E-MatP)

V (x ) = ⟨v1, v2 ⟩

V [x1 7→ v1, x2 7→ v2] q′
q

e ⇓ v

V q′
q+KmatP

matp(x , x1 .x2 .e) ⇓ v

(E-Cons)

xh , xt ∈ dom(V )
v = ⟨V (xh ),V (xt )⟩

V q
q+K cons

cons(xh , xt ) ⇓ v

(E-Nil)

V q
q+Knil

nil ⇓ null

(E-MatL-Nil)

V (x ) = null V q′
q

e1 ⇓ v

V q′
q+KmatLN

matl(x , e1, xh .xt .e2) ⇓ v

(E-MatL-Cons)

V (x ) = ⟨vh , vt ⟩ V [xh 7→ vh , xt 7→ vt ] q′
q

e2 ⇓ v

V q′
q+KmatLC

matl(x , e1, xh .xt .e2) ⇓ v

(E-Node)

x0, x1, x2 ∈ dom(V ) v = ⟨V (x0),V (x1),V (x2)⟩

V q
q+Knode

node(x0, x1, x2) ⇓ v

(E-MatT-Leaf)

V (x ) = null V q′
q

e1 ⇓ v

V q′
q+KmatTL

matt(x , e1, x0 .x1 .x2 .e2) ⇓ v

(E-MatT-Node)

V (x ) = ⟨v0, v1, v2 ⟩ V [x0 7→ v0, x1 7→ v1, x2 7→ v2] q′
q

e2 ⇓ v

V q′
q+KmatTN

matt(x , e1, x0 .x1 .x2 .e2) ⇓ v

(E-Cond-True)

V (x ) = true V q′
q

e1 ⇓ v

V q′
q+K condT

if(x , e1, e2) ⇓ v

(E-Leaf)

V q
q+K leaf

leaf ⇓ null

(E-Cond-False)

V (x ) = false V q′
q

e2 ⇓ v

V q′
q+K condF

if(x , e1, e2) ⇓ v

(E-Share)

V (x ) = v V [x1 7→ v , x2 7→ v] q′
q

e ⇓ v ′

V q′
q

share(x , x1 .x2 .e) ⇓ v ′

Fig. 5. Evaluation rules of the big-step operational cost semantics

it, respectively.

F F A1

q/q′
−−−→ A2 where q,q

′ ∈ Q+
0

The resource-annotated typing judgment has the form Σ; Γ q′
q
e : A, where Σ is a finite partial

mapping from function identifiers to nonempty sets of resource-annotated first-order types, Γ
is a resource-annotated typing context, A is a resource-annotated data type, and q,q′ ∈ Q+

0
are

nonnegative numbers. The intuitive meaning is that if there are at least q + Φ(Γ) units of potential,
then it suffices to evaluate e to a value v satisfying that there are at least q′ + Φ(v : A) units of
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Σ; Γ q′
q

e : A e has type A under Σ and Γ, and q,q′ are constant pre- and post-potential

(A-Unit)

·
0

Kunit
⟨⟩ : unit

(A-Bool)

b ∈ {true, false}

·
0

Kbool
b : bool

(A-Int)

n ∈ Z

·
0

K int
n : int

(A-Var)

x : A
0

K var
x : A

(A-Op)

x1 : ^arg
1
, x2 : ^arg

2 0

Kop
op^(x1, x2) : ^res

(A-App)

A1

q/q′
−−−−→ A2 ∈ Σ(f )

x : A1 q′
q+Kapp

app(f , x ) : A2

(A-Let)

Γ1 q1
q

e1 : A1

Γ2, x : A1 q′
q1 e2 : A2

Γ1, Γ2 q′
q+K let

let(e1, x .e2) : A2

(A-Pair)

x1 : A1, x2 : A2
0

Kpair
pair(x1, x2) : A1 × A2

(A-MatP)

Γ, x1 : A1, x2 : A2 q′
q

e : A

Γ, x : A1 × A2 q′
q+KmatP

matp(x , x1 .x2 .e) : A

(A-Nil)

·
0

Knil
nil : Lp (A)

(A-Cons)

xh : A, xt : Lp (A)
0

p+K cons

cons(xh , xt ) : L
p (A)

(A-MatL)

Γ q′
q−KmatLN

e1 : A′

Γ, xh : A, xt : Lp (A) q′
q+p−KmatLC

e2 : A′

Γ, x : Lp (A) q′
q

matl(x , e1, xh .xt .e2) : A
′

(A-Cond)

Γ q′
q−K condT

e1 : A

Γ q′
q−K condF

e2 : A

Γ, x : bool q′
q

if(x , e1, e2) : A

(A-Share)

Γ, x1 : A1, x2 : A2 q′
q

e : A′

.(A | A1, A2)

Γ, x : A q′
q

share(x , x1 .x2 .e) : A′

(A-Leaf)

·
0

K leaf
leaf : T p (A)

(A-Node)

x0 : A, x1 : T p (A), x2 : T p (A)
0

p+Knode

node(x0, x1, x2) : T p (A)

(A-MatT)

Γ q′
q−KmatTL

e1 : A′ Γ, x0 : A, x1 : T p (A), x2 : T p (A) q′
q+p−KmatTN

e2 : A′

Γ, x : T p (A) q′
q

matt(x , e1, x0 .x1 .x2 .e2) : A′

(A-Weakening)

Γ q′
q

e : A′

Γ, x : A q′
q

e : A′

(A-Relax)

Γ p′
p

e : A q ≥ p q − p ≥ q′ − p′

Γ q′
q

e : A

(A-Subtype)

Γ q′
q

e : A A <: B

Γ q′
q

e : B

(A-Supertype)

Γ, x : B q′
q

e : C A <: B

Γ, x : A q′
q

e : C

Fig. 6. Typing rules of the resource-aware type system

potential leftover after the evaluation.
5
Then a resource-annotated program consists of a resource-

annotated signature Σ and a family {λx f .ef }f ∈dom(Σ) of function definitions such that Σ;x f : A q′
q

e f : B for every A
q/q′
−−−→ B ∈ Σ(f ).

The resource-aware typing rules, in fact, form an affine linear type system. It ensures that every

variable is used at most once by allowing exchange and weakening [Walker 2002]. The rules can be

organized into syntax-directed and structural rules. Fig. 6 lists the typing rules. We assume a fixed

global signature Σ that we omit from the typing rules. While the share expressions make “copies” of

a variable, the sharing relation .(A | A1,A2) ensures that the program cannot gain more potential

5
Both the pre- and post-evaluation potentials are needed because resources might be non-monotone for the same reason in

footnote 3. Although we consider monotone resources in this paper, we keep this design to be consistent with RaML.
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by making copies—it apportions the potential indicated by A into two parts to be associated with

A1 and A2. Formally, this relation is defined as follows.

A ∈ {unit, bool, int}

.(A | A, A)

.(A | A1, A2)

.(B | B1, B2)

.(A × B | A1 × B1, A2 × B2)

.(A | A1, A2)

p = p1 + p2
.(Lp (A) | Lp1 (A1), Lp2 (A2))

.(A | A1, A2)

p = p1 + p2
.(T p (A) | T p1 (A1),T p2 (A2))

The structural rules (A-Weakening),(A-Relax),(A-Subtype),(A-Supertype) can be applied to

every expression. The sub-typing relation A <: B indicates that A and B are structurally identical,

and for every semantic value a, the potential Φ(a : A) is greater or equal than the potential Φ(a : B).
Formally, this relation is defined as follows.

A ∈ {unit, bool, int}

A <: A

A1 <: A2 B1 <: B2

A1 × B1 <: A2 × B2

A1 <: A2 p1 ≥ p2
Lp1 (A1) <: Lp2 (A2)

A1 <: A2 p1 ≥ p2
T p1 (A1) <: T p2 (A2)

Example 3.2. Recall the program in Fig. 1. An example of a resource-annotated derivation with

the heap space metric established by only using syntax-directed rules is as follows. In this typing

derivation, every variable is used exactly once, which indicates that the annotated potential function

for this expression is tight—just enough to pay for all the resource usage to complete the evaluation

under any environment V such that |= V : {y : int × int, xs ′ : L3(int)}.

L3(int)
2/0
−−→ L0(int × int) ∈ Σ(lpairs)

xs′ : L3(int)
0

2 app(lpairs, xs′) : L0(int × int) y : int × int, ys : L0(int × int)
0

4 cons(y, ys) : L0(int × int)

y : int × int, xs′ : L3(int)
0

6 let(app(lpairs, xs′), ys .cons(y, ys)) : L0(int × int)

Following is an example of derivations involving structural rules. The rule (A-Relax) in the derivation

indicates a potential waste of 6 units—hence the annotated potential function for this expression is not

tight. Note the rule (A-Weakening) in the derivation does not indicate potential waste, because the

variables x12, x22 only carry zero potential.

· · ·

L3(int)
2/0
−−→ L0(int × int) ∈ Σ(lpairs)

xs′ : L3(int)
0

2 app(lpairs, xs′) : L0(int × int)

x12 : int, x22 : int, xs′ : L3(int)
0

2 app(lpairs, xs′) : L0(int × int)
A-Weakening

8 ≥ 2

x12 : int, x22 : int, xs′ : L3(int)
0

8 app(lpairs, xs′) : L0(int × int)
A-Relax

b : bool, x12 : int, x22 : int, xs′ : L3(int)
0

8 if(b , · · · , app(lpairs, xs′)) : L0(int × int)

Soundness. A crucial characterization of a type system is its soundness with respect to an

operational semantics. For resource-aware type systems, soundness theorems state the derived

potential functions at the program points are always sufficient to complete the evaluation [Hoffmann

et al. 2011, 2017; Hofmann and Jost 2003]. We formalize the soundness theorem of the semantics

and the type system as follows.

Theorem 3.3. If |= V : Γ,V ⊢ e ⇓ v , Σ; Γ q′
q
e : A, then for all p, r ∈ Q+

0
such that p = q+ΦV (Γ)+r ,

there exists p ′ ∈ Q+
0
satisfying V p′

p
e ⇓ v and p ′ ≥ q′ + Φ(v : A) + r .

4 PROBLEM STATEMENT
To formalize the problem of worst-case input generation, we introduce input skeletons. Skeletons

can contain indeterminate booleans, integers, as well as unknown structures of inductive data types.

The following grammar defines these skeletons S ∈ Skel.
S F null | true | false | booli | n | inti | ⟨S1, S2⟩

| nil | cons(Sh, St ) | listof(S1, · · · , Sn)

| leaf | node(S0, S1, S2) | treeof(S1, · · · , Sn)
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σ ⊢ S : A Skeleton S has type A under σ

σ ⊢ null : unit

b ∈ {true, false}

σ ⊢ b : bool σ ⊢ booli : bool

n ∈ Z

σ ⊢ n : int σ ⊢ inti : int

σ ⊢ S1 : A1 σ ⊢ S2 : A2

σ ⊢ ⟨S1, S2 ⟩ : A1 × A2

σ ⊢ σ (ℓ) : A

σ ⊢ ℓ : A

∀i ∈ {1, · · · , n } : σ ⊢ Si : A

σ ⊢ listof(S1, · · · , Sn ) : L(A)

∀i ∈ {1, · · · , n } : σ ⊢ Si : A

σ ⊢ treeof(S1, · · · , Sn ) : T (A)

σ ⊢ nil : L(A)

σ ⊢ Sh : A σ ⊢ St : L(A)

σ ⊢ cons(Sh , St ) : L(A) σ ⊢ leaf : T (A)

σ ⊢ S0 : A σ ⊢ S1 : T (A) σ ⊢ S2 : T (A)

σ ⊢ node(S0, S1, S2) : T (A)

Fig. 7. Typing rules for skeletons

booli is a boolean indeterminate with index i . inti is a integer indeterminate with index i . nil,
cons(Sh, St ) are list constructors. listof(S1, · · · , Sn) is a a list indeterminate with its elements

in order. leaf, node(S0, S1, S2) are binary tree constructors. treeof(S1, · · · , Sn) is a binary tree

indeterminate with its elements in pre-order.

To allow sharing of unknown data structures in the input skeleton, we introduce pointers ℓ ∈ Loc
as skeletons. Then a skeleton environment γ : VID⇀ Skel is a finite partial mapping from variables

to skeletons, and a skeleton heap σ : Loc⇀ Skel is finite partial mapping from pointers to skeletons.

Fig. 7 defines the typing rules for skeletons under a skeleton heap σ , written σ ⊢ S : A. We also

write σ ⊢ γ : Γ, where Γ is a typing context, if σ ⊢ γ (x) : Γ(x) for every x ∈ dom(Γ). In this paper,

we assume all the data structure skeletons (i.e., list and binary tree constructors) are saved in the

skeleton heap, and the skeleton environment records primitive skeletons (i.e., booleans, integers,

and pairs) as well as pointers to data structures.

Given a program, the worst-case input generation is aimed to find a concretization of a specified

input skeleton, which exposes the worst-case resource usage of the program with respect to

the operational cost semantics. A concretization consists of a model M to resolve boolean and

integer indeterminates, and a heap H to resolve unknown structures of inductive data types like

lists and binary trees. Formally, a model M is a finite partial mapping from boolean and integer

indeterminates to constants, and a heap H is a finite partial mapping from pointers to values. Under

a model M and a heap H , the concretization v of a skeleton S , writtenM ;H ⊢ S ⇝ v is formalized

in Fig. 8. We write M ;H ⊢ γ ⇝ V , if M ;H ⊢ γ (x) ⇝ V (x) for every x ∈ dom(γ ). Because the
skeleton environment γ only records primitive skeletons and pointers, the judgmentM ;H ⊢ γ ⇝ V
is deterministic. We also write M ⊢ σ ⊑ H , if M ;H ⊢ σ (ℓ)⇝ H (ℓ) for every ℓ ∈ dom(σ ). We use

the “refinement” operator ⊑ because a skeleton heap might correspond to different concrete heaps.

The general worst-case input generation program can be formalized as follows.

Given a program with signature Σ and a function f of type Σ(f ) = A→ B, for a specified input

skeleton γ ,σ such that σ ⊢ γ : {x f : A} (i.e., σ ⊢ γ (x f ) : A) and a resource metric, generate a

concretization M,H such that M ⊢ σ ⊑ H , M ;H ⊢ γ ⇝ V , V q′
q

ef ⇓ v , and the resource

consumption δ = q−q′ is greater or equal to the resource consumption of all possible concretizations

of the same input skeleton.

Example 4.1. Recall the function lpairs in Fig. 1. The type of lpairs is L(int) → L(int × int). The
formal parameter of lpairs is l . Let γ = {l 7→ ℓ} and σ = {ℓ 7→ listof(int1, int2, int3, int4)} be an
input skeleton that represents an integer list of length four. A solution to the worst-case input generation

for the heap space usage of the function lpairs isM = {int1 7→ 0, int2 7→ 1, int3 7→ 0, int4 7→ 1}, and

H = {ℓ 7→ ⟨0, ⟨1, ⟨0, ⟨1, null⟩⟩⟩⟩}. Then V (l) represents the list [0, 1, 0, 1].
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M ;H ⊢ S ⇝ v Skeleton S is concretized to v under modelM and heap H

M ;H ⊢ null⇝ null M ;H ⊢ booli ⇝ M (booli ) M ;H ⊢ inti ⇝ M (inti ) M ;H ⊢ ℓ⇝ H (ℓ)

M ;H ⊢ S1 ⇝ v1 M ;H ⊢ S2 ⇝ v2

M ;H ⊢ ⟨S1, S2 ⟩⇝ ⟨v1, v2 ⟩

b ∈ {true, false}

M ;H ⊢ b ⇝ b

n ∈ Z

M ;H ⊢ n ⇝ n M ;H ⊢ listof(·)⇝ null

M ;H ⊢ S1 ⇝ vh M ;H ⊢ listof(S2, · · · , Sn )⇝ vt
M ;H ⊢ listof(S1, · · · , Sn )⇝ ⟨vh , vt ⟩ M ;H ⊢ treeof(·)⇝ null M ;H ⊢ leaf⇝ null

M ;H ⊢ S1 ⇝ v0 M ;H ⊢ treeof(S2, · · · , Sm )⇝ v1 M ;H ⊢ treeof(Sm+1, · · · , Sn )⇝ v2

M ;H ⊢ treeof(S1, · · · , Sn )⇝ ⟨v0, v1, v2 ⟩

M ;H ⊢ nil⇝ null

M ;H ⊢ Sh ⇝ vh M ;H ⊢ St ⇝ vt
M ;H ⊢ cons(Sh , St )⇝ ⟨vh , vt ⟩

M ;H ⊢ S0 ⇝ v0 M ;H ⊢ S1 ⇝ v1 M ;H ⊢ S2 ⇝ v2

M ;H ⊢ node(S0, S1, S2)⇝ ⟨v0, v1, v2 ⟩

Fig. 8. Concretization rules for skeletons

We also consider a restricted version of the general problem: If we know an upper bound on the

resource usage, we want to generate an input with the same resource usage as the bound indicates.

Given a program with resource-annotated signature Σ and a function f of type A
q/q′
−−−→ B ∈ Σ(f ),

for a specified input skeleton γ ,σ such that σ ⊢ γ : {x f : A}, find a concretizationM,H satisfying

thatM ⊢ σ ⊑ H , M ;H ⊢ γ ⇝ V , V p′
p
e f ⇓ v , and p − p ′ = (q + ΦV (x

f
: A)) − (q′ + Φ(v : B)).

Intuitively, because Thm. 3.3 guarantees the soundness of the upper bound, every input that

exposes the exact resource consumption as the upper bound is indeed a worst-case input of its

shape. Later we will prove that the solution to the restricted worst-case input generation problem

is always a solution to the general one (see §5).

Remark 4.2. This formalization might seem too restricted at a first glance. However, we find the

problem still interesting for two reasons: (i) RaML is quite precise and tight in practice [Hoffmann

et al. 2017], and our experiments also show the derived bounds are indeed the resource usage of the

worst-case inputs (see §7), and (ii) it is straightforward to modify our algorithm to generate d-bounded
worst-case inputs, which allow at most d units of potential waste in the execution (see §5).

5 TYPE-GUIDEDWORST-CASE INPUT GENERATION ALGORITHM
In this section, we present our worst-case input generation algorithm and prove its soundness as

well as relative completeness.

5.1 Formulation
We formulate our algorithm as a set of rules. The intended purpose of these rules is to search for

an execution path with a path constraint sufficient for the input skeleton to expose the worst-case

resource usage. The worst-case input generation judgments are of the form Σ; Γ;γ ;σ q′
q
e : A⇒

⟨ϕ, S,σ ′⟩ where γ ,σ form an input skeleton such that σ ⊢ γ : Γ, ϕ ∈ L[booli , inti ] is a formula in

some theory of booleans and integers with a decision procedure, and S is a skeleton that is intended

to have type A under the skeleton heap σ ′. In the rules, we restrict the result skeleton S to be either

primitive skeletons or pointers to data structures in σ ′. The intuitive meaning is that under the

environment V that is a concretization of the skeleton environment γ with the skeleton heap σ ′
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Σ; Γ;γ ;σ q′
q

e : A⇒ ⟨ϕ, S,σ ′⟩ Under γ ,σ , a worst-case path for e returns S,σ ′ with constraint ϕ

(WC-Unit)

·;γ ;σ
0

Kunit
⟨⟩ : unit⇒ ⟨⊤, null, σ ⟩

(WC-Bool)

b ∈ {true, false}

·;γ ;σ
0

Kbool
b : bool⇒ ⟨⊤, b , σ ⟩

(WC-Int)

n ∈ Z

·;γ ;σ
0

K int
n : int⇒ ⟨⊤, n, σ ⟩

(WC-Var)

x ∈ dom(γ )

x : A;γ ;σ
0

K var
x : A⇒ ⟨⊤, γ (x ), σ ⟩

(WC-Op)

x1, x2 ∈ dom(γ ) S = γ (x1) ^ γ (x2)

x1 : ^arg
1
, x2 : ^arg

2
;γ ;σ

0

Kop
op^(x1, x2) : ^res ⇒ ⟨⊤, S , σ ⟩

(WC-App)

γ (x ) = S A1

q/q′
−−−−→ A2 ∈ Σ(f )

x f : A1;γ [x f 7→ S ];σ q′
q

e f : A2 ⇒ ⟨ϕ, S ′, σ ′⟩

x : A1;γ ;σ q′
q+Kapp

app(f , x ) : A2 ⇒ ⟨ϕ, S ′, σ ′⟩

(WC-Let)

Γ1;γ ;σ q1
q

e1 : A1 ⇒ ⟨ϕ1, S1, σ1 ⟩
Γ2, x : A1;γ [x 7→ S1];σ1 q′

q1 e2 : A2 ⇒ ⟨ϕ2, S2, σ2 ⟩

Γ1, Γ2;γ ;σ q′
q+K let

let(e1, x .e2) : A2 ⇒ ⟨ϕ1 ∧ ϕ2, S2, σ2 ⟩

(WC-Pair)

A = A1 × A2

x1, x2 ∈ dom(γ ) S = ⟨γ (x1), γ (x2)⟩

x1 : A1, x2 : A2;γ ;σ
0

Kpair
pair(x1, x2) : A⇒ ⟨⊤, S , σ ⟩

(WC-MatP)

γ (x ) = ⟨S1, S2 ⟩ γo = γ [x1 7→ S1, x2 7→ S2]
Γ, x1 : A1, x2 : A2;γo ;σ q′

q
e : A⇒ ⟨ϕ, S , σ ′⟩

Γ, x : A1 × A2;γ ;σ q′
q+KmatP

matp(x , x1 .x2 .e) : A⇒ ⟨ϕ, S , σ ′⟩

(WC-Nil)

ℓ < dom(σ )

·;γ ;σ
0

Knil
nil : Lp (A) ⇒ ⟨⊤, ℓ, σ [ℓ 7→ nil]⟩

(WC-MatL-Cons)

γ (x ) = ℓ σ (ℓ) = cons(Sh , St ) γ ′ = γ [xh 7→ Sh , xt 7→ St ]

Γ, xh : A, xt : Lp (A);γ ′;σ q′
q+p−KmatLC

e2 : A′ ⇒ ⟨ϕ, S , σ ′⟩

Γ, x : Lp (A);γ ;σ q′
q

matl(x , e1, xh .xt .e2) : A
′ ⇒ ⟨ϕ, S , σ ′⟩

(WC-Cons)

xh , xt ∈ dom(γ ) R = cons(γ (xh ), γ (xt ))
ℓ < dom(σ ) σ ′ = σ [ℓ 7→ R] Γ = xh : A, xt : Lp (A)

Γ;γ ;σ
0

p+K cons

cons(xh , xt ) : L
p (A) ⇒ ⟨⊤, ℓ, σ ′⟩

(WC-MatL-Nil)

e = matl(x , e1, xh .xt .e2) γ (x ) = ℓ

σ (ℓ) = nil Γ;γ ;σ q′
q−KmatLN

e1 : A′ ⇒ ⟨ϕ, S , σ ′⟩

Γ, x : Lp (A);γ ;σ q′
q

e : A′ ⇒ ⟨ϕ, S , σ ′⟩

(WC-MatL-List-Empty)

γ (x ) = ℓ σ (ℓ) = listof(·) Γ;γ ;σ [ℓ 7→ nil] q′
q−KmatLN

e1 : A′ ⇒ ⟨ϕ, S , σ ′⟩

Γ, x : Lp (A);γ ;σ q′
q

matl(x , e1, xh .xt .e2) : A
′ ⇒ ⟨ϕ, S , σ ′⟩

(WC-MatL-List-NonEmpty)

γ (x ) = ℓ σ (ℓ) = listof(S1, · · · , Sn ) ℓt < dom(σ ) St = listof(S2, · · · , Sn )

Γ, xh : A, xt : Lp (A);γ [xh 7→ S1, xt 7→ ℓt ];σ [ℓ 7→ cons(S1, ℓt ), ℓt 7→ St ] q′
q+p−KmatLC

e2 : A′ ⇒ ⟨ϕ, S , σ ′⟩

Γ, x : Lp (A);γ ;σ q′
q

matl(x , e1, xh .xt .e2) : A
′ ⇒ ⟨ϕ, S , σ ′⟩

Fig. 9. Rules of the type-guided worst-case input generation algorithm (I)

and satisfies the constraint ϕ, it furthermore takes q + ΦV (Γ) units of resource to evaluate e to a

value v , which is the corresponding concretization of S and there are exactly q′ + Φ(v : A) units
of resource left over. These rules essentially formulate a type-guided symbolic execution of the

expression e . Figs. 9 and 10 present the syntax-directed rules. We assume a fixed global signature Σ.
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Σ; Γ;γ ;σ q′
q

e : A⇒ ⟨ϕ, S,σ ′⟩ Under γ ,σ , a worst-case path for e returns S,σ ′ with constraint ϕ

(WC-Leaf)

ℓ < dom(σ )

·;γ ;σ
0

K leaf
leaf : T p (A) ⇒ ⟨⊤, ℓ, σ [ℓ 7→ leaf]⟩

(WC-MatT-Leaf)

γ (x ) = ℓ σ (ℓ) = leaf Γ;γ ;σ q′
q−KmatTL

e1 : A′ ⇒ ⟨ϕ, S , σ ′⟩

Γ, x : T p (A);γ ;σ q′
q

matt(x , e1, x0 .x1 .x2 .e2) : A′ ⇒ ⟨ϕ, S , σ ′⟩

(WC-Node)

x0, x1, x2 ∈ dom(γ ) R = node(γ (x0), γ (x1), γ (x2)) ℓ < dom(σ )

x0 : A, x1 : T p (A), x2 : T p (A);γ ;σ
0

p+Knode

node(x0, x1, x2) : T p (A) ⇒ ⟨⊤, ℓ, σ [ℓ 7→ R]⟩

(WC-MatT-Node)

γ (x ) = ℓ σ (ℓ) = node(S0, S1, S2)

Γ, x0 : A, x1 : T p (A), x2 : T p (A);γ [x0 7→ S0, x1 7→ S1, x2 7→ S2];σ q′
q+p−KmatTN

e2 : A′ ⇒ ⟨ϕ, S , σ ′⟩

Γ, x : T p (A);γ ;σ q′
q

matt(x , e1, x0 .x1 .x2 .e2) : A′ ⇒ ⟨ϕ, S , σ ′⟩

(WC-MatT-Tree-Empty)

γ (x ) = ℓ σ (ℓ) = treeof(·) Γ;γ ;σ [ℓ 7→ leaf] q′
q−KmatTL

e1 : A′ ⇒ ⟨ϕ, S , σ ′⟩

Γ, x : T p (A);γ ;σ q′
q

matt(x , e1, x0 .x1 .x2 .e2) : A′ ⇒ ⟨ϕ, S , σ ′⟩

(WC-MatT-Tree-NonEmpty)

γ (x ) = ℓ σ (ℓ) = treeof(S1, · · · , Sn ) ℓ1, ℓ2 < dom(σ )
R1 = treeof(S2, · · · , Sm ) R2 = treeof(Sm+1, · · · , Sn ) σo = σ [ℓ 7→ node(S1, ℓ1, ℓ2), ℓ1 7→ R1, ℓ2 7→ R2]

Γ, x0 : A, x1 : T p (A), x2 : T p (A);γ [x0 7→ S1, x1 7→ ℓ1, x2 7→ ℓ2];σo q′
q+p−KmatTN

e2 : A′ ⇒ ⟨ϕ, S , σ ′⟩

Γ, x : T p (A);γ ;σ q′
q

matt(x , e1, x0 .x1 .x2 .e2) : A′ ⇒ ⟨ϕ, S , σ ′⟩

(WC-Cond-True)

γ (x ) = S Γ;γ ;σ q′
q−K condT

e1 : A⇒ ⟨ϕ, S ′, σ ′⟩

Γ, x : bool;γ ;σ q′
q

if(x , e1, e2) : A⇒ ⟨S ∧ ϕ, S ′, σ ′⟩

(WC-Cond-False)

γ (x ) = S Γ;γ ;σ q′
q−K condF

e2 : A⇒ ⟨ϕ, S ′, σ ′⟩

Γ, x : bool;γ ;σ q′
q

if(x , e1, e2) : A⇒ ⟨¬S ∧ ϕ, S ′, σ ′⟩

(WC-Share)

γ (x ) = S Γ, x1 : A1, x2 : A2;γ [x1 7→ S , x2 7→ S ];σ q′
q

e : A′ ⇒ ⟨ϕ, S ′, σ ′⟩ .(A | A1, A2)

Γ, x : A;γ ;σ q′
q

share(x , x1 .x2 .e) : A′ ⇒ ⟨ϕ, S ′, σ ′⟩

Fig. 10. Rules of the type-guided worst-case input generation algorithm (II)

Most of these rules are deterministic—for a configuration of the input skeleton γ ,σ and the

expression e , the generation algorithm is usually able to pick a unique evaluation step. For example,

for the expression let(e1, x .e2), the rule (WC-Let) first generates a candidate worst-case execution

path for e1 and then returns a path constraint ϕ1 together with the corresponding result skeleton S1.
The rule then generates a worst-case execution path for e2 under the same skeleton environment

with the binding variable x updated with S1. If the path constraint for e2 is ϕ2, the conjunction of

two path constraints ϕ1 ∧ ϕ2 is a sufficient condition for the let-expression to expose worst-case

resource usage.

The rule (WC-App) for function applications looks up the skeleton of x in the current skeleton

environment, and passes it to the function body ef to generate a candidate worst-case execution
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path. We treat inductive data structures differently from the operational cost semantics in Fig. 5.

For list and binary tree constructors, we create a fresh pointer and put the data structure in the

inductive skeleton heap. For example, the rule (WC-Node) for the expression node(x0, x1, x2) first
looks up the skeletons of x0, x1, x2 in the current skeleton environment as S0, S1, S2, respectively.
Then it creates an inductive skeleton for a binary tree node as node(S0, S1, S2), and puts it in a fresh

location of the skeleton heap.

There are three rules that exhibit nondeterminism: (WC-Cond-True), (WC-Cond-False), and

(WC-MatT-Tree-NonEmpty). The first two rules are nondeterministic because the predicate

of a conditional expression might not be able to resolve because the predicate might refer to

indeterminate booleans and integers. For example, for the conditional expression if(x, e1, e2), the
rule (WC-Cond-True) looks up the skeleton of x in the current skeleton environment as S , and
then tries to find a path constraint ϕ for e1 to trigger worst-case behavior, and then return a path

constraint S ∧ϕ that indicates the expression evaluates the then-branch. The nondeterminism of the

rule (WC-MatT-Tree-NonEmpty) arises because the structure of the binary tree being matched is

unknown. Suppose the inductive skeleton for the tree is treeof(S1, · · · , Sn). Because the elements

are in pre-order, the element assigned to the root of this tree is S1, and the input generation algorithm
tries to partition {S2, · · · , Sn} into the left and right subtrees. Suppose R1 = treeof(S2, · · · , Sm) and
R2 = treeof(Sm+1, · · · , Sn) are two inductive skeletons for the left and right subtrees, respectively.

Then the algorithm records the partition in the skeleton heap and then proceeds to search path

constraints for the body expression of the match-expression.

Example 5.1. Recall the program in Fig. 1 and consider the subexpression

let(app(lpairs, xs ′),ys .cons(y,ys)). Let an input skeleton be γ = {y 7→ ⟨int1, int2⟩, xs ′ 7→ ℓ1}, σ =
{ℓ1 7→ cons(int3, cons(int4,nil))}. For the heap spacemetric, our algorithm derives the following judg-

ment for the function call: xs ′ : L3(int);γ ;σ
0

2 app(lpairs, xs ′) : L0(int × int) ⇒ ⟨int3 < int4, ℓ3,σ1⟩
where σ1 = σ [ℓ2 7→ nil, ℓ3 7→ cons(⟨int3, int4⟩, ℓ2)]. Then for the body expression of the let-expression,
our algorithm derives the following judgment by setting the binding variable ys to ℓ3 in the skeleton

heap σ1: y : int × int;ys : L0(int × int);γ [ys 7→ ℓ3];σ1 0

4 cons(y,ys) : L0(int × int) ⇒ ⟨⊤, ℓ4,σ2⟩
where σ2 = σ1[ℓ4 7→ cons(⟨int1, int2⟩, ℓ3)]. Thus by rule (WC-Let) we have the following:

y : int × int, xs ′;γ ;σ
0

6 let(app(lpairs, xs ′),ys .cons(y,ys)) : L0(int × int) ⇒ ⟨int3 < int4, ℓ4,σ2⟩.
The list that ℓ4 points to then corresponds to [⟨int1, int2⟩, ⟨int3, int4⟩].

In order to formulate our input generation algorithm for structural typing rules, we define the

potential of skeletons, written Φ̃σ (S : A), as follows.

Φ̃σ (S : A) = 0 where A ∈ {unit, bool, int}

Φ̃σ (S : A1 ×A2) = Φ̃σ (S1 : A1) + Φ̃σ (S2 : A2) where S = ⟨S1, S2⟩

Φ̃σ (ℓ : A) = Φ̃σ (R : A) where R = σ (ℓ)

Φ̃σ (nil : L
p (A)) = 0

Φ̃σ (cons(Sh, St ) : L
p (A)) = p + Φ̃σ (Sh : A) + Φ̃σ (St : L

p (A))

Φ̃σ (listof(S1, · · · , Sn) : L
p (A)) = n · p +

∑n
i=1 Φ̃σ (Si : A)

Φ̃σ (leaf : T
p (A)) = 0

Φ̃σ (node(S0, S1, S2) : T
p (A)) = p + Φ̃σ (S0 : A) + Φ̃σ (S1 : T

p (A)) + Φ̃σ (S2 : T
p (A))

Φ̃σ (treeof(S1, · · · , Sn) : T
p (A)) = n · p +

∑n
i=1 Φ̃σ (Si : A)

Fig. 11 shows the rules for worst-case input generation against structural rules. Our algorithm

supports structural rules but forces these rules not to waste potential. The rule (WC-Weakening)
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Σ; Γ;γ ;σ q′
q

e : A⇒ ⟨ϕ, S,σ ′⟩ Under γ ,σ , a worst-case path for e returns S,σ ′ with constraint ϕ

(WC-Weakening)

Γ;γ ;σ q′
q

e : A′ ⇒ ⟨ϕ, S ′, σ ′⟩

γ (x ) = S Φ̃σ (S : A) = 0

Γ, x : A;γ ;σ q′
q

e : A′ ⇒ ⟨ϕ, S ′, σ ′⟩

(WC-Relax)

Γ;γ ;σ p′
p

e : A⇒ ⟨ϕ, S , σ ′⟩ q ≥ p q − p = q′ − p′

Γ;γ ;σ q′
q

e : A⇒ ⟨ϕ, S , σ ′⟩

(WC-Subtype)

Γ;γ ;σ q′
q

e : A⇒ ⟨ϕ, S , σ ′⟩ A <: B

Φ̃σ ′ (S : A) = Φ̃σ ′ (S : B)

Γ;γ ;σ q′
q

e : B ⇒ ⟨ϕ, S , σ ′⟩

(WC-Supertype)

Γ, x : B;γ ;σ q′
q

e : C ⇒ ⟨ϕ, S ′, σ ′⟩ A <: B

γ (x ) = S Φ̃σ (S : A) = Φ̃σ (S : B)

Γ, x : A;γ ;σ q′
q

e : C ⇒ ⟨ϕ, S ′, σ ′⟩

Fig. 11. Rules of the resource-aware worst-case input generation algorithm (III)

requires the variable x that is thrown away to carry zero potential. The rule (WC-Relax) still

permits adding some constant number to the potential functions, but the amounts added to the

potential before evaluation of an expression and after the evaluation must be identical. Sub-typing

is permitted if the skeleton has the same potential with respect to the types A,B where A is a

sub-type of B.

After the worst-case input generation algorithm establishes a judgment Σ; Γ;γ ;σ q′
q

e : A⇒

⟨ϕ, S,σ ′⟩, we use the decision procedure for L[booli , inti ] to find a modelM for the path constraint

ϕ. If the modelM is found, we can then use it to concretize the input skeleton γ ,σ to a concrete

input that will expose the worst-case resource consumption.

Example 5.2. Recall the program in Fig. 1 with the function lpairs. Let an input skeleton be

γ = {l 7→ ℓ1}, σ = {ℓ1 7→ cons(int1, cons(int2, cons(int3, cons(int4,nil))))}. For the heap space

metric, our algorithm derives

l : L3(int);γ ;σ
0

2 app(lpairs, l) : L0(int × int) ⇒ ⟨(int1 < int2) ∧ (int3 < int4), ℓ4,σ ′⟩
where σ ′ = σ [ℓ2 7→ nil, ℓ3 7→ cons(⟨int3, int4⟩, ℓ2), ℓ4 7→ cons(⟨int1, int2⟩, ℓ3)]. The constraint
(int1 < int2) ∧ (int3 < int4) is satisfiable in the modelM = {int1 7→ 0, int2 7→ 1, int3 7→ 0, int4 7→ 1}.

Hence our algorithm finds a worst case input [0, 1, 0, 1] for the function lpairs.

Remark 5.3. A practical relaxation of the formalization for worst-case input generation problem

could be that we allow a bounded amount of resource waste from the inferred resource bound. We call

the problem that allows d units of potential waste the d-bounded worst-case input generation. It

is straightforward to extend our algorithm by adding a component to record current potential waste

and forcing the waste not to exceed the specified bound d . For example, the rule (WC-Relax) can be

modified as follows wherew,w ′ ∈ Q+
0
stand for potential waste.

(WC-Relax)

Γ;γ ;σ p′
p

e : A⇒ ⟨ϕ, S , σ ′,w ⟩ q ≥ p q − p ≥ q′ − p′ w ′ = w + ((q − p) − (q′ − p′)) w ′ ≤ d

Γ;γ ;σ q′
q

e : A⇒ ⟨ϕ, S , σ ′,w ′⟩

5.2 Proof
Complete proofs are included in the extended version of this paper [Wang and Hoffmann 2018].

Soundness. The soundness theorem states that if for a function f with a resource-annotated

type, the worst-case input generation algorithm terminates with ⟨ϕ, S,σ ′⟩ under the skeleton
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environment γ and the skeleton heap σ , then the evaluation of the function f under the concrete

environment V that is the concretization of γ ,σ that satisfies ϕ consumes the amount of resource

exactly the same as the inferred upper bound.

Theorem 5.4 (Soundness). If Σ;x f : A1;γ ;σ q′
q

e f : A2 ⇒ ⟨ϕ, S,σ ′⟩, σ ⊢ γ : (x f : A1),

M is a model for ϕ, M ⊢ σ ′ ⊑ H , and M ;H ⊢ γ ⇝ V , then there exists a value v , satisfying

V q′+Φ(v :A2)

q+ΦV (x f :A1)
ef ⇓ v , andM ;H ⊢ S ⇝ v .

To establish soundness, we prove the following generalized theorem.

Theorem 5.5. If Σ; Γ;γ ;σ q′
q

e : A⇒ ⟨ϕ, S,σ ′⟩, σ ⊢ γ : Γ, M is a model for ϕ, M ⊢ σ ′ ⊑ H , and

M ;H ⊢ γ ⇝ V , then for all p, r ∈ Q+
0
such that p = q + ΦV (Γ) + r , there exist p

′ ∈ Q+
0
and a value v ,

satisfying V p′
p
e ⇓ v , p ′ = q′ + Φ(v : A) + r , andM ;H ⊢ S ⇝ v .

Proof. By induction on the derivation of Σ; Γ;γ ;σ q′
q
e : A⇒ ⟨ϕ, S,σ ′⟩. □

Remark 5.6. Suppose f is a function with the signature A1

q/q′
−−−→ A2 ∈ Σ(f ) with q′ = 0 and

.(A2 | A2,A2), i.e., the result type carries only zero potential. Given an input skeleton γ ,σ such that

σ ⊢ γ : (x f : A1), let Ψ = q+ Φ̃σ (γ (x
f ) : A1), then for every concretizationM,H such thatM ⊢ σ ⊑ H ,

M ;H ⊢ γ ⇝ V , we have Ψ = q + Φ(V (x f ) : A1) = q + ΦV (x
f
: A1). Hence by Thm. 3.3, for every V

such that |= V : (x f : A1), if V p′
p
e f ⇓ v , then p − p ′ ≤ (q + ΦV (x

f
: A1)) − (q

′ + Φ(v : A2)) = Ψ. If

Σ;x f : A1;γ ;σ q′
q

e f : A2 ⇒ ⟨ϕ, S,σ
′⟩, M is a model for ϕ, M ⊢ σ ′ ⊑ H , and M ;H ⊢ γ ⇝ V , then

by Thm. 5.5, there exists a value v such that V
0

Ψ
e f ⇓ v , and henceM,H exposes the resource usage

that is greater or equal to the resource consumption of all other concretizations.

Relative Completeness. We nowwant to study the completeness of our worst-case input generation

algorithm. Although the theory L[booli , inti ] for booleans and integers might be undecidable, we

prove our algorithm is completemodulo constraint solving. If a function f with a resource-annotated

type has a worst-case input that is a concretization of the input skeleton γ ,σ and exposes exactly

the same resource usage as the inferred upper bound, then our algorithm is able to find a path

constraint that corresponds to the concretization.

Theorem 5.7 (Completeness). If Σ;x f : A1 q′
q

e f : A2, |= V : Γ, V q′+Φ(v :A2)

q+ΦV (x f :A1)
e ⇓ v ,

σ ⊢ γ : (x f : A1), M ⊢ σ ⊑ H , and M ;H ⊢ γ ⇝ V , then there exist ϕ, S,σ ′, satisfying Σ;x f :

A1;γ ;σ q′
q
ef : A2 ⇒ ⟨ϕ, S,σ

′⟩, andM is a model for ϕ.

To establish completeness, we prove the following generalized theorem.

Theorem 5.8. If Σ; Γ q′
q

e : A, |= V : Γ, V p′
p

e ⇓ v , p = q + ΦV (Γ) + r , p
′ = q′ + Φ(v : A) + r ,

σ ⊢ γ : Γ, M ⊢ σ ⊑ H , and M ;H ⊢ γ ⇝ V , then there exist ϕ, S,σ ′,H ′, satisfying Σ; Γ;γ ;σ q′
q

e :

A⇒ ⟨ϕ, S,σ ′⟩,M is a model for ϕ, H ⊆ H ′,M ⊢ σ ′ ⊑ H ′,M ;H ′ ⊢ γ ⇝ V , andM ;H ′ ⊢ S ⇝ v .

Proof. By induction on the derivation ofV p′
p
e ⇓ v and the derivation of Γ q′

q
e : A, where the

derivation of the evaluation judgment takes priority over the typing judgment. □

6 HEURISTICS FOR COMPOSITIONAL INPUT GENERATION
The type-guided worst-case input generation algorithm developed in §5 could become inefficient

when the input skeleton is large and there remain a lot of candidate execution paths to investigate,

even after the resource-annotated derivation has already helped prune the search space.
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Let us first investigate the possible causes of inefficiency. As we already discussed in §5.1, most

of the generation rules are deterministic, except the following three rules: (WC-Cond-True), (WC-

Cond-False), and (WC-MatT-Tree-NonEmpty). For the first two rules, the nondeterminism occurs

because our algorithm does not know the actual value of the predicate of a conditional expression.

For the third rule, the nondeterminism comes from the enumeration of possible tree structures.

When the size of the input skeleton increases, the total number of combinations that come from

the nondeterministic rules is likely to exhibit an exponential blowup.

One way to improve the scalability of our input generation algorithm is to exploit composition-

ality—specifically, we hope to restrict the combinations of execution paths inside the function

boundaries. Intuitively, when we search for a candidate path constraint for a function on an input

skeleton, we want to first generate feasible path constraints for function calls inside the function

body on subparts of the input skeleton, and then combine these constraints in a sound way.

Thm. 5.5 provides soundness guarantee for our input generation algorithm. The theorem implies

that even if we only enable a subset of the generation rules, the algorithm always returns correct

sufficient constraints for worst-case inputs, if it terminates with some results. This property gives

us several opportunities to devise search heuristics that can enable, disable, and prioritize partial

executions during the generation algorithm. In this section, we develop two search heuristics for

compositional input generation.

6.1 Uniform Execution
To get rid of nondeterministic rules for conditional expressions, one idea is to force the algorithm

to choose the same branch for each conditional expression. Because on worst-case inputs the

program always executes the same branch, we call this heuristic uniform execution. In this way, the

algorithm only needs to enumerate a global configuration for conditional expressions. Formally,

given a global configuration config : Exp→ {←,→}, the worst-case input generation algorithm

proceeds as follows for conditional expressions.

(WC-Cond-True)

config(if(x , e1, e2)) =← γ (x ) = S

Γ;γ ;σ q′
q−K condT

e1 : A⇒ ⟨ϕ, S ′, σ ′⟩

Γ, x : bool;γ ;σ q′
q

if(x , e1, e2) : A⇒ ⟨S ∧ ϕ, S ′, σ ′⟩

(WC-Cond-False)

config(if(x , e1, e2)) =→ γ (x ) = S

Γ;γ ;σ q′
q−K condF

e2 : A⇒ ⟨ϕ, S ′, σ ′⟩

Γ, x : bool;γ ;σ q′
q

if(x , e1, e2) : A⇒ ⟨¬S ∧ ϕ, S ′, σ ′⟩

If for some function, the uniform-execution heuristic succeeds for every input skeleton then we

can extract a compositional input generation procedure from the original function by embedding

our type-guided input generation rules. In §2 we already showed the procedure wc_lpairs in
Fig. 2 for the function lpairs in Fig. 1. As another example, Fig. 12b is the pseudocode of an input

generation procedure extracted from an implementation of quicksort in Fig. 12a, where l1 ++ l2
returns the concatenation of two lists l1, l2.

6.2 Skeleton Similarity
The uniform-execution heuristic might fail when there does not exist a global configuration of

conditional expressions such that on worst-case inputs the function always executes the same

branch of a conditional expression. However, intuitively, a function is likely to execute the same

execution path on worst-case inputs of the same shape. We then develop skeleton similarity, a

heuristic that reuses the search results for input skeletons of similar shapes.

Formally, we define the similarity relation between skeletons in Fig. 13, written σ ,σ ′ ⊢ρ S ∼ S ′,
where ρ is a mapping between indeterminates. We omit the fixed ρ from these rules. We also write

⊢ρ ϕ ∼ ϕ ′ for the similarity of formulas, which is defined in an obvious way. Intuitively, if for a
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let rec partition a = function
| []→ ([], [])
| x :: xs→
let (cs, bs) = partition a xs in
if (x:int) ≥ (a:int) then

(cs, x :: bs)
else

(x :: cs, bs)

let rec qsort = function
| []→ []
| x :: xs→
let (ys, zs) = partition x xs in
let left = qsort ys in
let right = qsort zs in
left ++ (x :: right)

(a) Original code

let rec wc_partition a = function
| []→ (⊤, ([], []))
| x :: xs→

let (ϕ, (cs, bs)) = wc_partition a xs in
(¬ (x ≥ a) ∧ ϕ, (x :: cs, bs))

let rec wc_qsort = function
| []→ (⊤, [])
| x :: xs→

let (ϕ_p, (ys, zs)) = wc_partition x xs in
let (ϕ_l, left) = wc_qsort ys in
let (ϕ_r, right) = wc_qsort zs in
(ϕ_r ∧ ϕ_l ∧ ϕ_p, left ++ (x :: right))

(b) Pseudocode of compositional input generation

Fig. 12. The quicksort example
function call app(f , x), we already established Σ;x f : A1;x

f 7→ Sr ;σr q′
q

e f : A2 ⇒ ⟨ϕr , S
′
r ,σ
′
r ⟩,

and we want to find a worst-case execution path for another input skeleton with the same shape,

i.e., S,σS such that σS ⊢ S : A1, σr ,σS ⊢ρ Sr ∼ S for some mapping ρ, then we can use ρ to

substitute the boolean and integer indeterminates in S ′r ,σ
′
r as a candidate generation result, i.e.,

σ ′r ,σ
′
S ⊢ρ S ′r ∼ S ′. Formally, we introduce the following rule, where σ1 ⊗ σ2 is the conjunction of

two separated skeleton heaps.

(WC-App-Skel-Sim)

x f : A1; x f 7→ Sr ;σr q′
q

e f : A2 ⇒ ⟨ϕr , S ′r , σ
′
r ⟩

γ (x ) = S σS ⊢ S : A1 σr , σS ⊢ρ Sr ∼ S σ ′r , σ
′
S ⊢ρ S ′r ∼ S

′ ⊢ρ ϕr ∼ ϕ

x : A1;γ ;σ ⊗ σS q′
q+Kapp

app(f , x ) : A2 ⇒ ⟨ϕ, S ′, σ ⊗ σ ′S ⟩

Example 6.1. Recall the program in Fig. 1 which defines the function lpairs. Let Sr = ℓ1, σr =
{ℓ1 7→ cons(int1, cons(int2,nil)) be a recorded input skeleton. Then a possible generation result

is ϕr = (int1 < int2), S ′r = ℓ3, σ
′
r = σr [ℓ2 7→ nil, ℓ3 7→ cons(⟨int1, int2⟩, ℓ2)]. Suppose later we

encounter a function call with S = ℓ4, σS = {ℓ4 7→ cons(int3, cons(int4,nil))}. Let ρ = {int1 7→
int3, int2 7→ int4}, then we have σr ,σS ⊢ Sr ∼ S . By substitution of integer indeterminates with respect

to ρ, we derive σ ′S = σS [ℓ5 7→ nil, ℓ6 7→ cons(⟨int3, int4⟩, ℓ5)], S ′ = ℓ6, and ϕ = (int3 < int4). In this

way, our algorithm proceeds without investigating again the function body.

Theorem 6.2. The rule (WC-App-Skel-Sim) is sound.

σ ,σ ′ ⊢ρ S ∼ S ′ Skeleton S under σ is similar to skeleton S ′ under σ ′

σ , σ ′ ⊢ null ∼ null

b ∈ {true, false}

σ , σ ′ ⊢ b ∼ b

ρ(booli ) = boolj

σ , σ ′ ⊢ booli ∼ boolj
n ∈ Z

σ , σ ′ ⊢ n ∼ n

ρ(inti ) = intj

σ , σ ′ ⊢ inti ∼ intj
σ , σ ′ ⊢ σ (ℓ) ∼ σ ′(ℓ′)

σ , σ ′ ⊢ ℓ ∼ ℓ′

σ , σ ′ ⊢ nil ∼ nil

σ , σ ′ ⊢ Sh ∼ S
′
h σ , σ ′ ⊢ St ∼ S ′t

σ , σ ′ ⊢ cons(Sh , St ) ∼ cons(S ′h , S
′
t )

∀i ∈ {1, · · · , n } : σ , σ ′ ⊢ Si ∼ S ′i
σ , σ ′ ⊢ listof(S1, · · · , Sn ) ∼ listof(S ′

1
, · · · , S ′n )

σ , σ ′ ⊢ leaf ∼ leaf

∀i ∈ {0, 1, 2} : σ , σ ′ ⊢ Si ∼ S ′i
σ , σ ′ ⊢ node(S0, S1, S2) ∼ node(S ′

0
, S ′

1
, S ′

2
)

∀i ∈ {1, · · · , n } : σ , σ ′ ⊢ Si ∼ S ′i
σ , σ ′ ⊢ treeof(S1, · · · , Sn ) ∼ treeof(S1, · · · , Sn )

Fig. 13. Skeleton similarity relation
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Proof. It suffices to show x : A1;γ ;σS q′
q+K app

app(f , x) : A2 ⇒ ⟨ϕ, S
′,σ ′S ⟩. The proof proceeds

by induction on the derivation of x f : A1;x
f 7→ S ;σr q′

q
e f : A2 ⇒ ⟨ϕr , S

′
r ,σ
′
r ⟩. □

Operationally, this heuristics can be implemented with a skeleton cache cachef for a function f ,
such that cachef (Sr ,σr ) = (ϕr , S ′r ,σ

′
r ). When the input generation algorithm encounters a function

call, it first looks up the cache to see if there is a similar input skeleton that has been processed. If

there is a cache record then the algorithm tries the recorded path constraint. Otherwise, it proceeds

as with the original rules and, after generating a satisfiable path constraint for the function call,

records the result into the cache.

7 EVALUATION
In this section, we describe the implementation of our worst-case generation algorithm building

on RaML, a summary of an evaluation with 22 benchmark programs, and multiple detailed case

studies. The source code of the benchmark programs is included in the extended version of this

paper [Wang and Hoffmann 2018].

7.1 Implementation
We integrate our type-guided worst-case input generation algorithm in the existing RaML system

[Hoffmann et al. 2017]. The algorithm is implemented in OCaml and consists of about 1600 lines of

code. To generate a worst-case input for a top-level function in a source program, the user needs

to specify a resource metric, a maximal degree of the resource bounds, and an input skeleton. We

then invoke RaML’s type inference to derive an upper bound on the resource usage and a resource-

annotated type-derivation tree. The input generation rules are implemented as a recursive function

on the derivation tree in continuation-passing style. Our implementation resolves nondeterminism

in the rules systematically via two continuations, one for generation success and one for generation

failure. When a path constraint is generated, we use the off-the-shelf SMT solver Z3 [de Moura

and Bjørner 2008] to check its satisfiability and generate models to resolve boolean and integer

indeterminates in the input skeleton. If the SMT solver succeeds, we use the generated model

to obtain a concrete heap via the relation M ⊢ σ ⊑ H and concretize the input skeleton via the

relationM ;H ⊢ S ⇝ v . Otherwise, we continue to search for other path constraints.

We have also implemented the two heuristics for compositional worst-case input generation,

which can be enabled by the user. The uniform-execution heuristic is implemented by enumerat-

ing global configurations for all conditional expressions in the given program before the input

generation. The skeleton-similarity heuristic is implemented by employing a hash table as the

generation cache. Instead of the similarity relation, we define signatures for input skeletons such

that skeletons of the same signature are similar to each other. Then we use the signature as the

hash key in the generation cache. When processing function calls, we extract the signature of the

current input skeleton and look it up in the cache. If a recorded generation result does not exist,

we use the original rules to generate a worst-case path constraint as well as the corresponding

output skeleton, and record them in the cache. Otherwise, we instantiate the recorded constraint

and output skeleton for the current input skeleton.

We also apply several simple optimizations. First, we cache the results of potential functions

to eliminate redundant computation. Second, we try to simplify the skeletons during the input

generation via partial evaluation, in order to deduce the value of predicates in the conditional

expressions. Third, we insert satisfiability checking of path constraints during the input generation

to get rid of unsatisfiable execution paths as early as possible.
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Table 1. Case studies. In the bounds n is the size of the first argument,mi are the sizes of the elements of the
first argument, and x is the size of the second element.

Function Description Metric Inferred Bound Time

lpairs : L(int) → L(int2) Example in Fig. 1 Heap space 3n + 2 0.01s

lpairs_alt : L(int) → L(int2) Example in Fig. 3 Heap space 3n + 2 0.01s

find : int × L(int) → bool Find an element in a list Eval. steps 12x + 3 0.01s

compare : L(int)2 → int Lexicographic comparison Eval. steps 20x + 5 0.01s

opairs : L(int) → L(int2) Generate ordered pairs Eval. steps 26

(n
2

)
+ 17n + 3 0.02s

queue : L(bool × int) → unit Functional queue Eval. steps 34.5n + 12 0.01s

eratos : L(int) → L(int) Sieve of Eratosthenes Eval. steps 21

(n
2

)
+ 25n + 3 0.02s

isort : L(int) → L(int) Insertion sort Eval. steps 20

(n
2

)
+ 15n + 10 0.02s

qsort : L(int) → L(int) Quicksort Eval. steps 29

(n
2

)
+ 28n + 10 0.04s

qsort_pairs : L(int2) → L(int2) Tail-recursive quicksort of pairs Eval. steps 37

(n
2

)
+ 32n + 13 0.04s

qsort_lists : L(L(int)) → L(L(int)) Lexicographic quicksort Eval. steps

∑
1≤i< j≤n 20mj + 39

(n
2

)
+ 34n + 10 0.33s

sort_all : L(L(int)) → L(L(int)) Quicksort all buckets Eval. steps

∑
1≤i≤n (33

(mi
2

)
+ 34mi ) + 20n + 3 0.18s

zigzag : T (unit) → unit Zigzag on a tree Eval. steps 11n + 3 0.01s

subtrees : T (unit) → L(T (unit)) Collect all subtrees Eval. steps 9

(n
2

)
+ 26n + 3 0.03s

find_tree : int ×T (int) → bool Find an element in a search tree Eval. steps 18n + 3 0.01s

build_tree : L(int) → T (int) Build a search tree by insertion Eval. steps 16

(n
2

)
+ 15n + 3 0.02s

hashtbl : L(int8) → L(int × L(int8)) Create a hash table for 8-char strings Ticks

(n
2

)
0.14s

split_sort : L(int2) → L(int2) Group pairs by key and sort each bucket Ticks 2

(n
2

)
+ n 0.14s

kth : int × L(int) → int Quickselect Ticks

(x
2

)
0.08s

sum_avl : T (int2) → int Sum all nodes of an AVL tree Ticks n 0.01s

dfs_avl : T (int2) → L(int) Depth-first-search and sort the nodes Ticks

(n
2

)
+ n 0.06s

bfs_avl : T (int2) → L(int) Breadth-first-search and sort the nodes Ticks

(n
2

)
+ 9n + 4 0.27s

7.2 Evaluation Setup
Research Questions. We evaluate our algorithm to answer the following questions.

• RQ1: Is our algorithm able to generate worst-case inputs for OCaml programs in practice?

• RQ2: Is our algorithm scalable to large input skeletons?

• RQ3: How does our algorithm compare to existing methods in terms of effectiveness and

efficiency?

Evaluated programs. Tab. 1 gives an overview of 22 programs on which we evaluate our algorithm.

It lists each case study’s function name,
6
description, resource metric, inferred upper bound, and

time of type inference in RaML. The functions lpairs and lpairs_alt are the running examples we

use in §2. The functions isort, qsort, and hashtbl are similar to the benchmarks used by Noller

et al.’s Badger [Noller et al. 2018]. We collect some interesting programs from RaML’s examples

[Hoffmann et al. 2017]. We also implement new benchmarks such as the functions sum_avl, dfs_avl,
bfs_avl that operate on AVL trees. In most of these functions, we specify a standard heap space

metric or an evaluation step metric. We also include some case studies where we use a customized

metric (that we refer to as “ticks”), for example, for the function hashtbl we specify a metric to

count the number of hash collisions.

Experiment Execution. For all functions we ran three variations: (i) ALG: our type-guided worst-

case input generation algorithm, (ii) ALG+H1: the algorithm with the uniform-execution heuristic

enabled, and (ii) ALG+H2: the algorithm with the skeleton-similarity heuristic enabled. For each

function, we evaluated all these algorithms on four input skeletons of different sizes. We ran our

experiments fo 5 times with a 15-minute timeout and computed the 20% trimmed mean of the

running time. Tab. 2 presents the statistics of running time of all the experiments.

6
Although our implementation takes a top-level function as its input, the program can contain auxiliary functions that

could be invoked by the analyzed function.
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Table 2. Running time statistics (in seconds). “T/O” stands for timeout.

Function ALG ALG+H1 ALG+H2 ALG ALG+H1 ALG+H2 ALG ALG+H1 ALG+H2 ALG ALG+H1 ALG+H2

lpairs n = 10 n = 50 n = 100 n = 200

0.01 0.01 0.06 0.01 0.01 0.26 0.02 0.02 0.57 0.03 0.03 1.15

lpairs_alt n = 10 n = 30 n = 100 n = 200

0.11 0.79 0.08 321.83 T/O 0.25 T/O T/O 0.84 T/O T/O 1.73

find n = 10 n = 50 n = 100 n = 200

0.01 0.01 0.11 0.01 0.01 0.55 0.02 0.02 1.11 0.03 0.03 2.34

compare n = 10, x = 10 n = 50, x = 50 n = 100, x = 100 n = 200, x = 200

0.01 0.01 0.12 0.02 0.02 0.64 0.03 0.03 1.31 0.07 0.07 2.91

opairs n = 10 n = 50 n = 100 n = 200

0.03 0.03 0.14 1.52 1.52 2.41 20.70 20.71 25.24 353.85 354.55 389.12

queue n = 10 n = 50 n = 100 n = 200

0.04 0.09 0.15 3.54 35.33 7.77 36.90 709.71 109.35 444.64 T/O T/O

eratos n = 10 n = 14 n = 18 n = 20

2.19 2.19 12.62 2.70 2.70 19.75 4.20 4.19 35.77 T/O T/O T/O

isort n = 10 n = 50 n = 100 n = 200

0.02 0.02 0.14 0.29 0.26 1.24 1.33 1.20 7.07 7.74 6.97 94.81

qsort n = 10 n = 64 n = 100 n = 200

1.38 0.07 0.19 T/O 2.99 4.84 T/O 8.67 15.34 T/O 53.23 157.21

qsort_pairs n = 10 n = 50 n = 100 n = 200

0.03 0.03 0.25 0.51 0.50 2.07 2.56 2.50 9.35 14.96 14.79 71.68

qsort_lists n = 10,mi = n − i + 1 n = 50,mi = n − i + 1 n = 75,mi = n − i + 1 n = 100,mi = n − i + 1
0.19 0.19 0.33 16.83 16.80 33.87 113.47 113.47 662.13 439.35 438.79 T/O

sort_all n = 10,mi = 10 n = 50,mi = 10 n = 100,mi = 10 n = 200,mi = 10

T/O 0.32 0.67 T/O 1.46 0.73 T/O 2.95 0.89 T/O 6.52 1.66

zigzag n = 10 n = 15 n = 100 n = 200

3.47 6.96 0.16 110.35 222.40 0.25 T/O T/O 1.74 T/O T/O 4.87

subtrees n = 10 n = 13 n = 100 n = 200

0.23 0.23 0.12 1.75 1.76 0.16 T/O T/O 8.79 T/O T/O 112.35

find_tree n = 10 n = 50 n = 100 n = 200

0.01 0.01 0.11 0.02 0.02 0.63 0.03 0.03 1.26 0.06 0.06 2.78

build_tree n = 10 n = 50 n = 100 n = 200

0.02 0.02 0.23 0.32 0.32 1.48 1.55 1.53 6.69 9.22 9.16 88.56

hashtbl n = 5 n = 10 n = 30 n = 64

0.50 0.49 0.68 2.16 2.16 16.30 3.07 3.08 60.14 7.64 7.62 181.74

split_sort n = 10 n = 50 n = 100 n = 200

703.22 0.12 1.99 T/O 3.02 T/O T/O 14.60 T/O T/O 85.70 T/O

kth n = 10 n = 50 n = 100 n = 200

0.03 0.03 0.11 0.35 0.35 1.24 1.60 1.57 6.02 8.78 8.67 54.36

sum_avl n = 5 n = 10 n = 30 n = 50

0.18 0.18 0.17 70.06 70.13 0.93 T/O T/O 33.39 T/O T/O 240.88

dfs_avl n = 5 n = 8 n = 30 n = 40

2.72 72.09 0.37 805.29 T/O 1.46 T/O T/O 260.55 T/O T/O T/O

bfs_avl n = 5 n = 8 n = 12 n = 14

4.77 136.14 1.60 T/O T/O 16.54 T/O T/O 492.49 T/O T/O T/O

Evaluation Platform. Our experiments were performed on a machine with an Intel Core i7 3.6

GHz processor and 16GB of RAM under macOS High Sierra 10.13.5.

7.3 Case Studies
For every function in Tab. 1, our type-guided worst-case input generation algorithm is able to find

worst-case inputs for some input skeletons of 5–200 nodes. This suggests that the inferred bounds

by RaML are tight for all these functions. We present a detailed description of the experiments for

several functions below.

Example 1: Quicksort of Integers. We use a mutually recursive implementation of the quicksort

algorithm in [Xi 2002]. This implementation is interesting because the worst-case inputs are not
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reversely ordered lists as usual. Although ALG runs out of time for input lists of length 64, 100, and

200, both ALG+H1 and ALG+H2 are able to generate a worst-case input for each of these lengths

in 3 minutes. Intuitively, the reason why ALG fails is that the number of candidate execution paths

is O(2n) where n is the length of the input list. For example, for the input list of length 10, ALG

generates the worst-case input [0,−2,−4,−6,−8,−9,−7,−5 − 3,−1].

Example 2: Sequential Insertions in a Hash Table. We implement an OCaml program that models

the hash table function from Badger [Noller et al. 2018]. We insert an expression tick(1.0) when a

hash collision happens. By specifying the number of ticks as the resource metric, RaML derives an

upper bound

(n
2

)
on the number of collisions, where n is the number of insertions. In this function,

each key in the hash table has a length of 8 characters, and we model it as a tuple type (abbreviated

as int8). The hash values are in the range [0, 64). We implement the DJBX33A hash function used

in a vulnerable PHP implementation [Website 2011]. The program performs 64 insertions into

an empty hash table and we want to generate an insertion sequence to trigger the worst-case

number of hash collisions. ALG and ALG+H1 are able to generate a list of 64 strings of length 8 in

20 seconds that cause the greatest number of hash collisions, i.e., all keys are different from each

other but have the same hash value, hence this insertion sequence triggers

(
64

2

)
hash collisions,

while ALG+H2 takes a longer time. We think the reason why ALG+H2 runs much slower is that

the typing information is able to prune a sufficiently large part of the search space so the overheads

of caching dominate the running time.

Example 3: Lexicographic Quicksort of Lists of Lists. This function is from RaML’s standard

benchmark set. It implements a standard quicksort that lexicographically sorts lists of lists. To

lexicographically compare two lists, one needs linear time in the length of the shorter list. For the

worst-case input generation, we specify input skeletons such that the lengths of inner lists are

strictly decreasing. ALG and ALG+H1 succeed in generating worst-case inputs for input lists of

length 100, while ALG+H3 runs out of time. The worst-case inputs they generate set all integers in

the inner lists to zero. However, if the inner lists of the input skeleton are not reversely ordered by

length, these algorithms report a generation failure. It suggests that the inferred bound by RaML is

not tight for these input skeletons. We think it is because currently, RaML does not support the

min operator in the resource polynomials, and in this example, it always assigns potential to the

second argument of a list comparison, hence when the first list has a shorter length, there exists

potential waste.

Example 4: Zigzagging on a Binary Tree. We implement a tree traversal that visits the left and

right child alternatively. For a fixed size, the worst-case tree should arrange all its nodes on a

“zigzag” path so that the traversal needs to visit all its nodes. ALG and ALG+H1 become inefficient

when the size of the tree is 15, while ALG+H2 can easily generate a worst-case input for a tree of

size 200, because a subtree of a zigzagging tree is indeed zigzagging.

Example 5: Summing up nodes of an AVL Tree. We implement another tree traversal that simply

sums up the values of all nodes but expresses some constraints on the tree structure. Basically,

we record a height in each node and then we require the height of a node should be one plus the

maximum of the heights of its children and the difference of heights of its left child and its right

child should not exceed one. This corresponds to AVL trees that are well-known balanced search

trees. The worst-case input generation algorithm is then able to generate valid AVL trees for a

given size. Like the last example, ALG and ALG+H1 time out on small input skeletons, but ALG+H2

is able to scale to large input skeletons. The reason is that every subtree of an AVL tree is an AVL

tree.
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Discussion.

• RQ1: Our evaluation shows that our type-guided worst-case input generation algorithm is

able to handle a broad suite of OCaml programs, on condition that RaML infers tight bounds

on the programs. Moreover, as we discussed earlier in the paper, our algorithm is easy to

modify to handle d-bounded worst-case inputs, so if the RaML-inferred bound is not tight

but only differs from the original bound by a constant, our algorithm should also work.

• RQ2: Our evaluation shows that, in general, the time complexity of our input generation

algorithm is exponential in the size of the input skeleton. Nevertheless, the two heuristics,

uniform-execution and skeleton-similarity, can be helpful in practice. For example, if the

worst-case input data structure satisfies some inductive properties, e.g., it is a zigzagging tree

or an AVL tree, then the skeleton-similarity heuristic can scale to large input skeletons.

• RQ3: Although we do not perform a systematic comparison to existing techniques, we argue

that we make significant progress on some benchmark functions. For the quicksort and hash

table examples, Noller et al. evaluated Badger [Noller et al. 2018] on Java implementations

for 5 hours, but did not generate an input that exposes worst-case resource consumption

among all possible inputs, e.g., on the hash table example, Badger produced an insertion

sequence with half of the worst-case number of hash collisions. Moreover, they only ran

their tool to generate inputs of size smaller or equal to 64 for sorting algorithms and hash

tables. In contrast, we ran our tool on several benchmarks including sorting algorithms with

input size up to 200.

8 RELATEDWORK
Input Generation. Most closely related to our work are techniques for generating worst-case

inputs based on symbolic execution. WISE [Burnim et al. 2009] exhaustively explores all program

paths for small inputs to find worst-case paths. These paths are then used as a heuristic to limit

the search space for inputs of larger sizes. Similarly, SPF-WCA [Luckow et al. 2017] uses path

policies to prune parts of the search space during symbolic execution. It also takes into account

calling contexts and “execution histories” to guide the search. Badger [Noller et al. 2018] combines

symbolic execution with fuzz testing for generating resource intensive inputs to entirely avoid

exhaustive exploration. There are also pure fuzzers like SlowFuzz [Petsios et al. 2017] that aim at

generating inputs that cause programs to have high resource consumption. The main difference in

our work is that we use RaML’s type derivations to prune the search space. Advantages of this

approach are that it is more efficient, guarantees that the generated inputs are indeed witnesses for

the worst-case behavior, and, as a side effect, proves that the bounds derived by RaML are tight. A

disadvantage is that the technique is only applicable to programs for which RaML derives a bound.

There are tools for random testing such as QuickCheck [Claessen and Hughes 2000], Small-

check [Runciman et al. 2008], and QuickChick [Lampropoulos et al. 2018] that use type information

and additional properties to generate random tests. However, we are not aware that these tools

have been used to generate worst-case inputs or tests for exposing high resource usage.

Resource Analysis. Automatic resource bound analysis has been extensively studied.

AARA has been introduced [Hofmann and Jost 2003] for automatically deriving linear worst-

case bounds for first-order functional programs. The technique has been generalized to derive

polynomial bounds [Hoffmann et al. 2011; Hoffmann and Hofmann 2010; Hofmann andMoser 2015],

lower bounds [Ngo et al. 2017], higher-order functions [Hoffmann et al. 2017; Jost et al. 2010], lazy

functional programs [Simões et al. 2012; Vasconcelos et al. 2015], user defined data types [Hoffmann

et al. 2017; Jost et al. 2009], and numeric imperative program [Carbonneaux et al. 2017, 2015]. It
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also has been integrated into separation logic [Atkey 2010] and proof assistants [Charguéraud and

Pottier 2015; Nipkow 2015].

Beyond AARA, there exist many other approaches to automatic worst-case resource bound

analysis. They are based on sized types [Vasconcelos 2008], linear dependent types [Lago and

Gaboardi 2011; Lago and Petit 2013], refinement types [Çiçek et al. 2017, 2015; Wang et al. 2017],

annotated type systems [Crary and Weirich 2000; Danielsson 2008], defunctionalization [Avanzini

et al. 2015], recurrence relations [Albert et al. 2015; Danner et al. 2015; Flores-Montoya and Hähnle

2014; Kincaid et al. 2017], abstract interpretation [Blanc et al. 2010; Gulwani et al. 2009; Sinn

et al. 2014; Zuleger et al. 2011], and techniques from term rewriting [Avanzini and Moser 2013;

Brockschmidt et al. 2014; Frohn et al. 2016; Noschinski et al. 2013].

In contrast to all the aforementioned works, we study the problem of automatically deriving

worst-case inputs. These inputs are also witnesses for the tightness of the derived bounds. We are

not aware of existing works that leverage automatically-derived bounds to compute worst-case

inputs.

Symbolic Execution. A lot of techniques have been developed to improve effectiveness and

efficiency of symbolic execution in practice. Dynamic symbolic execution [Godefroid et al. 2005;

Sen et al. 2005] uses a specific concrete execution to drive the symbolic execution in the sense

that the concrete execution provides resolution of branches in the program. Selective symbolic

execution [Chipounov et al. 2012] interleaves concrete and symbolic executions in order to explore

only some components of a program. Symbolic backward execution [Chandra et al. 2009; Dinges

and Agha 2014] performs in the reverse direction of normal execution to identify an input instance

to satisfy a given post-condition. Different path selection strategies are proposed for different

analysis goals [Cadar et al. 2008; Ma et al. 2011; Zhang et al. 2015]. Our worst-case input generation

algorithm essentially performs symbolic execution with a depth-first path selection strategy, but

utilizes typing derivations to prune the search space as well as guide the search.

9 CONCLUSION
We have presented a type-guided worst-case input generation algorithm for functional programs

that is based on automatic amortized resource analysis. We have proved of soundness and relative

completeness of our algorithm and developed sound heuristics to find worst-case inputs more

efficiently. Finally, an implementation of our algorithm has been integratedwith RaML and evaluated

with benchmark programs.

In the future, we plan to add support for negative resources to generate inputs that trigger

worst-case high-water marks. We will also work on mechanisms that use the absence of worst-case

inputs to improve the precision of resource-bound analyses. Another research direction is to support

side effects and more complex resource bounds such as those involving heights of trees. We are

also looking into symbolic execution techniques that can further improve the scalability of the

worst-case input generation algorithm.
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