
A Denotational Semantics for Low-Level
Probabilistic Programs with Nondeterminism

Di Wang1, Jan Hoffmann1, and Thomas Reps2,3

1Carnegie Mellon University
2University of Wisconsin

3GrammaTech, Inc.

Abstract
Probabilistic programming is an increasingly popular formalism for modeling ran-

domness and uncertainty. Designing semantic models for probabilistic programs has
been extensively studied, but is technically challenging. Particular complications arise
when trying to account for (i) unstructured control-flow, a natural feature in low-level
imperative programs; (ii) general recursion, an extensively used programming paradigm;
and (iii) nondeterminism, which is often used to represent adversarial actions in proba-
bilistic models, and to support refinement-based development. This paper presents a
denotational-semantics framework that supports the three features mentioned above,
while allowing nondeterminism to be handled in different ways. To support both prob-
abilistic choice and nondeterministic choice, the semantics is given over control-flow
hyper-graphs. The semantics follows an algebraic approach: it can be instantiated in
different ways as long as certain algebraic properties hold. In particular, the semantics
can be instantiated to support nondeterminism among either program states or state
transformers. We develop a new formalization of nondeterminism based on powerdomains
over sub-probability kernels. Semantic objects in the powerdomain enjoy a notion we call
generalized convexity, which is a generalization of convexity. As an application, the paper
sketches an algebraic framework for static analysis of probabilistic programs, which has
been proposed in a companion paper.

Keywords— Probabilistic programming, denotational semantics, control-flow hyper-graphs, non-
determinism, powerdomains

1 Introduction
Probabilistic programming provides a powerful framework for implementing randomized algo-
rithms [Barthe et al. 2016], cryptographic protocols [Barthe et al. 2009], cognitive models [Gordon
et al. 2014], and machine-learning algorithms [Ghahramani 2015]. One important focus of recent
studies on probabilistic programming is to reason rigorously about probabilistic programs and systems.
The first step in such works is to provide a suitable formal semantics for probabilistic programs.

Despite the fact that lots of existing work focuses on high-level probabilistic programs, e.g., lambda
calculus [Borgström et al. 2016], higher-order functions [Ehrhard et al. 2018; Heunen et al. 2017],
and recursive types [Vákár et al. 2019], we observe that low-level features could arise naturally. For

1

example, when developing a compiler for a probabilistic programming language [Franke et al. 2005;
Paige and Wood 2014], we need a semantics for the imperative target language to prove compiler
correctness. There have been studies on denotational semantics for well-structured imperative programs
[Bichsel et al. 2018; Jansen et al. 2015; Kaminski et al. 2016; Kozen 1981b, 1985; McIver and Morgan
2001, 2005; Olmedo et al. 2016; Tix et al. 2009], as well as operational semantics for control-flow
graphs (CFGs) based on Markov chains (MCs) and Markov decision processes (MDPs) ([Chatterjee
et al. 2016b, 2017; Ferrer Fioriti and Hermanns 2015]). On the one hand, we prefer CFGs as program
representations because they enable rich low-level features such as unstructured flows, e.g., those
introduced by break and continue. On the other hand, from the perspective of rigorous reasoning, a
denotational semantics (i) abstracts from details about program executions and focuses on program
effects, and (ii) is compositional in the sense that the semantics of a program fragment is established
from the semantics of the fragment’s proper constituents.

Therefore, in this paper, we devise a denotational semantics for low-level probabilistic programs.
Our work makes three main contributions:

• We use hyper-graphs as the representation for low-level probabilistic programs with unstruc-
tured control-flow, general recursion, and nondeterminism.

• We develop a domain-theoretic characterization of a new model of nondeterminism for proba-
bilistic programming, which involves nondeterminacy among state transformers, opposed to a
common model that involves nondeterminacy among program states.

• We devise an algebraic framework for denotational semantics. The advantage of having a
framework is that it can be instantiated with different models of nondeterminism. We show how
to instantiate the framework using two different approaches to formalizing nondeterminism
in Ex. 5.2. We also show that for programs without procedure calls and nondeterminism, the
resulting denotational semantics is equivalent to a distribution-based operational semantics
(§5.2).

We define the denotational semantics directly as an interpretation of the control-flow hyper-graphs
(CFHGs) of low-level probabilistic programs, introduced in §2. Hyper-graphs consist of hyper-
edges, each of which connects one source node and possibly several destination nodes. For example,
probabilistic choices are represented by weighted hyper-edges with two destinations. Nondeterminism
is then represented by multiple hyper-edges starting in the same node. The interpretation of hyper-
edges is also different from standard edges. If the CFHG were treated as a standard graph, the
subpaths from each successor of a branching node would be analyzed independently. In contrast, our
hyper-graph approach interprets a probabilistic-choice hyper-edge with probability 𝑝 as a function
𝜆𝑎.𝜆𝑏.𝑎 𝑝⊕ 𝑏, where 𝑝⊕ is an operation that weights the subpaths through the two successors by
𝑝 and 1 − 𝑝. In other words, we do not reason about subpaths starting from a node individually,
instead we analyze these subpaths jointly as a probability distribution. If a node has two outgoing
probabilistic-choice hyper-edges, it represents two “worlds” of subpaths, each of which carries a
probability distribution with respect to the probabilistic choice made in this “world.”

Some high-level decision choices about nondeterminism arise when we are developing the low-
level semantics. Nondeterminism itself is an important feature from two perspectives: (i) it arises
naturally from probabilistic models, such as the agent for an MDP [Bellman 1957], or the unknown
input distribution for modeling fault tolerance [Kattenbelt et al. 2009], and (ii) it is required by the
common paradigm of abstraction and refinement1 on programs [Dijkstra 1997; McIver and Morgan
2005]. While nondeterminism has been well studied for standard programming languages, the
combination of probabilities and nondeterminism turns out to be tricky. One substantial question
is when the nondeterminism is resolved. A well-studied model for nondeterminism in probabilistic
programming is to resolve program inputs prior to nondeterminism [den Hartog and de Vink 1999;

1Abstraction enables reasoning about a program through its high-level specifications, and refinement allows
stepwise software development, where programs are “refined” from specifications to low-level implementations.

2

1 INTRODUCTION 3

if ⋆ then if prob(1/2) then 𝑡B 0 else 𝑡B 1 fi
else if prob(1/3) then 𝑡B 0 else 𝑡B 1 fi fi

Fig. 1: A nondeterministic, probabilistic program

McIver and Morgan 2001, 2005; Mislove 2000; Mislove et al. 2004; Tix et al. 2009]. This model follows
a commonplace principle of semantics research that represents a nondeterministic function as a set-
valued function that maps an input to a collection of possible outputs, i.e., an element in 𝑋→ ℘(𝑋),
where 𝑋 is a program state space and ℘(·) is the powerset operator. However, it is sometimes desirable
to resolve nondeterminism prior to program inputs, i.e., a nondeterministic program should represent
a collection of elements in ℘(𝑋→ 𝑋). For example, one may want to show for every refined version of
a nondeterministic program with each nondeterministic choice replaced by a conditional, its behavior
on all inputs are indistinguishable. We call the common model nondeterminism-last and the other
nondeterminism-first. In §4, we present a domain-theoretic study of nondeterminism-first. Technically,
we propose a notion of generalized convexity (g-convexity, for short), which expresses that a set of state
transformers is stable under refinements (while standard convexity describes that a set of states is
stable under refinements), as well as devise a g-convex powerdomain that characterizes expressible
semantic objects.

To achieve our ultimate goal of developing a denotational semantics, instead of restricting ourselves
to one specific model for nondeterminism, we propose a general algebraic denotational semantics in
§5, which can be instantiated with different treatments of nondeterminism. The semantics is algebraic
in the sense that it performs reasoning in some space of program states and state transformers, while
the transformers should obey some algebraic laws. For instance, the program command skip should
be interpreted as the identity element for sequencing in an algebra of program-state transformers.
In addition, the algebraic approach is a good fit for static analysis of probabilistic programs. In
§6, we sketch a static-analysis framework proposed in a companion paper [Wang et al. 2018], as an
application of the denotational semantics.

The algebraic approach we take in this paper is challenging in the setting of probabilistic program-
ming. In contrast, for standard, non-probabilistic programming languages, it is almost trivial to
derive a low-level denotational semantics once one has a semantics for well-structured programs at
hand. The trick is to first define the semantic operations as a Kleene algebra [Conway 1971; Kleene
1951; Kozen 1981a, 1991], which admits an extend operation, used for sequencing, a combine op-
eration, used for branching, and a closure operation, used for looping; then extract from the CFG
a regular expression that captures all execution paths by Tarjan’s path-expression algorithm [Tarjan
1981]; and finally use the Kleene algebra to reinterpret the regular expression to obtain the semantics
for the CFG. However, this approach fails when both probabilities and nondeterminism come into the
picture. Consider the probabilistic program with a nondeterministic choice ⋆ in Fig. 1. The program
is intended to draw a random value 𝑡 from either a fair coin flip or a biased one. If one adopts the
path-expression approach, one ends up with a regular expression that describes a single collection
of four program executions: (i) 𝑡 B 0 with probability 1/2, (ii) 𝑡 B 1 with probability 1/2, (iii) 𝑡 B 0
with probability 1/3, and (iv) 𝑡B 1 with probability 2/3. The collection does not describe the intended
meaning, and does not even form a well-defined probability distribution—all the probabilities sum
up to 2 instead of 1. Intuitively, the path-expression approach fails for probabilistic programs because
it can only express the semantics as a collection of executions with probabilities, whereas probabilistic
programs actually specify collections of distributions over executions.

Although the denotational semantics proposed in this paper supports interesting features including
unstructured control-flow, general recursion, and nondeterminism, there are some other important
features that the semantics does not support yet, such as continuous distributions and higher-order
functions. We discuss those missing features in §7, and leave them for future work.

2 An Operational Semantics for Low-Level Probabilistic
Programs

In this section, we sketch an operational semantics for an imperative, single-procedure, deterministic,2

probabilistic programming language, following the approach of Borgström et al.’s distribution-based
semantics [Borgström et al. 2016]. We use the operational semantics to (i) illustrate how to model
executions of probabilistic programs operationally, and (ii) justify the development of a denotational
semantics in later sections.

2.1 A Hyper-Graph Program Model
We define the operational semantics on CFHGs of programs. We adopt a common approach for
standard CFGs in which the nodes represent program locations, and edges labeled with instructions
describe transitions among program locations (e.g., [Farzan and Kincaid 2015; Lal et al. 2008; Müller-
Olm and Seidl 2004]). Instead of standard directed graphs, we make use of hyper-graphs [Gallo et al.
1993].

Definition 2.1. A hyper-graph 𝐻 is a quadruple ⟨𝑉 ,𝐸,𝑣entry,𝑣exit⟩, where 𝑉 is a finite set of nodes,
𝐸 is a set of hyper-edges, 𝑣entry ∈ 𝑉 is a distinguished entry node, and 𝑣exit ∈ 𝑉 is a distinguished
exit node. A hyper-edge is an ordered pair ⟨𝑥,𝑌 ⟩, where 𝑥 ∈ 𝑉 is a node and 𝑌 ⊆ 𝑉 is an ordered,
non-empty set of nodes. For a hyper-edge 𝑒 = ⟨𝑥,𝑌 ⟩ in 𝐸, we use 𝑠𝑟𝑐(𝑒) to denote 𝑥 and 𝐷𝑠𝑡(𝑒) to denote
𝑌 . Following the terminology from graphs, we say that 𝑒 is an outgoing edge of 𝑥 and an incoming edge
of each of the nodes 𝑦 ∈ 𝑌 . We assume 𝑣entry does not have incoming edges, and 𝑣exit has no outgoing
edges.

Definition 2.2. A probabilistic program contains a finite set of procedures {𝐻𝑖 }1≤𝑖≤𝑛, where each
procedure 𝐻𝑖 = ⟨𝑉𝑖 ,𝐸𝑖 ,𝑣

entry
𝑖 ,𝑣exit𝑖 ⟩ is a control-flow hyper-graph (CFHG) in which each node except

𝑣exit𝑖 has at least one outgoing hyper-edge, and 𝑣exit𝑖 has no outgoing hyper-edge. Define 𝑉 def=⋃︀
1≤𝑖≤𝑛𝑉𝑖 . To assign meanings to probabilistic programs modulo data actions Act and deterministic

conditions Cond that can be probabilistic, we associate with each hyper-edge 𝑒 ∈ 𝐸 =
⋃︀

1≤𝑖≤𝑛𝐸𝑖 a
control-flow action 𝐶𝑡𝑟𝑙(𝑒) that has one of the following three forms:

Ctrl F 𝑠𝑒𝑞[act], where act ∈ Act | 𝑐𝑜𝑛𝑑[𝜙], where 𝜙 ∈ Cond | 𝑐𝑎𝑙𝑙[𝑖→ 𝑗], where 1 ≤ 𝑖, 𝑗 ≤ 𝑛

where the number of destination nodes |𝐷𝑠𝑡(𝑒)| of a hyper-edge 𝑒 is 1 if 𝐶𝑡𝑟𝑙(𝑒) is 𝑠𝑒𝑞[act] or 𝑐𝑎𝑙𝑙[𝑖→ 𝑗],
and 2 otherwise.

Example 2.3. Fig. 2(b) shows the CFHG of the program in Fig. 2(a), where 𝑣0 is the entry and 𝑣4 is the
exit. The hyper-edge ⟨𝑣2, {𝑣3}⟩ is associated with a sequencing action 𝑠𝑒𝑞[𝑛 := 𝑛+ 1], while ⟨𝑣1, {𝑣2,𝑣4}⟩ is
assigned a deterministic-choice action 𝑐𝑜𝑛𝑑[prob(0.5)∧prob(0.5)], i.e., an event where two coin flips both
show heads.

Note that break, continue (and also goto) are not data actions, and are encoded directly as edges in
CFHGs in a standard way. The grammar below defines data actions Act and deterministic conditions
Cond that could be used for an arithmetic program, where 𝑝 ∈ [0,1], 𝑐 ∈Q, 𝑎,𝑏 ∈Z, and 𝑛 ∈N.

ActF 𝑥B 𝑒 | 𝑥 ∼𝐷 | observe(𝜙) | skip 𝜙 ∈ CondF⊤ | ¬𝜙 | 𝜙1 ∧𝜙2 | 𝑒1 ≤ 𝑒2 | prob(𝑝)

𝑒 ∈ ExpF 𝑥 | 𝑐 | 𝑒1 + 𝑒2 | 𝑒1 × 𝑒2 𝐷 ∈ DistF Binomial(𝑛,𝑝) | Uniform(𝑎,𝑏) | Geometric(𝑝) | · · ·

Dist stands for a collection of discrete probability distributions. For example, Binomial(𝑛,𝑝) with 𝑛 ∈
N and 𝑝 ∈ [0,1] describes the distribution of the number of successes in 𝑛 independent experiments,
each of which succeeds with probability 𝑝; Uniform(𝑎,𝑏) represents a discrete uniform distribution
on [𝑎,𝑏]∩Z.

2The term “deterministic” is used in the sense “not nondeterministic.”

4

2 AN OPERATIONAL SEMANTICS FOR LOW-LEVEL PROBABILISTIC PROGRAMS 5

𝑛B 0;
while prob(0.5)∧prob(0.5) do
𝑛B 𝑛+ 1;
if 𝑛 ≥ 10 then break
else continue

od

(a)

𝑣4

𝑣0 𝑣1

𝑣2 𝑣3
𝑛B 𝑛+ 1

𝑛B 0
prob(0.5)∧prob(0.5)

false

false

true
𝑛 ≥ 10true

(b)

Fig. 2: (a) An example of probabilistic programs; (b) The corresponding CFHG

2.2 A Distribution-Based Small-Step Operational Semantics
The next step is to define a semantics based on CFHGs. We adopt Borgström et al.’s distribution-based
small-step operational semantics for lambda calculus [Borgström et al. 2016] to our hyper-graph
setting, while we suppress the features of multiple procedures and nondeterminism for now.

Three components are used to define the semantics:

• A program state space Ω, e.g., for arithmetic programs, we can define Ω
def= Var⇀fin Q, i.e., a set

of finite partial maps from program variables to their values.

• A function JactK from program states to (sub-probability) distributions over program states
for each data action act. A distribution is a function ∆ : Ω→ [0,1] such that

∑︀
𝜔∈Ω∆(𝜔) ≤ 1.

Intuitively, JactK(𝜔)(𝜔′) is the probability that the action act, starting in state 𝜔 ∈Ω, halts in a
state 𝜔′ ∈Ω [Kozen 1985].

• A [0,1]-valued function J𝜙K from program states for each deterministic condition 𝜙. Intuitively,
J𝜙K(𝜔) is the probability that the condition 𝜙 holds in state 𝜔 ∈Ω.

The point distribution 𝛿(𝜔) is defined as 𝜆𝜔′ .[𝜔 =𝜔′] where [𝜓] is an Iverson bracket that evaluates
to 1 if 𝜓 is true and 0 otherwise. If ∆ is a distribution and 𝑟 ∈ [0,1], we write 𝑟 ·∆ for the distribution
𝜆𝜔.𝑟 ·∆(𝜔). If ∆1,∆2 are distributions and 𝑟1, 𝑟2 ∈ [0,1] satisfy 𝑟1 + 𝑟2 ≤ 1, we write 𝑟1 ·∆1 + 𝑟2 ·∆2 for
the distribution 𝜆𝜔.𝑟1 ·∆1(𝜔) + 𝑟2 ·∆(𝜔).

Fig. 3 shows interpretation of the data actions and deterministic conditions given in §2.1, where
𝜔(𝑒) evaluates expression 𝑒 in state 𝜔, [𝑥 ↦→ 𝑣]𝜔 updates 𝑥 in 𝜔 with 𝑣, and ∆𝐷 : Q→ [0,1] is the
probability mass function of the distribution 𝐷. If 𝜙 does not contain any probabilistic choices prob(𝑝),
then J𝜙K(𝜔) is either 0 or 1. Intuitively, J𝜙K(𝜔) is the probability that 𝜙 is true in the state 𝜔, w.r.t. a
probability space specified by all the prob(𝑝)’s in 𝜙. Then the probability of 𝜙1 ∧𝜙2 is defined as
the product of the individual probabilities of 𝜙1 and 𝜙2, because 𝜙1 and 𝜙2 are interpreted w.r.t.
probabilistic choices in 𝜙1 and 𝜙2, respectively, and these two sets of choices are disjoint, thus
independent.

J𝑥B 𝑒K def= 𝜆𝜔.𝛿([𝑥 ↦→𝜔(𝑒)]𝜔) JskipK def= 𝜆𝜔.𝛿(𝜔) J⊤K def= 𝜆𝜔.1 J¬𝜙K def= 𝜆𝜔.1− J𝜙K(𝜔)

J𝑥 ∼𝐷K def= 𝜆𝜔.
∑︀
𝑣∈supp(∆𝐷)∆𝐷 (𝑣) · 𝛿([𝑥 ↦→ 𝑣]𝜔) Jprob(𝑝)K def= 𝜆𝜔.𝑝 J𝑒1 ≤ 𝑒2K def= 𝜆𝜔.[𝜔(𝑒1) ≤𝜔(𝑒2)]

Jobserve(𝜙)K def= 𝜆𝜔.J𝜙K(𝜔) · 𝛿(𝜔) J𝜙1 ∧𝜙2K def= 𝜆𝜔.J𝜙1K(𝜔) · J𝜙2K(𝜔)

Fig. 3: Interpretation of data actions and deterministic conditions

Suppose that 𝑃 = ⟨𝑉 ,𝐸,𝑣entry,𝑣exit⟩ is a single-procedure deterministic program. Therefore, each
node in 𝑃 except 𝑣exit is associated with exactly one hyper-edge. The program configurations 𝑇 = 𝑉 ×Ω
are pairs of the form ⟨𝑣,𝜔⟩, where 𝑣 ∈ 𝑉 is a node in the CFHG, and 𝜔 ∈Ω is a program state.

We define one-step evaluation as a relation ⟨𝑣,𝜔⟩ −→ ∆ between configurations ⟨𝑣,𝜔⟩ and distribu-
tions ∆ on configurations, as shown in Fig. 4.

⟨𝑣,𝜔⟩ −→ 𝜆⟨𝑣′ ,𝜔′⟩.[𝑣′ = 𝑢] · JactK(𝜔)(𝜔′) where 𝑒 = ⟨𝑣, {𝑢}⟩ ∈ 𝐸,𝐶𝑡𝑟𝑙(𝑒) = 𝑠𝑒𝑞[act]

⟨𝑣,𝜔⟩ −→ J𝜙K(𝜔) · 𝛿(⟨𝑢1,𝜔⟩) + (1− J𝜙K(𝜔)) · 𝛿(⟨𝑢2,𝜔⟩) where 𝑒 = ⟨𝑣, {𝑢1,𝑢2}⟩ ∈ 𝐸,𝐶𝑡𝑟𝑙(𝑒) = 𝑐𝑜𝑛𝑑[𝜙]

Fig. 4: One-step evaluation relation

Example 2.4. For the program in Fig. 2, some one-step evaluations are ⟨𝑣0, {𝑛 ↦→ 233}⟩ −→ 𝛿(⟨𝑣1, {𝑛 ↦→
0}⟩), ⟨𝑣1, {𝑛 ↦→ 1}⟩ −→ 0.25 · 𝛿(⟨𝑣2, {𝑛 ↦→ 1}⟩) + 0.75 · 𝛿(⟨𝑣4, {𝑛 ↦→ 1}⟩), and ⟨𝑣3,𝑛 ↦→ 9⟩ −→ 𝛿(⟨𝑣1, {𝑛 ↦→ 9}⟩).

We now define step-indexed evaluation as the family of 𝑛-indexed relations ⟨𝑣,𝜔⟩ −→𝑛 ∆ between
configurations ⟨𝑣,𝜔⟩ and distributions ∆ on program states inductively, as shown in Fig. 5.

⟨𝑣,𝜔⟩ −→0 𝜆𝜔
′ .0

⟨𝑣exit,𝜔⟩ −→𝑛 𝛿(𝜔) if 𝑛 > 0

⟨𝑣,𝜔⟩ −→𝑛+1

∑︁
𝜏∈supp(∆)

∆(𝜏) ·∆′𝜏 where⟨𝑣,𝜔⟩ −→ ∆ and 𝜏 −→𝑛 ∆
′
𝜏 for any 𝜏 ∈ supp(∆)

Fig. 5: Step-indexed evaluation relation

Example 2.5. For the program in Fig. 2, some step-indexed evaluations are ⟨𝑣4, {𝑛 ↦→ 10}⟩ −→1 𝛿({𝑛 ↦→
10}), ⟨𝑣1, {𝑛 ↦→ 0}⟩ −→2 0.75 · 𝛿({𝑛 ↦→ 0}), and ⟨𝑣1, {𝑛 ↦→ 0}⟩ −→5 0.75 · 𝛿({𝑛 ↦→ 0}) + 0.1875 · 𝛿({𝑛 ↦→ 1}).

For the program 𝑃 = ⟨𝑉 ,𝐸,𝑣entry,𝑣exit⟩, we define its semantics J𝑃 Kos(𝜔) def=
sup𝑛∈N{∆ | ⟨𝑣entry,𝜔⟩ −→𝑛 ∆}.

Example 2.6. For the program 𝑃 in Fig. 2, J𝑃 Kos(𝜔) for any initial state 𝜔 with 𝑛 ∈ dom(𝜔) is given by∑︀9
𝑘=0(0.75× 0.25𝑘) · 𝛿([𝑛 ↦→ 𝑘]𝜔) + 0.00000095367431640625 · 𝛿([𝑛 ↦→ 10]𝜔).

2.3 Why is a Denotational Semantics Desirable?
We have already shown how probabilistic programs execute operationally. As mentioned in §1,
we are instead interested in developing a denotational semantics, which concentrates on the effects
of programs and abstracts from how the program executes. This characterization of denotational
semantics is indeed beneficial for rigorous reasoning about programs, such as static analysis and model
checking, because one usually only cares whether programs satisfy certain properties, e.g., if they
terminate on all possible inputs. Even better, a denotational semantics is often compositional—that is,
the property of a whole program can be established from properties of its proper constituents. In other
words, one could develop local—and thus scalable—reasoning techniques based on a denotational
semantics. In contrast, the operational semantics in §2.2 is not compositional—it takes into account
the whole program 𝑃 to define J𝑃 Kos.

Another benefit of a denotational semantics is that it is often easier to extend than an operational
one. In the rest of this section, we briefly compare the complexity of adding procedure calls and
nondeterminism to an operational semantics versus a denotational semantics. To support multiple
procedures and procedure calls in the semantics proposed in §2.2, one needs to introduce a notion
of stacks to keep track of procedure calls, as in [Etessami and Yannakakis 2005, 2015; Olmedo et al.
2016]. Then the program configurations become triples of call stacks, control-flow-graph nodes,

6

3 A SUMMARY OF EXISTING DOMAIN-THEORETIC DEVELOPMENTS 7

and program states. As a consequence, the one-step and step-indexed evaluation relations in Figs. 4
and 5 would become more complex. However, such an extension is almost trivial for a denotational
semantics. Suppose we are able to compose semantic objects, e.g, J𝐶1;𝐶2Kds = J𝐶2Kds ∘ J𝐶1Kds, where
𝐶1,𝐶2 are program fragments, ∘ denotes a composition operation, and J𝐶Kds gives the denotation
of 𝐶. If 𝐶1 is indeed a procedure call call 𝑄 where 𝑄 is a procedure, because we can obtain the
denotation J𝑄Kds of 𝑄, we can interpret Jcall 𝑄;𝐶2Kds merely as J𝐶2Kds ∘ J𝑄Kds. By this means we do
not need to reason about stacks explicitly.

Another important programming feature is nondeterminism. For operational semantics of proba-
bilistic programs, nondeterminism is often formalized using the notion of a scheduler, which resolves
a nondeterministic choice from the computation that leads up to it (e.g., [Chatterjee et al. 2016b,
2017; Ferrer Fioriti and Hermanns 2015]). When the scheduler is fixed, a program can be executed
deterministically (as shown in §2.2). To reason about nondeterministic programs with respect to an
operational semantics, one needs to take all possible schedulers into consideration. However, if one
only cares about the effects of a program, it is possible to sidestep these schedulers by switching to
a denotational semantics. For example, let 𝐶1,𝐶2 be two program fragments and J𝐶1Kds,J𝐶2Kds be
their denotations, which should be maps from initial states to a collection of possible final states.
Then the denotation Jif ⋆ then 𝐶1 else 𝐶2 fiKds of a nondeterministic-choice between 𝐶1 and 𝐶2
could be something like 𝜆𝜔.J𝐶1Kds(𝜔)∪ J𝐶2Kds(𝜔). Note that this approach does not need to consider
schedulers explicitly.

3 A Summary of Existing Domain-Theoretic Developments
Our development of models for nondeterminism makes great use of existing domain-theoretic studies
of powerdomains, thus in this section, we present a brief summary of them. We review some standard
notions from domain theory [Abramsky and Jung 1994; Hofmann and Mislove 1981; Mislove 1998],
as well as some results on probabilistic powerdomains [Jones 1989; Jones and Plotkin 1989] and
nondeterministic powerdomains [den Hartog and de Vink 1999; McIver and Morgan 2001, 2005;
Mislove 2000; Mislove et al. 2004; Tix et al. 2009].

3.1 Background from Domain Theory
Let 𝑃 be a nonempty set with a partial order ⊑, i.e., a poset. The lower closure of a subset 𝐴 is defined

as ↓𝐴 def= {𝑥 ∈ 𝑃 | ∃𝑎 ∈ 𝐴 : 𝑥 ⊑ 𝑎}. The upper closure of a subset 𝐴 is defined as ↑𝐴 def= {𝑥 ∈ 𝑃 | ∃𝑎 ∈ 𝐴 : 𝑎 ⊑ 𝑥}.
A subset 𝐴 satisfying ↓𝐴 = 𝐴 is called a lower set. A subset 𝐴 satisfying ↑𝐴 = 𝐴 is called an upper
set. If all elements of 𝑃 are above a single element 𝑥 ∈ 𝑃 , then 𝑥 is called the least element, denoted
commonly by ⊥. A function 𝑓 : 𝑃 →𝑄 between two posets 𝑃 and 𝑄 is monotone if for all 𝑥,𝑦 ∈ 𝑃 such
that 𝑥 ⊑ 𝑦, we have 𝑓 (𝑥) ⊑ 𝑓 (𝑦). A subset 𝐴 of 𝑃 is directed if it is nonempty and each pair of elements
in 𝐴 has an upper bound in 𝐴. If 𝐴 is totally ordered and isomorphic to natural numbers, then 𝐴 is
called an 𝜔-chain. If a directed set 𝐴 has a supremum, then it is denoted by

⨆︀↑𝐴.
A poset 𝐷 is called directed complete or a dcpo if each directed subset 𝐴 of 𝐷 has a supremum

⨆︀↑𝐴
in 𝐷. A function 𝑓 : 𝐷 → 𝐸 between two dcpos 𝐷 and 𝐸 is Scott-continuous if it is monotone and
preserves directed suprema, i.e., 𝑓 (

⨆︀↑𝐴) =
⨆︀↑ 𝑓 (𝐴) for all directed subsets 𝐴 of 𝐷.

Let 𝐷 be a dcpo. For two elements 𝑥,𝑦 of 𝐷, we say that 𝑥 approximates 𝑦, denoted by 𝑥 ≪ 𝑦,
if for all directed subsets 𝐴 of 𝐷, we have 𝑦 ⊑

⨆︀↑𝐴 implies 𝑥 ⊑ 𝑎 for some 𝑎 ∈ 𝐴. We define

↠

𝐴
def= {𝑥 ∈𝐷 | ∃𝑎 ∈ 𝐴 : 𝑥≪ 𝑎} and

↞

𝐴
def= {𝑥 ∈𝐷 | ∃𝑎 ∈ 𝐴 : 𝑎≪ 𝑥}. The dcpo 𝐷 is called continuous if there

exists a subset 𝐵 of 𝐷 such that for every element 𝑥 of 𝐷, the set

↠

𝑥∩𝐵 is directed and 𝑥 =
⨆︀↑(↠ 𝑥∩𝐵).

The set 𝐵 is called a basis of 𝐷.
Let 𝐷 be a dcpo. A subset 𝐴 is Scott-closed if 𝐴 is a lower set and is closed under directed suprema.

The complement 𝐷 ∖𝐴 of a Scott-closed subset 𝐴 is called Scott-open. These Scott-open subsets form

the Scott-topology on 𝐷. The closure of a subset 𝐴 is the smallest Scott-closed set containing 𝐴 as a
subset, denoted by 𝐴.

Let 𝑋 be a topological space whose open sets are denoted by 𝒪(𝑋). A cover 𝒞 of a subset 𝐴 of
𝑋 is a collection of subsets whose union contains 𝐴 as a subset. A sub-cover of 𝒞 is a subset of 𝒞
that still covers 𝐴. The cover 𝒞 is called an open-cover if each of its members is an open set. A
subset 𝐴 is compact if every open-cover of 𝐴 contains a finite sub-cover. A subset 𝐴 is saturated
if 𝐴 is an intersection of its neighborhoods. The saturation of a subset 𝐴 is the intersection of its
neighborhoods. In dcpo’s equipped with the Scott-topology, saturated sets are precisely the upper
sets, and the saturation of a subset 𝐴 is given by ↑𝐴. The Lawson-topology on a dcpo 𝐷 is generated by
Scott-open sets and sets of the form 𝐷 ∖ ↑𝑥. A lens is a nonempty subset that is the intersection of a
Scott-closed subset and a Scott-compact saturated subset. Lenses are always Lawson-closed sets. A
continuous dcpo 𝐷 is called coherent if the intersection of any two Scott-compact saturated subsets is
also Scott-compact. The Lawson-topology on a coherent dcpo is compact.

We are going to use the following theorems in our technical development.

Proposition 3.1 (Kleene fixed-point theorem). Suppose ⟨𝐷,⊑⟩ is a dcpo with a least element ⊥, and
let 𝑓 :𝐷→𝐷 be a Scott-continuous function. Then 𝑓 has a least fixed point which is the supremum of the
ascending Kleene chain of 𝑓 (i.e., the 𝜔-chain ⊥ ⊑ 𝑓 (⊥) ⊑ 𝑓 (𝑓 (⊥)) ⊑ · · · ⊑ 𝑓 𝑛(⊥) ⊑ · · ·), denoted by lfp⊑⊥ 𝑓 .

Proposition 3.2 (Cor. of [Hofmann and Mislove 1981, Hofmann-Mislove theorem]). Let 𝑋 be a
sober space, i.e., a 𝑇0-space where every nonempty closed set is either the closure of a point or the union
of two proper closed subsets. The intersection of a filtered family {𝐴𝑖 }𝑖∈ℐ (i.e., the intersection of any two
subsets is in the family) of nonempty compact saturated subsets is compact and nonempty. If such a filtered
intersection is contained in an open set 𝑈 , then 𝐴𝑖 ⊆ 𝑈 for some 𝑖 ∈ ℐ . Specifically, continuous dcpos
equipped with the Scott-topology and coherent dcpos equipped with the Lawson-topology are sober.

3.2 Probabilistic Powerdomains
Jones et al.’s pioneer work on probabilistic powerdomains [Jones 1989; Jones and Plotkin 1989]
extends the complete partially ordered sets, which are pervasively used in computer science, to model
probabilistic computations. Let 𝑋 be a nonempty countable set. The set of all distributions on 𝑋 is
denoted by 𝒟(𝑋), i.e., a probabilistic powerdomain over 𝑋. Recall that a distribution on 𝑋 is a function
∆ : 𝑋 → [0,1] such that

∑︀
𝑥∈𝑋 ∆(𝑥) ≤ 1, and the point distribution 𝛿(𝑥) for some 𝑥 ∈ 𝑋 is defined as

𝜆𝑥′ .[𝑥 = 𝑥′]. Distributions are ordered pointwise, i.e., ∆1 ⊑𝐷 ∆2
def= ∀𝑥 ∈ 𝑋 : ∆1(𝑥) ≤ ∆2(𝑥). We define

the probabilistic-choice of distributions ∆1,∆2 with respect to a weight 𝑝 ∈ [0,1], written ∆1 𝑝⊕∆2, as
𝑝 ·∆1 + (1− 𝑝) ·∆2.

The following theorems provide a characterization of the probabilistic powerdomains.

Proposition 3.3 ([Jones 1989; Jones and Plotkin 1989; McIver and Morgan 2001; Tix et al.

2009]). The poset ⟨𝒟(𝑋),⊑𝐷 ⟩ forms a coherent dcpo with a countable basis {
∑︀𝑛
𝑖=1 𝑟𝑖 · 𝛿(𝑥𝑖) | 𝑛 ∈N∧ 𝑟𝑖 ∈

Q
+
0 ∧

∑︀𝑛
𝑖=1 𝑟𝑖 ≤ 1∧ 𝑥𝑖 ∈ 𝑋}. It admits a least element ⊥𝐷

def= 𝜆𝑥.0. Moreover, 𝑝⊕ is Scott-continuous for all
𝑝 ∈ [0,1].

Proposition 3.4 ([Jones 1989; Tix et al. 2009]). Every function 𝑓 : 𝑋→𝒟(𝑋) can be lifted to a unique
Scott-continuous linear (in the sense that it preserves probabilistic-choice) map ̂︀𝑓 :𝒟(𝑋)→𝒟(𝑋).

3.3 Nondeterministic Powerdomains
When nondeterminism comes into the picture, as we discussed in §1, existing studies usually resolve
program inputs prior to nondeterminism [den Hartog and de Vink 1999; Jung and Tix 1998; McIver
and Morgan 2001, 2005; Mislove 2000; Mislove et al. 2004; Tix et al. 2009]. In §1, we call such a
model nondeterminism-last, which interprets nondeterministic functions as maps from inputs to sets

8

4 NONDETERMINISM-FIRST 9

of outputs. Let 𝑋 be a nonempty countable set. A subset 𝐴 of𝒟(𝑋) is called convex if for all ∆1,∆2 ∈ 𝐴
and all 𝑝 ∈ [0,1], we have ∆1 𝑝⊕∆2 ∈ 𝐴. The convex hull of an arbitrary subset 𝐴 is the smallest convex
set containing 𝐴 as a subset, denoted by 𝑐𝑜𝑛𝑣(𝐴). The convexity condition ensures that from the
perspective of programming, nondeterministic choices can always be refined by probabilistic choices.
The convex powerdomain 𝒫𝒟(𝑋) over the probabilistic powerdomain 𝒟(𝑋) is then defined as convex

lenses in 𝒟(𝑋) with the Egli-Milner order 𝐴 ⊑𝑃 𝐵
def= 𝐴 ⊆ ↓𝐵∧↑𝐴 ⊇ 𝐵.

The following theorems provide a characterization of the convex powerdomains.

Proposition 3.5 ([McIver and Morgan 2001; Tix et al. 2009]). The poset ⟨𝒫𝒟(𝑋),⊑𝑃 ⟩ forms a

coherent dcpo. It admits a least element ⊥𝑃
def= {⊥𝐷 }. For 𝑟1, 𝑟2 ∈ [0,1] satisfying 𝑟1 + 𝑟2 ≤ 1, we define

𝑟1 ·𝐴 + 𝑟2 · 𝐵
def= 𝐶 ∩ ↑𝐶 where 𝐶 is {𝑟1 ·∆1 + 𝑟2 ·∆2 | ∆1 ∈ 𝐴 ∧∆2 ∈ 𝐵}. Then the probabilistic-choice

operation is lifted to a Scott-continuous operation as 𝐴 𝑝⊕𝑃 𝐵
def= 𝑝 ·𝐴 + (1 − 𝑝) · 𝐵. Moreover, it carries

a Scott-continuous semilattice operation, called formal union, defined as 𝐴 −−∪𝑃 𝐵
def= 𝐶 ∩ ↑𝐶 where 𝐶 is

𝑐𝑜𝑛𝑣(𝐴∪𝐵). Intuitively, the formal union operation stands for nondeterministic choices.

Proposition 3.6 ([Tix et al. 2009]). Every function 𝑔 : 𝑋 → 𝒫𝒟(𝑋) can be lifted to a unique Scott-
continuous linear (in the sense that it preserves lifted probabilistic-choice) map ̂︀̂︀𝑔 : 𝒫𝒟(𝑋) → 𝒫𝒟(𝑋)
preserving formal unions.

Example 3.7. Consider the following program 𝑃 where ⋆ can be refined by any deterministic condition
involving the program variable 𝑡:

if ⋆ then 𝑡B 𝑡 + 1 else 𝑡B 𝑡 − 1 fi

and we want to assign a semantic object to it from 𝑋→𝒫𝒟(𝑋), where the state space 𝑋 = Q represents the
value of 𝑡. Fix an input 𝑡 ∈Q. The data actions 𝑡 B 𝑡 + 1 and 𝑡 B 𝑡 − 1 then take the input to singletons
{𝛿(𝑡 + 1)} and {𝛿(𝑡 − 1)}, respectively, in the powerdomain 𝒫𝒟(Q). Thus the nondeterministic-choice is
interpreted as {𝛿(𝑡 + 1)} −−∪𝑃 {𝛿(𝑡 − 1)}, which is {𝑟 · 𝛿(𝑡 + 1) + (1− 𝑟) · 𝛿(𝑡 − 1) | 𝑟 ∈ [0,1]}, for a given 𝑡 ∈Q.

4 Nondeterminism-First
In this section, we develop a new model of nondeterminism—the nondeterminism-first approach,
which resolves nondeterministic choices prior to program inputs—in a domain-theoretic way. This
model is inspired by reasoning about a program’s behavior on different inputs (as mentioned in §1),
which requires nondeterministic functions to be treated as a family of transformers (i.e., an element
of ℘(𝑋 → 𝑋)) instead of a set-valued map (i.e., an element of 𝑋 → ℘(𝑋)). As will be shown in this
section, with nondeterminism-first, 𝑡B 𝑡 + 1 and 𝑡B 𝑡 − 1 are assigned semantic objects {𝜆𝑡.𝛿(𝑡 + 1)}
and {𝜆𝑡.𝛿(𝑡 − 1)}, respectively.

We first introduce kernels, then propose a new notion of generalized convexity (g-convexity, for
short), and finally develop a powerdomain for nondeterminism-first. Complete proofs are included
in appendix A.

4.1 A Powerdomain for Sub-Probability Kernels
Let 𝑋 be a nonempty countable set. A function 𝜅 : 𝑋 → 𝒟(𝑋) is called a (sub-probability) kernel.
Intuitively, a kernel maps an input state to a distribution over output states. The set of all such

kernels is denoted by 𝒦(𝑋) def= 𝑋 → 𝒟(𝑋). Kernels are ordered pointwise, i.e., 𝜅1 ⊑𝐾 𝜅2
def= ∀𝑥 ∈ 𝑋 :

𝜅1(𝑥) ⊑𝐷 𝜅2(𝑥).

Theorem 4.1. The poset ⟨𝒦(𝑋),⊑𝐾 ⟩ forms a coherent dcpo, with ⊥𝐾
def= 𝜆𝑥.⊥𝐷 as its least element.

Let W(𝑋) def= 𝑋→ [0,1] be the set of functions from 𝑋 to the interval [0,1]. We denote the pointwise
comparison by ≤̇ and the constant function by 𝑟 for any 𝑟 ∈ [0,1]. If 𝜅 is a kernel and 𝜑 ∈W(𝑋), we
write 𝜑 ·𝜅 for the kernel 𝜆𝑥.𝜑(𝑥) ·𝜅(𝑥). If 𝜅1,𝜅2 are kernels and 𝜑1,𝜑2 ∈W(𝑋) such that 𝜑1 +𝜑2≤̇1̇,
we write 𝜑1 · 𝜅1 +𝜑2 · 𝜅2 for the kernel 𝜆𝑥.𝜑1(𝑥) · 𝜅1(𝑥) +𝜑2(𝑥) · 𝜅2(𝑥). More generally, if {𝜅𝑖 }𝑖∈N+

is a sequence of kernels, and {𝜑𝑖 }𝑖∈N+ is a sequence of functions in W(𝑋) such that
∑︀∞
𝑖=1𝜑𝑖 ≤̇1̇, we

write
∑︀∞
𝑖=1𝜑𝑖 ·𝜅𝑖 for the kernel

⨆︀↑
𝑛∈N

∑︀𝑛
𝑖=1𝜑𝑖 ·𝜅𝑖 . Then we define conditional-choice of kernels 𝜅1,𝜅2

conditioning on a function 𝜑 ∈W(𝑋) as 𝜅1 𝜑^𝜅2
def= 𝜑 ·𝜅1 + (1̇−𝜑) ·𝜅2. We define the composition of

kernels 𝜅1,𝜅2 as 𝜅1 ⊗𝜅2
def= 𝜆𝑥.𝜆𝑥′′ .

∑︀
𝑥′∈𝑋 𝜅1(𝑥)(𝑥′) ·𝜅2(𝑥′)(𝑥′′).

Lemma 4.2. 1. The conditional-choice operation 𝜑^ is Scott-continuous for all 𝜑 ∈W(𝑋).

2. The composition operation ⊗ is Scott-continuous.

4.2 Generalized Convexity
As shown in §3.3, nondeterminism-last is captured by convex sets of distributions. However, a more
complicated notion of convexity is needed to develop nondeterminism-first semantics over kernels.
Let 𝑋 be a nonempty countable set. Every semantic object should be closed under the conditional-

choice 𝜑^ for every function 𝜑 ∈W(𝑋). Recall that the definition 𝜅1 𝜑^𝜅2
def= 𝜑 ·𝜅1 + (1̇−𝜑) ·𝜅2 is

similar to a convex combination, except that the coefficients might not only be constants, but can also
depend on the state. We formalize the idea by defining a notion of g-convexity.

Definition 4.3. A subset 𝐴 of 𝒦(𝑋) is called g-convex, if for all sequences {𝜅𝑖 }𝑖∈N+ ⊆ 𝐴 and
{𝜑𝑖 }𝑖∈N+ ⊆W(𝑋) such that

∑︀∞
𝑖=1𝜑𝑖 = 1̇, then

∑︀∞
𝑖=1𝜑𝑖 ·𝜅𝑖 is contained in 𝐴.

We now show that some domain-theoretic operations preserve g-convexity.

Lemma 4.4. Let 𝐴 be a g-convex subset of 𝒦(𝑋). Then

1. The saturation ↑𝐴 and the lower closure ↓𝐴 are g-convex.

2. The closure 𝐴 is g-convex.

The g-convex hull of a subset 𝐴 of𝒦(𝑋) is the smallest g-convex set containing 𝐴 as a subset, denoted
by 𝑔𝑐𝑜𝑛𝑣(𝐴). Intuitively, 𝑔𝑐𝑜𝑛𝑣(𝐴) enriches 𝐴 to become a reasonable semantic object that is closed
under arbitrary conditional-choice.

Following are some properties of the 𝑔𝑐𝑜𝑛𝑣(·) operator.

Lemma 4.5. Suppose that 𝐴 and 𝐵 are g-convex subsets of𝒦(𝑋). Then {𝜅𝜑^𝜌 | 𝜅 ∈ 𝐴∧𝜌 ∈ 𝐵} is g-convex
for all functions 𝜑 ∈W(𝑋).

Corollary 4.6. If 𝐴 and 𝐵 are g-convex, then 𝑔𝑐𝑜𝑛𝑣(𝐴∪𝐵) is given by {𝜅1𝜑^𝜅2 | 𝜅1 ∈ 𝐴∧𝜅2 ∈ 𝐵∧𝜑 ∈
W(𝑋)}.

Proof. It is straightforward to show that 𝑔𝑐𝑜𝑛𝑣(𝐴∪ 𝐵) is a superset of {𝜅1 𝜑^ 𝜅2 | 𝜅1 ∈ 𝐴∧ 𝜅2 ∈
𝐵 ∧ 𝜑 ∈ W(𝑋)}. Then it suffices to show this set is indeed g-convex. We conclude the proof by
Lem. 4.5.

For a finite subset 𝐹 of 𝒦(𝑋), as an immediate corollary of Cor. 4.6, by a simple induction we know
that 𝑔𝑐𝑜𝑛𝑣(𝐹) = {

∑︀
𝜅∈𝐹 𝜑𝜅 ·𝜅 | {𝜑𝜅}𝜅∈𝐹 ⊆W(𝑋)∧

∑︀
𝜅∈𝐹 𝜑𝜅 = 1̇}.

Lemma 4.7. For an arbitrary 𝐴 ⊆ 𝒦(𝑋), we have

𝑔𝑐𝑜𝑛𝑣(𝐴) = {
∞∑︁
𝑖=1

𝜑𝑖 ·𝜅𝑖 | {𝜅𝑖 }𝑖∈N+ ⊆ 𝐴∧ {𝜑𝑖 }𝑖∈N+ ⊆W(𝑋)∧
∞∑︁
𝑖=1

𝜑𝑖 = 1̇}.

10

4 NONDETERMINISM-FIRST 11

Lemma 4.8. 1. For an arbitrary 𝐴 ⊆ 𝒦(𝑋), we have 𝑔𝑐𝑜𝑛𝑣(𝐴) = 𝑔𝑐𝑜𝑛𝑣(𝐴).

2. If {𝐴𝑖 }𝑖∈ℐ is a directed collection of Scott-closed subsets of 𝒦(𝑋) ordered by set inclusion, then

𝑔𝑐𝑜𝑛𝑣(
⋃︀
𝐴𝑖) =

⋃︀
𝑔𝑐𝑜𝑛𝑣(𝐴𝑖).

Lemma 4.9. Let 𝐴 and 𝐵 be Scott-compact g-convex subsets of 𝒦(𝑋). Then 𝑔𝑐𝑜𝑛𝑣(𝐴∪𝐵) is also Scott-
compact.

We now turn to discuss some separation properties for g-convexity.

Lemma 4.10. 1. If 𝐴 ⊆ 𝒦(𝑋) is g-convex, then for all 𝑥, {𝜅(𝑥) | 𝜅 ∈ 𝐴} is convex.

2. If 𝐴 ⊆ 𝒦(𝑋) is Scott-compact, then for all 𝑥, {𝜅(𝑥) | 𝜅 ∈ 𝐴} is Scott-compact.

3. If 𝐴 ⊆ 𝒦(𝑋) is Scott-closed, then for all 𝑥, {𝜅(𝑥) | 𝜅 ∈ 𝐴} is Scott-closed.

Lemma 4.11. Let us consider subsets of 𝒦(𝑋). Suppose that 𝐾 is a Scott-compact g-convex set and 𝐴
is a nonempty Scott-closed g-convex set that is disjoint from 𝐾 . Then they can be separated by a g-convex
Scott-open set, i.e., there is a g-convex Scott-open set 𝑉 including 𝐾 and disjoint from 𝐴.

Lemma 4.12. If 𝐾 ⊆ 𝒦(𝑋) is nonempty and Scott-compact, then 𝑔𝑐𝑜𝑛𝑣(𝐾) is Scott-compact.

4.3 A g-convex Powerdomain for Nondeterminism-First
From the literature, a Plotkin powertheory [Abramsky and Jung 1994] is defined by one binary operation
−−∪, called formal union, and the following laws: (i) 𝐴 −−∪ 𝐵 = 𝐵 −−∪𝐴, (ii) (𝐴 −−∪ 𝐵) −−∪𝐶 = 𝐴 −−∪ (𝐵 −−∪𝐶), and
(iii) 𝐴−−∪𝐴 = 𝐴, for all objects 𝐴,𝐵,𝐶 in the powerdomain. Intuitively, the formal union −−∪ represents
nondeterministic-choice. Moreover, the formal union induces a semilattice ordering: 𝐴 ≤ 𝐵 if𝐴−−∪𝐵 = 𝐵.
The semilattice ordering is usually not interesting from the perspective of domain theory, however, it
is instrumental to describe the relation between conditional-choice and nondeterministic-choice—
𝐴𝜑^𝐵 ≤ 𝐴−−∪𝐵 for all semantic objects 𝐴,𝐵—a nondeterministic-choice should abstract an arbitrary

(possibly probabilistic) conditional-choice.
Let 𝑋 be a nonempty countable set. As nondeterminism-first interprets programs as collections of

input-output transformers, we hope to develop a powerdomain on 𝒦(𝑋), i.e., kernels on 𝑋. To achieve
this goal, we need to (i) identify a collection of well-formed semantic objects in ℘(𝒦(𝑋)), which
admits a formal-union operation described above, (ii) lift conditional-choice 𝜑^ and composition ⊗
on kernels to the powerdomain properly, and (iii) prove the powerdomain is a dcpo and the operations
are Scott-continuous.

Inspired by studies on convex powerdomains [Abramsky and Jung 1994; McIver and Morgan 2001;
Tix et al. 2009], we start with the following collection

𝒢𝒦(𝑋) def= {𝑆 ⊆ 𝒦(𝑋) | 𝑆 a nonempty g-convex lens}

to be the set of all g-convex lenses of 𝒦(𝑋) ordered by Egli-Miler order 𝐴 ⊑𝐺 𝐵
def= 𝐴 ⊆ ↓𝐵∧↑𝐴 ⊇ 𝐵.

We call 𝒢𝒦(𝑋) a g-convex powerdomain over kernels on 𝑋.
The following theorem establishes a characterization of g-convex powerdomains.

Theorem 4.13. ⟨𝒢𝒦(𝑋),⊑𝐺⟩ forms a dcpo, with a least element ⊥𝐺
def= {⊥𝐾 }.

We now lift conditional-choice 𝜑^ (where 𝜑 ∈W(𝑋)) and composition ⊗ for kernels to the power-

domain 𝒢𝒦(𝑋) as follows.

𝐴𝜑^𝐺
𝐵

def= {𝑎𝜑^ 𝑏 | 𝑎 ∈ 𝐴∧ 𝑏 ∈ 𝐵} ∩ ↑{𝑎𝜑^ 𝑏 | 𝑎 ∈ 𝐴∧ 𝑏 ∈ 𝐵}

𝐴⊗𝐺 𝐵
def= 𝑔𝑐𝑜𝑛𝑣({𝑎⊗ 𝑏 | 𝑎 ∈ 𝐴∧ 𝑏 ∈ 𝐵})∩↑𝑔𝑐𝑜𝑛𝑣({𝑎⊗ 𝑏 | 𝑎 ∈ 𝐴∧ 𝑏 ∈ 𝐵})

The operations construct nonempty g-convex lenses by Lemmas 4.4 and 4.12. As conditional-
choice and composition operations are Scott-continuous on kernels, the lifted operations are also
Scott-continuous in the powerdomain.

Lemma 4.14. The operations 𝜑^𝐺
and ⊗𝐺 are Scott-continuous for all 𝜑 ∈W(𝑋).

Finally, we define a formal union operation −−∪𝐺 as in Prop. 3.5 to interpret nondeterministic-choice

as 𝐴−−∪𝐺 𝐵
def= 𝐶 ∩↑𝐶 where 𝐶 is 𝑔𝑐𝑜𝑛𝑣(𝐴∪𝐵).

Lemma 4.15. The formal union −−∪𝐺 is a Scott-continuous semilattice operation on 𝒢𝒦(𝑋).

Example 4.16. Recall the probabilistic program 𝑃 in Ex. 3.7:

if ⋆ then 𝑡B 𝑡 + 1 else 𝑡B 𝑡 − 1 fi

the state space 𝑋 is Q, and we want to show that for any probabilistic refinement 𝑃𝑟 of 𝑃 (i.e., ⋆ is refined by
prob(𝑟)), for input values 𝑡1, 𝑡2 of 𝑡, we have E𝑡′1∼∆1,𝑡

′
2∼∆2

[𝑡′1 − 𝑡
′
2] = 𝑡1 − 𝑡2, where the program 𝑃𝑟 ends up

with a distribution ∆1 starting with 𝑡 = 𝑡1 and ∆2 with 𝑡 = 𝑡2.
With the g-convex powerdomain 𝒢𝒦(𝑋) for nondeterminism-first, 𝑡B 𝑡 + 1 and 𝑡B 𝑡 − 1 are assigned

semantic objects {𝜆𝑡.𝛿(𝑡+1)} and {𝜆𝑡.𝛿(𝑡−1)}, respectively. Thus the nondeterministic-choice is interpreted as
a subset of {𝜆𝑡.𝛿(𝑡+1)}−−∪𝐺 {𝜆𝑡.𝛿(𝑡−1)}, which is {𝜅𝑟 | 𝑟 ∈ [0,1]}, where 𝜅𝑟 = 𝜆𝑡.𝑟 ·𝛿(𝑡+1)+(1−𝑟)·𝛿(𝑡−1) is the
kernel for the deterministic refinement 𝑃𝑟 of 𝑃 . Therefore for every 𝑟 ∈ [0,1], we have E𝑡′1∼∆1,𝑡

′
2∼∆2

[𝑡′1−𝑡
′
2] =

E𝑡′1∼𝜅𝑟 (𝑡1),𝑡′2∼𝜅𝑟 (𝑡2)[𝑡
′
1]−E𝑡′1∼𝜅𝑟 (𝑡1),𝑡′2∼𝜅𝑟 (𝑡2)[𝑡

′
2] = (𝑟(𝑡1+1)+(1−𝑟)(𝑡1−1))−(𝑟(𝑡2+1)+(1−𝑟)(𝑡2−1)) = 𝑡1−𝑡2.

In contrast, if we started with the convex powerdomain 𝒫𝒟(𝑋) reviewed in §3.3 for nondeterminism-last,
we would obtain the semantic object 𝜆𝑡.{𝑟 · 𝛿(𝑡 + 1) + (1− 𝑟) · 𝛿(𝑡 −1) | 𝑟 ∈ [0,1]} for the program 𝑃 , as shown
in Ex. 3.7. Now the refinements of 𝑃 include some 𝜅 such that 𝜅(𝑡1) = 0.5 · 𝛿(𝑡1 + 1) + 0.5 · 𝛿(𝑡1 − 1) and
𝜅(𝑡2) = 0.3 · 𝛿(𝑡2 + 1) + 0.7 · 𝛿(𝑡2 − 1), thus we are not able to prove the claim E[𝑡′1 − 𝑡

′
2] = 𝑡1 − 𝑡2.

5 An Algebraic Denotational Semantics
The operational semantics described in §2.2 presents a reasonable model for evaluating single-
procedure probabilistic programs without nondeterminism. In this section, we develop a general
denotational semantics for CFHGs (introduced in §2.1) of multi-procedure probabilistic programs
with nondeterminism. The semantics is algebraic in the sense that it could be instantiated with
different concrete models of nondeterminism, e.g., nondeterminism-last reviewed in §3.3, as well as
nondeterminism-first developed in §4.3. We will show the denotational semantics is equivalent to the
operational semantics in §2.2 if we suppress procedure calls and nondeterminism in the programming
model.

5.1 A Fixpoint Semantics based on Markov Algebras
The algebraic denotational semantics is obtained by composing 𝐶𝑡𝑟𝑙(𝑒) operations along hyper-edges.
The semantics of programs is determined by an interpretation, which consists of two parts: (i) a
semantic algebra, which defines a set of possible program meanings, and which is equipped with
sequencing, conditional-choice, and nondeterministic-choice operators to compose these meanings,
and (ii) a semantic function, which assigns a meaning to each data action act ∈ Act. The semantic
algebras that we use are Markov algebras introduced in [Wang et al. 2018]:

Definition 5.1. A Markov algebra (MA) over a set Cond of deterministic conditions is a 7-tuple
ℳ = ⟨𝑀,⊑𝑀 ,⊗𝑀 ,𝜑^𝑀 ,−−∪𝑀 ,⊥𝑀 ,1𝑀 ⟩, where ⟨𝑀,⊑𝑀 ⟩ forms a dcpo with ⊥𝑀 as its least element;

⟨𝑀,⊗𝑀 ,1𝑀 ⟩ forms a monoid (i.e., ⊗𝑀 is an associative binary operator with 1𝑀 as its identity
element); 𝜙^𝑀 is a binary operator parametrized by a condition 𝜙 ∈ Cond; −−∪𝑀 is idempotent,

12

5 AN ALGEBRAIC DENOTATIONAL SEMANTICS 13

commutative, associative and for all 𝑎,𝑏 ∈ 𝑀 and 𝜙 ∈ Cond we have 𝑎 𝜙^𝑀 𝑏 ≤𝑀 𝑎 −−∪𝑀 𝑏 where
≤𝑀 is the semilattice ordering induced by −−∪𝑀 (i.e., 𝑎 ≤𝑀 𝑏 if 𝑎 −−∪𝑀 𝑏 = 𝑏); and ⊗𝑀 ,𝜙^𝑀 ,−−∪𝑀 are
Scott-continuous.

Example 5.2. Let Ω be a nonempty countable set of program states and Cond be a set of deterministic
conditions, the definition and meaning of which are given in §2.1 and §2.2.

1. The convex powerdomain 𝒫𝒟(Ω) admits an MA ⟨Ω → 𝒫𝒟(Ω), ⊑̇𝑃 ,⊗𝑃 ,𝜙^𝑃 , −̇−∪𝑃 ,⊥̇𝑃 ,1𝑃 ⟩, where

⊑̇𝑃 , −̇−∪𝑃 ,⊥̇𝑃 are pointwise extensions of ⊑𝑃 ,−−∪𝑃 ,⊥𝑃 , defined in §3.3, and 𝑔 ⊗𝑃 ℎ
def= ̂︀̂︀ℎ ∘ 𝑔 wherê︀̂︀ℎ is

given by Prop. 3.6, 𝑔 𝜙^𝑃 ℎ
def= 𝜆𝜔.𝑔(𝜔) J𝜙K(𝜔)⊕𝑃

ℎ(𝜔), as well as 1𝑃
def= 𝜆𝜔.{𝛿(𝜔)}.

2. The g-convex powerdomain 𝒢𝒦(Ω) admits an MA ⟨𝒢𝒦(Ω),⊑𝐺,⊗𝐺,𝜙^𝐺,−−∪𝐺,⊥𝐺,1𝐺⟩, where ⊑𝐺

,⊗𝐺,𝜙^𝐺,−−∪𝐺,⊥𝐺 come from §4.3,3 and 1𝐺
def= {𝜆𝜔.𝛿(𝜔)}.

Definition 5.3. An interpretation is a pair I = ⟨ℳ,J·KI ⟩, whereℳ is an MA and J·KI : Act→ℳ.
We callℳ the semantic algebra of the interpretation and J·KI the semantic function.

Example 5.4. We can lift the interpretation of data actions defined in Fig. 3 to semantic functions with

respect to convex or g-convex powerdomains—P = ⟨𝒫𝒟(Ω),J·KP ⟩ with JactKP def= 𝜆𝜔.{JactK(𝜔)} and

G = ⟨𝒢𝒦(Ω),J·KG ⟩ with JactKG def= {JactK}.

Given a probabilistic program 𝑃 = {𝐻𝑖 }1≤𝑖≤𝑛 where each 𝐻𝑖 = ⟨𝑉𝑖 ,𝐸𝑖 ,𝑣
entry
𝑖 ,𝑣exit𝑖 ⟩ is a CFHG, and

an interpretation I = ⟨ℳ,J·KI ⟩, we define I [𝑃] to be the interpretation of the probabilistic program,
as the least fixpoint of the function 𝐹𝑃 , which is defined as

𝜆S.𝜆𝑣.

⎧⎪⎪⎨⎪⎪⎩−−−
⋃︁

𝑀
{ ̂𝐶𝑡𝑟𝑙(𝑒)(S(𝑢1), · · · ,S(𝑢𝑘)) | 𝑒 = ⟨𝑣, {𝑢1, · · · ,𝑢𝑘}⟩ ∈ 𝐸} 𝑣 , 𝑣exit𝑖 for all 𝑖

1𝑀 otherwise

where ̂𝐶𝑡𝑟𝑙(𝑒) for different kinds of control-flow actions is defined as follows:

̂𝑠𝑒𝑞[act](𝑆1) def= JactKI ⊗𝑀 𝑆1, ̂𝑐𝑜𝑛𝑑[𝜙](𝑆1,𝑆2) def= 𝑆1 𝜙^𝑀
𝑆2, ̂𝑐𝑎𝑙𝑙[𝑖→ 𝑗](𝑆1) def= S(𝑣entry𝑗)⊗𝑀 𝑆1.

The least fixpoint of 𝐹𝑃 exists by Prop. 3.1 as well as the following lemma. Hence the semantics of

the procedure 𝐻𝑖 is given by J𝐻𝑖Kds
def= (lfp⊑̇𝑀⊥̇𝑀 𝐹𝑃)(𝑣entry𝑖).

Lemma 5.5. The function 𝐹𝑃 is Scott-continuous on the dcpo ⟨𝑉 →𝑀, ⊑̇𝑀 ⟩ with ⊥̇𝑀
def= 𝜆𝑣.⊥𝑀 as the

least element, where ⊑̇𝑀 is the pointwise extension of ⊑𝑀 .

Proof. Appeal to the Scott-continuity of the operations ⊗𝑀 , 𝜙^𝑀 , and −−∪𝑀 .

5.2 An Equivalence Result
To justify the denotational semantics proposed in §5.1, we go back to the restricted programming lan-
guage used to define the operational semantics in §2.2. If we suppress the features of multi-procedure
and nondeterminism, we should end up with a semantics that is equivalent to the operational
semantics J·Kos.

Lemma 5.6. Let 𝑃 = ⟨𝑉 ,𝐸,𝑣entry,𝑣exit⟩ be a deterministic single-procedure probabilistic program.

3The conditional-choice is actually interpreted as J𝜙K^𝐺
in the powerdomain.

1. If we interpret 𝑃 using P = ⟨𝒫𝒟(Ω),J·KP ⟩, we will have J𝑃 Kds = 𝜆𝜔.{J𝑃 Kos(𝜔)}.

2. If we interpret 𝑃 using G = ⟨𝒢𝒦(Ω),J·KG ⟩, we will have J𝑃 Kds = {J𝑃 Kos}.

Proof. Recall the definition J𝑃 K def= 𝜆𝜔.sup𝑛∈N{∆ | ⟨𝑣entry,𝜔⟩ −→𝑛 ∆}. On the other hand, the

fixpoint (lfp⊑̇𝑀⊥̇𝑀 𝐹𝑃)(𝑣entry𝑖) is actually obtained by
⨆︀↑
𝑛∈N𝐹𝑛𝑃 (⊥̇𝑀)(𝑣entry𝑖) by Prop. 3.1. The proof

proceeds by induction on 𝑛.

6 Application: Static Analysis for Probabilistic Programs
with Nondeterminism

A lot of recent studies on probabilistic programming focus on rigorous reasoning about probabilistic
programs (e.g., [Barthe et al. 2012; Batz et al. 2018; Bouissou et al. 2016; Brázdil et al. 2015; Chakarov
and Sankaranarayanan 2013, 2014; Chatterjee et al. 2016a; Cousot and Monerau 2012; Gehr et al.
2016; Jansen et al. 2015; Kaminski et al. 2016; Katoen et al. 2010; Monniaux 2000, 2003; Olmedo
et al. 2016; Sankaranarayanan et al. 2013]). In this section, we discuss an application of the new
denotational semantics as the concrete semantics of a static-analysis framework for probabilistic
programs. More details about the static analysis and its soundness proof can be found in a companion
paper [Wang et al. 2018].

Definition 6.1. A pre-Markov algebra (PMA) over a set Cond of deterministic conditions is a 7-
tupleℳ♯ = ⟨𝑀,⊑𝑀 ,⊗𝑀 ,𝜙^𝑀 ,−−∪𝑀 ,⊥𝑀 ,1𝑀 ⟩, which is essentially an MA, except that ⟨𝑀,⊑𝑀 ⟩ forms a
complete lattice, and ⊗𝑀 , 𝜙^𝑀 , and −−∪𝑀 are only required to be monotone.

Intuitively, PMAs specify abstract semantics used in static analyses. We can define interpretations
with respect to PMAs in the same way, except that we obtain the least fixpoint I ♯[𝑃] of the function 𝐹𝑃
by the Knaster-Tarski theorem, given a probabilistic program 𝑃 and an interpretation I = ⟨ℳ♯,J·KI ⟩.

Definition 6.2. A probabilistic over-abstraction (resp., under-abstraction) from an MA 𝒞 (i.e., a
concrete semantics such as 𝒫𝒟(Ω) and 𝒢𝒦(Ω)) to a PMA 𝒴 is a concretization mapping, 𝛾 : 𝑌 → 𝐶,
such that

• ⊥𝐶 ⊑𝐶 𝛾(⊥𝑌) (resp., 𝛾(⊥𝑌) ⊑𝐶 ⊥𝐶),

• 1𝐶 ⊑𝐶 𝛾(1𝑌) (resp., 𝛾(1𝑌) ⊑𝐶 1𝐶),

• for all 𝑄1,𝑄2 ∈ 𝑌 , 𝛾(𝑄1)⊗𝐶 𝛾(𝑄2) ⊑𝐶 𝛾(𝑄1 ⊗𝑌 𝑄2) (resp., 𝛾(𝑄1 ⊗𝑌 𝑄2) ⊑𝐶 𝛾(𝑄1)⊗𝐶 𝛾(𝑄2)),

• for all 𝑄1,𝑄2 ∈ 𝑌 , 𝛾(𝑄1) 𝜙^𝐶 𝛾(𝑄2) ⊑𝐶 𝛾(𝑄1 𝜙^𝑌
𝑄2) (resp., 𝛾(𝑄1 𝜙^𝑌

𝑄2) ⊑𝐶 𝛾(𝑄1) 𝜙^𝐶
𝛾(𝑄2)), and

• for all 𝑄1,𝑄2 ∈ 𝑌 , 𝛾(𝑄1)−−∪𝐶 𝛾(𝑄2) ⊑𝐶 𝛾(𝑄1 −−∪𝑌 𝑄2), (resp., 𝛾(𝑄1 −−∪𝑌 𝑄2) ⊑𝐶 𝛾(𝑄1)−−∪𝐶 𝛾(𝑄2)).

A probabilistic abstraction leads to a sound analysis:

Theorem 6.3. Let C and Y be interpretations over an MA 𝒞 and a PMA 𝒴 ; let 𝛾 be a probabilistic
over-abstraction (resp., under-abstraction) from 𝒞 to 𝒴 ; and let 𝑃 be an arbitrary program. If for all data
actions act, JactKC ⊑𝐶 𝛾(JactKY) (resp., 𝛾(JactKY) ⊑𝐶 JactKC), then we have C [𝑃]⊑̇𝐶 𝛾̇(Y ♯[𝑃]) (resp.,
𝛾̇(Y ♯[𝑃])⊑̇𝐶C [𝑃]).

14

7 DISCUSSION 15

7 Discussion

7.1 Continuous Distributions
One of the most important features of probabilistic programming is continuous probability distri-
butions over real numbers, such as Gaussian distributions. Notions from measure theory, such
as measures and kernels, are extensively used to model continuous distributions in probabilistic
programming. Kozen studied the relation between deterministic probabilistic programs and con-
tinuous distributions via a metric on measures [Kozen 1981b]. Many approaches use probability
kernels [Kozen 1985; Smolka et al. 2017], sub-probability kernels [Borgström et al. 2016], and s-
finite kernels [Bichsel et al. 2018; Staton 2017]. A different approach uses measurable functions
𝐴→𝒟(R≥0 ×𝐵) where 𝒟(𝑆) stands for the set of all probability measures on 𝑆 [Staton et al. 2016].
For higher-order languages, Jones and Plotkin [Jones 1989; Jones and Plotkin 1989] have developed
a probabilistic powerdomain that consists of continuous evaluations, which are a reformulation of
distributions in domain theory, on a state space. They show that the powerdomain can be used to solve
recursive domain equations. Smolka et al. [Smolka et al. 2017] study the semantics of probabilistic
networks. Ehrhard et al. [Ehrhard et al. 2018] provide a Cartesian-closed category on stable and
measurable maps between cones, and use it to give a semantics for probabilistic PCF.

However, those measure-theoretic developments do not work properly when nondeterminism
comes into the picture. To overcome this challenge, people have been adapting domain-theoretic
results. McIver and Morgan build a Plotkin-style powerdomain over probability distributions on
a discrete state space [McIver and Morgan 2001, 2005]. Mislove et al. [Mislove 2000; Mislove et al.
2004] study powerdomain constructions for probabilistic CSP. Tix et al. [Tix et al. 2009] generalize
McIver and Morgan’s results to continuous state spaces, and construct three powerdomains for the
extended probabilistic powerdomains. Although there has been a lot of work on this direction,
one has to keep in mind that the domain-theoretic notion of “continuous” distributions is different
from the notion in measure theory—instead, the domain-theoretic studies are focused on computable
distributions. In other words, real numbers are realized by some computable models, such as partial
reals [Escardó 1996]. These models would become unsatisfactory when one wants to observe a random
value drawn from a continuous distribution, e.g., the meaning of 𝑥B Normal(0,1); if 𝑥 = 0 then · · · fi
is not expressible. We leave the semantic development of combining nondeterminism and continuous
distributions (from a measure-theoretic perspective) for future work.

7.2 Higher-Order Functions
In functional programming, higher-order functions are functions that can take functions as argu-
ments, as well as return a function as a result. Some probabilistic programming languages, such as
Church [Goodman et al. 2008], are indeed functional programming languages and can express higher-
order functions. While operational models for probabilistic functional programming have been
proposed [Borgström et al. 2016], developing a denotational semantics for higher-order probabilistic
programming has been an open problem for years.

The major challenge is to propose a Cartesian-closed category for semantic objects of probabilistic
programming. Intuitively, the Cartesian-closure property ensures that if type 𝐴 and type 𝐵 are
two objects in the category, then the function space 𝐵𝐴 (i.e., an object for the arrow type 𝐴→ 𝐵)
is also contained in the category. The category of measures is clearly not Cartesian-closed; a lot
of probabilistic powerdomains also do not admit a Cartesian-closed category [Jung and Tix 1998].
Recently, Heunen et al. [Heunen et al. 2017] propose quasi-Borel measures for higher-order functions
in probabilistic programming. The measure-theoretic approach is further extended by Vákár et
al. [Vákár et al. 2019] to support recursive types. However, it is unclear how to model nondeterminism
in the framework of quasi-Borel measures. We leave the combination of nondeterminism and higher-
order functions for future work.

8 Conclusion
We have developed a framework for denotational semantics of low-level probabilistic programs with
unstructured control-flow, general recursion, and nondeterminism, represented by control-flow hyper-
graphs. The semantics is algebraic and it can be instantiated with different models of nondeterminism.
We have demonstrated two instantiations with nondeterminism-first and nondeterminism-last, re-
spectively. We have proposed a powerdomain for nondeterminism-first that consists of collections
of kernels and enjoys generalized convexity. As an application, we have reviewed a static-analysis
framework for probabilistic programs, which has been proposed in a companion paper.

In the future, we plan to combine continuous distributions and higher-order functions with nonde-
terminism in our semantics framework. We will also work on models of nondeterminism, especially
nondeterminism-first, and investigate its connection with relational reasoning. Another research
direction is to develop more formal reasoning techniques based on the denotational semantics.

Acknowledgments
This work was supported, in part, by a gift from Rajiv and Ritu Batra; by AFRL under DARPA
MUSE award FA8750-14-2-0270, DARPA STAC award FA8750-15-C-0082 and DARPA AA award
FA8750-18-C-0092; by ONR under grant N00014-17-1-2889; by NSF under SaTC award 1801369,
SHF grant 1812876, and CAREER award 1845514; and by the UW-Madison OVRGE with funding
from WARF.

References
S. Abramsky and A. Jung. 1994. Domain Theory. In Handbook of Logic in Computer Science. Oxford University

Press Oxford, UK.

G. Barthe, T. Espitau, M. Gaboardi, B. Grégoire, J. Hsu, and P.-Y. Strub. 2016. A Program Logic for Probabilistic
Programs. Available on: https://justinh.su/files/papers/ellora.pdf.

G. Barthe, B. Grégoire, and S. Zanella Béguelin. 2009. Formal Certification of Code-based Cryptographic Proofs.
In Princ. of Prog. Lang. (POPL’09).

G. Barthe, B. Köpf, F. Olmedo, and S. Zanella Béguelin. 2012. Probabilistic Relational Reasoning for Differential
Privacy. In Princ. of Prog. Lang. (POPL’12).

Kevin Batz, B. L. Kaminski, J.-P. Katoen, and C. Matheja. 2018. How long, O Bayesian network, will I sample thee?.
In European Symp. on Programming (ESOP’18).

R. Bellman. 1957. A Markovian Decision Process. Indiana Univ. Math. J. 6 (1957). Issue 4.

B. Bichsel, T. Gehr, and M. Vechev. 2018. Fine-grained Semantics for Probabilistic Programs. In European Symp. on
Programming (ESOP’18).

J. Borgström, U. D. Lago, A. D. Gordon, and M. Szymczak. 2016. A Lambda-Calculus Foundation for Universal
Probabilistic Programming. In Int. Conf. on Functional Programming (ICFP’16).

O. Bouissou, E. Goubault, S. Putot, A. Chakarov, and S. Sankaranarayanan. 2016. Uncertainty Propagation Using
Probabilistic Affine Forms and Concentration of Measure Inequalities. In Tools and Algs. for the Construct. and
Anal. of Syst. (TACAS’16).

T. Brázdil, S. Kiefer, A. Kučera, and I. H. Vařeková. 2015. Runtime Analysis of Probabilistic Programs with
Unbounded Recursion. J. Comput. Syst. Sci. 81 (February 2015). Issue 1.

A. Chakarov and S. Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In Computer Aided
Verif. (CAV’13).

16

https://justinh.su/files/papers/ellora.pdf

8 CONCLUSION 17

A. Chakarov and S. Sankaranarayanan. 2014. Expectation Invariants for Probabilistic Program Loops as Fixed
Points. In Static Analysis Symp. (SAS’14).

K. Chatterjee, H. Fu, and A. K. Goharshady. 2016a. Termination Analysis of Probabilistic Programs Through
Positivstellensatz’s. In Computer Aided Verif. (CAV’16).

K. Chatterjee, H. Fu, P. Novotný, and R. Hasheminezhad. 2016b. Algorithmic Analysis of Qualitative and
Quantitative Termination Problems for Affine Probabilistic Programs. In Princ. of Prog. Lang. (POPL’16).

K. Chatterjee, P. Novotný, and Ð. Žikelić. 2017. Stochastic Invariants for Probabilistic Termination. In Princ. of
Prog. Lang. (POPL’17).

J. H. Conway. 1971. Regular algebra and finite machines. London: Chapman and Hall.

P. Cousot and M. Monerau. 2012. Probabilistic Abstract Interpretation. In European Symp. on Programming
(ESOP’12).

J. I. den Hartog and E. P. de Vink. 1999. Mixing Up Nondeterminism and Probability: a preliminary report. Electr.
Notes Theor. Comp. Sci. 22 (1999).

E. W. Dijkstra. 1997. A Discipline of Programming. Prentice-Hall.

T. Ehrhard, M. Pagani, and C. Tasson. 2018. Measurable Cones and Stable, Measurable Functions. In Princ. of Prog.
Lang. (POPL’18).

M. H. Escardó. 1996. PCF extended with real numbers. Theor. Comp. Sci. 162 (August 1996). Issue 1.

K. Etessami and M. Yannakakis. 2005. Recursive Markov Chains, Stochastic Grammars, and Monotone Systems of
Nonlinear Equations. In Symp. on Theor. Aspects of Comp. Sci. (STACS’05).

K. Etessami and M. Yannakakis. 2015. Recursive Markov Decision Processes and Recursive Stochastic Games. J.
ACM 62 (May 2015). Issue 2.

A. Farzan and Z. Kincaid. 2015. Compositional Recurrence Analysis. In Formal Methods in Compiter-Aided Design
(FMCAD’15).

L. M. Ferrer Fioriti and H. Hermanns. 2015. Probabilistic Termination: Soundness, Completeness, and Composi-
tionality. In Princ. of Prog. Lang. (POPL’15).

B. Franke, M. O’Boyle, J. Thomson, and G. Fursin. 2005. Probabilistic Source-Level Optimisation of Embedded
Programs. In Lang., Comp., and Tools for Embeded Syst. (LCTES’05).

G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. 1993. Directed Hypergraphs and Applications. Disc. Appl. Math.
42 (April 1993). Issue 2.

T. Gehr, S. Misailovic, and M. Vechev. 2016. PSI: Exact Symbolic Inference for Probabilistic Programs. In Computer
Aided Verif. (CAV’16).

Z. Ghahramani. 2015. Probabilistic machine learning and artificial intelligence. Nature (2015).

N. D. Goodman, V. K. Mansinghka, D. M. Roy, and J. B. Tenenbaum. 2008. Church: a language for generative
models. In Uncertainty in Artif. Intelligence.

A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani. 2014. Probabilistic Programming. In Future of
Softw. Eng. (FOSE’14).

C. Heunen, O. Kammar, S. Staton, and H. Yang. 2017. A Convenient Category for Higher-Order Probability Theory.
In Logic in Computer Science (LICS’17).

K. H. Hofmann and M. Mislove. 1981. Local compactness and continuous lattices. In Continuous Lattices.

N. Jansen, B. L. Kaminski, J.-P. Katoen, F. Olmedo, F. Gretz, and A. K. McIver. 2015. Conditioning in Probabilistic
Programming. Electr. Notes Theor. Comp. Sci. 319 (December 2015).

C. Jones. 1989. Probabilistic Non-determinism. Ph.D. Dissertation. University of Edinburgh.

C. Jones and G. Plotkin. 1989. A Probabilistic Powerdomain of Evaluations. In Logic in Computer Science (LICS’89).

A. Jung and R. Tix. 1998. The Troublesome Probabilistic Powerdomain. Electr. Notes Theor. Comp. Sci. 13 (1998).

B. L. Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. 2016. Weakest Precondition Reasoning for Expected
Run—Times of Probabilistic Programs. In European Symp. on Programming (ESOP’16).

J.-P. Katoen, A. K. McIver, L. A. Meinicke, and C. C. Morgan. 2010. Linear-Invariant Generation for Probabilistic
Programs: Automated Support for Proof-Based Methods. In Static Analysis Symp. (SAS’10).

M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. 2009. Abstraction Refinement for Probabilistic
Software. In Verif., Model Checking, and Abs. Interp. (VMCAI’09).

S. C. Kleene. 1951. Representation of Events in Nerve Nets and Finite Automata. Available on https://www.rand.
org/pubs/research_memoranda/RM704.html.

D. Kozen. 1981a. On induction vs. *-continuity. In Workshop on Logic of Programs.

D. Kozen. 1981b. Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22 (June 1981). Issue 3.

D. Kozen. 1985. A Probabilistic PDL. J. Comput. Syst. Sci. 30 (April 1985). Issue 2.

D. Kozen. 1991. A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events. J. Information
and Computation 110 (May 1991). Issue 2.

A. Lal, T. Touili, N. Kidd, and T. Reps. 2008. Interprocedural Analysis of Concurrent Programs Under a Context
Bound. In Tools and Algs. for the Construct. and Anal. of Syst. (TACAS’08).

A. K. McIver and C. C. Morgan. 2001. Partial correctness for probabilistic demonic programs. Theor. Comp. Sci.
266 (September 2001). Issue 1.

A. K. McIver and C. C. Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer
Science+Business Media, Inc.

M. Mislove. 1998. Topology, domain theory and theoretical computer science. Topology and its Applications 89
(November 1998). Issue 1.

M. Mislove. 2000. Nondeterminism and Probabilistic Choice: Obeying the Laws. In Concurrency Theory.

M. Mislove, J. Ouaknine, and J. Worrell. 2004. Axioms for Probability and Nondeterminism. Electr. Notes Theor.
Comp. Sci. 96 (June 2004).

D. Monniaux. 2000. Abstract Interpretation of Probabilistic Semantics. In Static Analysis Symp. (SAS’00).

D. Monniaux. 2003. Abstract Interpretation of Programs as Markov Decision Processes. In Static Analysis Symp.
(SAS’03).

M. Müller-Olm and H. Seidl. 2004. Precise Interprocedural Analysis through Linear Algebra. In Princ. of Prog.
Lang. (POPL’04).

F. Olmedo, B. L. Kaminski, J.-P. Katoen, and C. Matheja. 2016. Reasoning about Recursive Probabilistic Programs.
In Logic in Computer Science (LICS’16).

B. Paige and F. Wood. 2014. A Compilation Target for Probabilistic Programming Languages. In Int. Conf. on
Machine Learning (ICML’14).

S. Sankaranarayanan, A. Chakarov, and S. Gulwani. 2013. Static Analysis for Probabilistic Programs: Inferring
Whole Program Properties from Finitely Many Paths. In Prog. Lang. Design and Impl. (PLDI’13).

S. Smolka, P. Kumar, N. Foster, D. Kozen, and A. Silva. 2017. Cantor meets Scott: Semantic Foundations for
Probabilistic Networks. In Princ. of Prog. Lang. (POPL’17).

18

https://www.rand.org/pubs/research_memoranda/RM704.html
https://www.rand.org/pubs/research_memoranda/RM704.html

8 CONCLUSION 19

S. Staton. 2017. Commutative Semantics for Probabilistic Programming. In European Symp. on Programming
(ESOP’17).

S. Staton, H. Yang, C. Heunen, and O. Kammar. 2016. Semantics for probabilistic programming: higher-order
functions, continuous distributions, and soft constraints. In Logic in Computer Science (LICS’16).

R. E. Tarjan. 1981. A Unified Approach to Path Problems. J. ACM 28 (July 1981). Issue 3.

R. Tix, K. Keimel, and G. Plotkin. 2009. Semantic Domains for Combining Probability and Non-Determinism.
Electr. Notes Theor. Comp. Sci. 222 (February 2009).

M. Vákár, O. Kammar, and S. Staton. 2019. A Domain Theory for Statistical Probabilistic Programming. In Princ.
of Prog. Lang. (POPL’19).

D. Wang, J. Hoffmann, and T. Reps. 2018. PMAF: An Algebraic Framework for Static Analysis of Probabilistic
Programs. In Prog. Lang. Design and Impl. (PLDI’18).

A Proofs

A.1 Thm. 4.1
Proof. We equip 𝑋 with the discrete topology. We define 𝑋⊥ = 𝑋 ∪ {⊥} with a distinguished least

element ⊥ and thus 𝑋⊥ is a flat domain. Then 𝑋⊥ is a bounded-complete domain. The Scott-compact
subsets of 𝑋⊥ are precisely finite subsets of 𝑋 and all subsets that contain ⊥. Thus 𝑋⊥ is coherent.
By [Abramsky and Jung 1994, Ex. 4.3.11.14], we know that 𝑋⊥ is an FS-domain.

By Prop. 3.3 we know that 𝒟(𝑋) is coherent. Moreover, 𝒟(𝑋) is also bounded-complete. Thus
𝒟(𝑋) is an FS-domain. By [Abramsky and Jung 1994, Thm. 4.2.11], we know that [𝑋⊥→𝒟(𝑋)] is an
FS-domain.

Let 𝑠 def= 𝜆𝑓 .𝑓 and 𝑟 def= 𝜆𝑔.𝜆𝑥.if 𝑥 = ⊥ then ⊥𝐷 else 𝑔(𝑥). Then 𝑠 : [𝑋⊥
⊥!−−→ 𝒟(𝑋)]→ [𝑋⊥ →𝒟(𝑋)],

𝑟 : [𝑋⊥→𝒟(𝑋)]→ [𝑋⊥
⊥!−−→𝒟(𝑋)], and 𝑟∘𝑠 is the identity on [𝑋⊥

⊥!−−→𝒟(𝑋)], where [𝐴
⊥!−−→ 𝐵] stands for

continuous functions from a dcpo 𝐴 to a dcpo 𝐵 that preserve the least element. Hence [𝑋⊥
⊥!−−→𝒟(𝑋)]

is a retract of [𝑋⊥→𝒟(𝑋)]. By [Abramsky and Jung 1994, Prop. 4.2.12], we know that [𝑋⊥
⊥!−−→𝒟(𝑋)]

is also an FS-domain.
For any 𝑓 in [𝑋→𝒟(𝑋)], we could define a function 𝑔 def= 𝜆𝑥.if 𝑥 = ⊥ then ⊥𝐷 else 𝑓 (𝑥). For any

𝑔 in [𝑋⊥
⊥!−−→ 𝒟(𝑋)], we could define a function 𝑓

def= 𝜆𝑥.𝑔(𝑥). Thus [𝑋 → 𝒟(𝑋)] is homeomorphic

to [𝑋⊥
⊥!−−→ 𝒟(𝑋)], and we know that [𝑋 → 𝒟(𝑋)] is also an FS-domain. By [Abramsky and Jung

1994, Thm. 4.2.18], we know that [𝑋 →𝒟(𝑋)] is coherent. Because the topology on 𝑋 is discrete,
[𝑋→𝒟(𝑋)] is precisely 𝑋→𝒟(𝑋). Thus we conclude that 𝒦(𝑋) is coherent.

A.2 Lem. 4.2
Proof. 1. Monotonicity is trivial. It then suffices to show that for all directed set 𝐴 ⊆ 𝒦(𝑋),

𝜑 · (
⨆︀↑𝐴) =

⨆︀↑
𝜅∈𝐴𝜑 · 𝜅. Let 𝜅′ def=

⨆︀↑𝐴. We conclude the proof by
⨆︀↑
𝜅∈𝐴𝜑(𝑥) · 𝜅(𝑥) = 𝜑(𝑥) ·⨆︀↑

𝜅∈𝐴𝜅(𝑥) = 𝜑(𝑥) · (
⨆︀↑𝐴)(𝑥) = 𝜑(𝑥) ·𝜅′(𝑥) for any 𝑥.

2. Monotonicity is trivial.
Left-Scott-continuity. For all directed set 𝐴 ⊆ 𝒦(𝑋) and all 𝜌 ∈ 𝒦(𝑋), we want to show that

(
⨆︀↑𝐴)⊗𝜌 =

⨆︀↑
𝜅∈𝐴𝜅⊗𝜌. Let 𝜅′ def=

⨆︀↑𝐴. Then it is sufficient to show that for all 𝑥 and 𝑥′′ ,∫︀
𝜅′(𝑥)(𝑑𝑥′)𝜌(𝑥′)(𝑥′′) =

⨆︀↑
𝜅∈𝐴

∫︀
𝜅(𝑥)(𝑑𝑥′)𝜌(𝑥′)(𝑥′′). Because 𝐴 is directed and 𝒦(𝑋) is ordered

pointwise, {𝜅(𝑥) | 𝜅 ∈ 𝐴} is also directed in 𝒟(𝑋). By [Jones and Plotkin 1989, Thm. 3.3] ,

the right-hand-side is equal to
∫︀

(
⨆︀↑
𝜅∈𝐴𝜅(𝑥))(𝑑𝑥′)𝜌(𝑥′)(𝑥′′). We conclude the proof by 𝜅′(𝑥) =⨆︀↑

𝜅∈𝐴𝜅(𝑥) by the definition of 𝜅′ .
Right-Scott-continuity. For all directed set 𝐴 ⊆ 𝒦(𝑋) and all 𝜌 ∈ 𝒦(𝑋), we want to show that

𝜌⊗(
⨆︀↑𝐴) =

⨆︀↑
𝜅∈𝐴 𝜌⊗𝜅. Let 𝜅′ def=

⨆︀↑𝐴. Then it is sufficient to show that for all 𝑥 and 𝑥′′ ,∫︀
𝜌(𝑥)(𝑑𝑥′)𝜅′(𝑥′)(𝑥′′) =

⨆︀↑
𝜅∈𝐴

∫︀
𝜌(𝑥)(𝑑𝑥′)𝜅(𝑥′)(𝑥′′). Because 𝐴 is directed and 𝒦(𝑋) as well as

𝒟(𝑋) are ordered pointwise, {𝜆𝑥′ .𝜅(𝑥′)(𝑥′′) | 𝜅 ∈ 𝐴} is directed and bounded. By [Jones and

Plotkin 1989, Thm. 3.1], the right-hand-side is equal to
∫︀
𝜌(𝑥)(𝑑𝑥′)(

⨆︀↑
𝜅∈𝐴𝜆𝑥

′ .𝜅(𝑥′)(𝑥′′))(𝑥′). We

conclude the proof by 𝜆𝑥′ .𝜅′(𝑥′)(𝑥′′) =
⨆︀↑
𝜅∈𝐴𝜆𝑥

′ .𝜅(𝑥′)(𝑥′′) by the definition of 𝜅′ .

20

A PROOFS 21

A.3 Lem. 4.4
Proof. 1. Straightforward by the fact that if 𝜅𝑖 ⊑𝐾 𝜌𝑖 for all 𝑖 ∈ N, then

∑︀∞
𝑖=0𝜑𝑖 · 𝜅𝑖 ⊑𝐾∑︀∞

𝑖=0𝜑𝑖 · 𝜌𝑖 .

2. The Scott-closure of 𝐴 can be obtained by 𝐴 = {
⨆︀↑𝐵 | 𝐵 ⊆ ↓𝐴,𝐵 directed} [Tix et al. 2009]. For

any {𝜅𝑖 }𝑖∈N+ ⊆ 𝐴, there are directed subsets 𝐵𝑖 of ↓𝐴 such that 𝜅𝑖 =
⨆︀↑𝐵𝑖 for all 𝑖 ∈N+. For

any {𝜑𝑖 }𝑖∈N+ ⊆W(𝑋) such that
∑︀∞
𝑖=1𝜑𝑖 = 1̇, we have

∞∑︁
𝑖=1

𝜑𝑖 ·𝜅𝑖 =
⨆︁↑

𝑛∈N

𝑛∑︁
𝑖=1

𝜑𝑖 ·𝜅𝑖

=
⨆︁↑

𝑛∈N

𝑛∑︁
𝑖=1

𝜑𝑖 · (
⨆︁↑

𝐵𝑖)

=
⨆︁↑

𝑛∈N

𝑛∑︁
𝑖=1

⨆︁↑
𝜌𝑖∈𝐵𝑖

𝜑𝑖 · 𝜌𝑖

=
⨆︁↑

𝑛∈N

⨆︁↑
∀𝑖:𝜌𝑖∈𝐵𝑖

𝑛∑︁
𝑖=1

𝜑𝑖 · 𝜌𝑖

=
⨆︁↑
∀𝑖:𝜌𝑖∈𝐵𝑖

⨆︁↑
𝑛∈N

𝑛∑︁
𝑖=1

𝜑𝑖 · 𝜌𝑖

=
⨆︁↑
∀𝑖:𝜌𝑖∈𝐵𝑖

∞∑︁
𝑖=1

𝜑𝑖 · 𝜌𝑖

where
∑︀∞
𝑖=1𝜑𝑖 · 𝜌𝑖 is indeed contained in ↓𝐴 by its g-convexity and hence {

∑︀∞
𝑖=1𝜑𝑖 · 𝜌𝑖 | ∀𝑖 : 𝜌𝑖 ∈

𝐵𝑖 } is a directed subset of ↓𝐴, thus
∑︀∞
𝑖=1𝜑𝑖 ·𝜅𝑖 is contained in 𝐴.

A.4 Lem. 4.5
Proof. Let {𝜂𝑖 }𝑖∈N+ be any sequence in {𝜅 𝜑^ 𝜌 | 𝜅 ∈ 𝐴 ∧ 𝜌 ∈ 𝐵}, and 𝜂𝑖 = 𝜅𝑖 𝜑^ 𝜌𝑖 such that

𝜅𝑖 ∈ 𝐴,𝜌𝑖 ∈ 𝐵 for all 𝑖 ∈N+. For any {𝜓𝑖 }𝑖∈N+ ⊆W(𝑋) such that
∑︀∞
𝑖=1𝜓𝑖 = 1̇, we have

∞∑︁
𝑖=1

𝜓𝑖 · 𝜂𝑖 =
⨆︁↑

𝑛∈N

𝑛∑︁
𝑖=1

𝜓𝑖 · 𝜂𝑖

=
⨆︁↑

𝑛∈N

𝑛∑︁
𝑖=1

𝜓𝑖 · (𝜅𝑖 𝜑^ 𝜌𝑖)

=
⨆︁↑

𝑛∈N

𝑛∑︁
𝑖=1

𝜓𝑖 · (𝜑 ·𝜅𝑖 + (1̇−𝜑) · 𝜌𝑖)

=
⨆︁↑

𝑛∈N

𝑛∑︁
𝑖=1

((𝜓𝑖𝜑) ·𝜅𝑖 + (𝜓𝑖 −𝜓𝑖𝜑) · 𝜌𝑖)

=
⨆︁↑

𝑛∈N
(
𝑛∑︁
𝑖=1

(𝜓𝑖𝜑) ·𝜅𝑖 +
𝑛∑︁
𝑖=1

(𝜓𝑖 −𝜓𝑖𝜑) · 𝜌𝑖)

=
⨆︁↑

𝑛∈N

𝑛∑︁
𝑖=1

(𝜓𝑖𝜑) ·𝜅𝑖 +
⨆︁↑

𝑛∈N

𝑛∑︁
𝑖=1

(𝜓𝑖 −𝜓𝑖𝜑) · 𝜌𝑖

= 𝜑 ·
⨆︁↑

𝑛∈N

𝑛∑︁
𝑖=1

𝜓𝑖 ·𝜅𝑖 + (1̇−𝜑) ·
⨆︁↑

𝑛∈N

𝑛∑︁
𝑖=1

𝜓𝑖 · 𝜌𝑖

= (
∞∑︁
𝑖=1

𝜓𝑖 ·𝜅𝑖)𝜑^ (
∞∑︁
𝑖=1

𝜓𝑖 · 𝜌𝑖).

Because 𝐴 and 𝐵 are g-convex, we know that
∑︀∞
𝑖=0𝜓𝑖 ·𝜅𝑖 ∈ 𝐴 and

∑︀∞
𝑖=1𝜓𝑖 · 𝜌𝑖 ∈ 𝐵. Hence

∑︀∞
𝑖=1𝜓𝑖 · 𝜂𝑖

is contained in {𝜅 𝜑^ 𝜌 | 𝜅 ∈ 𝐴∧ 𝜌 ∈ 𝐵}.

A.5 Lem. 4.7
Proof. It is straightforward to show that 𝑔𝑐𝑜𝑛𝑣(𝐴) is a superset of the right-hand-side. Then we

want to show the right-hand-side is indeed g-convex, which indicates the desired equality by the
definition of 𝑔𝑐𝑜𝑛𝑣(𝐴).

Suppose {𝜅𝑖 }𝑖∈N+ are contained in the right-hand-side. Then for all 𝑖 ∈N+, there exists {𝜅𝑖,𝑗 }𝑗∈N+ ⊆
𝐴 and {𝜑𝑖,𝑗 }𝑗∈N+ such that

∑︀∞
𝑗=1𝜑𝑖,𝑗 = 1̇ and 𝜅𝑖 =

∑︀∞
𝑗=1𝜑𝑖,𝑗 ·𝜅𝑖,𝑗 . It is sufficient to show that for all

22

A PROOFS 23

{𝜑𝑖 }𝑖∈N+ ,
∑︀∞
𝑖=1𝜑𝑖 ·𝜅𝑖 is contained in the right-hand-side. We have

∞∑︁
𝑖=1

𝜑𝑖 ·𝜅𝑖 =
⨆︁↑

𝑛∈N

𝑛∑︁
𝑖=1

𝜑𝑖 ·𝜅𝑖

=
⨆︁↑

𝑛∈N

𝑛∑︁
𝑖=1

𝜑𝑖 ·
∞∑︁
𝑗=1

𝜑𝑖,𝑗 ·𝜅𝑖,𝑗

=
⨆︁↑

𝑛∈N

𝑛∑︁
𝑖=1

𝜑𝑖 ·
⨆︁↑

𝑚∈N

𝑚∑︁
𝑗=1

𝜑𝑖,𝑗 ·𝜅𝑖,𝑗

=
⨆︁↑

𝑛∈N,𝑚∈N

∑︁
1≤𝑖≤𝑛,1≤𝑗≤𝑚

(𝜑𝑖𝜑𝑖,𝑗) ·𝜅𝑖,𝑗 .

Let 𝜃 : N+ ×N+→N
+ be a bijection. Let 𝜌𝑘

def= 𝜅𝑖,𝑗 and 𝜓𝑘
def= 𝜑𝑖𝜑𝑖,𝑗 such that (𝑖, 𝑗) = 𝜃−1(𝑘). Then∑︀∞

𝑘=1𝜓𝑘 =
∑︀∞
𝑖=1

∑︀∞
𝑗=1𝜓𝜃(𝑖,𝑗) =

∑︀∞
𝑖=1

∑︀∞
𝑗=1𝜑𝑖𝜑𝑖,𝑗 =

∑︀∞
𝑖=1𝜑𝑖

∑︀∞
𝑗=1𝜑𝑖,𝑗 =

∑︀∞
𝑖=1𝜑𝑖 · 1̇ =

∑︀∞
𝑖=1𝜑𝑖 = 1̇. We

now have ⨆︁↑
𝑛∈N,𝑚∈N

∑︁
1≤𝑖≤𝑛,1≤𝑗≤𝑚

(𝜑𝑖𝜑𝑖,𝑗) ·𝜅𝑖,𝑗 =
⨆︁↑

𝑛∈N,𝑚∈N

∑︁
1≤𝑖≤𝑛,1≤𝑗≤𝑚

𝜓𝜃(𝑖,𝑗) · 𝜌𝜃(𝑖,𝑗)

=
⨆︁↑

𝑙∈N

𝑙∑︁
𝑘=1

𝜓𝑘 · 𝜌𝑘

=
∞∑︁
𝑘=1

𝜓𝑙 · 𝜌𝑙

that is indeed contained in the right-hand-side. The second last equation is established as follows:

• To show
⨆︀↑
𝑛∈N,𝑚∈N

∑︀
1≤𝑖≤𝑛,1≤𝑗≤𝑚𝜓𝜃(𝑖,𝑗) · 𝜌𝜃(𝑖,𝑗) ⊑𝐾

⨆︀↑
𝑙∈N

∑︀𝑙
𝑘=1𝜓𝑘 · 𝜌𝑘 : Fix 𝑛𝑜 ∈ N and 𝑚𝑜 ∈

N. Let 𝑙𝑜
def= max1≤𝑖≤𝑛𝑜 ,1≤𝑗≤𝑚𝑜 𝜃(𝑖, 𝑗). Then we conclude by

∑︀
1≤𝑖≤𝑛𝑜 ,1≤𝑗≤𝑚𝑜 𝜓𝜃(𝑖,𝑗) · 𝜌𝜃(𝑖,𝑗) ⊑𝐾∑︀𝑙𝑜

𝑘=1𝜓𝑘 · 𝜌𝑘 .

• To show
⨆︀↑
𝑙∈N

∑︀𝑙
𝑘=1𝜓𝑘 · 𝜌𝑘 ⊑𝐾

⨆︀↑
𝑛∈N,𝑚∈N

∑︀
1≤𝑖≤𝑛,1≤𝑗≤𝑚𝜓𝜃(𝑖,𝑗) · 𝜌𝜃(𝑖,𝑗): Fix 𝑙𝑜 ∈N. Let 𝑛𝑜

def=

max1≤𝑘≤𝑙𝑜 𝜃
−1(𝑘).fst and 𝑚𝑜

def= max1≤𝑘≤𝑙𝑜 𝜃
−1(𝑘).snd. Then we conclude by

∑︀𝑙𝑜
𝑘=1𝜓𝑘 · 𝜌𝑘 ⊑𝐾∑︀

1≤𝑖≤𝑛𝑜 ,1≤𝑗≤𝑚𝑜 𝜓𝜃(𝑖,𝑗) · 𝜌𝜃(𝑖,𝑗).

A.6 Lem. 4.8
Proof. 1. The ⊆-direction is straightforward. For the ⊇-direction, we have

𝑔𝑐𝑜𝑛𝑣(𝐴) = {
∞∑︁
𝑖=1

𝜑𝑖 ·𝜅𝑖 | {𝜅𝑖 }𝑖∈N+ ⊆ 𝐴∧ {𝜑𝑖 }𝑖∈N+ ⊆W(𝑋)∧
∞∑︁
𝑖=1

𝜑𝑖 = 1̇}

by Lem. 4.7 and 𝐴 = {
⨆︀↑𝐵 | 𝐵 ⊆ ↓𝐴,𝐵 directed}. Let 𝜅 def=

∑︀∞
𝑖=1𝜑𝑖 ·𝜅𝑖 be an element of 𝑔𝑐𝑜𝑛𝑣(𝐴)

where {𝜅𝑖 }𝑖∈N+ ⊆ 𝐴. Then for all 𝑖 ∈N+, there exists a directed 𝐵𝑖 ⊆ ↓𝐴 satisfying 𝜅𝑖 =
⨆︀↑𝐵𝑖 .

Then we have

∞∑︁
𝑖=1

𝜑𝑖 ·𝜅𝑖 =
⨆︁↑

𝑛∈N

𝑛∑︁
𝑖=1

𝜑𝑖 ·𝜅𝑖

=
⨆︁↑

𝑛∈N

𝑛∑︁
𝑖=1

𝜑𝑖 ·
⨆︁↑

𝐵𝑖

=
⨆︁↑

𝑛∈N

𝑛∑︁
𝑖=1

⨆︁↑
𝜌𝑖∈𝐵𝑖

(𝜑𝑖 · 𝜌𝑖)

=
⨆︁↑

𝑛∈N

⨆︁↑
∀𝑖:𝜌𝑖∈𝐵𝑖

𝑛∑︁
𝑖=1

𝜑𝑖 · 𝜌𝑖

=
⨆︁↑
∀𝑖:𝜌𝑖∈𝐵𝑖

⨆︁↑
𝑛∈N

𝑛∑︁
𝑖=1

𝜑𝑖 · 𝜌𝑖

=
⨆︁↑
∀𝑖:𝜌𝑖∈𝐵𝑖

∞∑︁
𝑖=1

𝜑𝑖 · 𝜌𝑖 .

Because 𝜌𝑖 ∈ 𝐵𝑖 ⊆ ↓𝐴, there exists 𝜂𝑖 ∈ 𝐴 satisfying 𝜌𝑖 ⊑𝐾 𝜂𝑖 for all 𝑖 ∈N+, and thus
∑︀∞
𝑖=1𝜑𝑖 ·𝜂𝑖 ∈

𝑔𝑐𝑜𝑛𝑣(𝐴). We also know that
∑︀∞
𝑖=1𝜑𝑖 ·𝜌𝑖 ⊑𝐾

∑︀∞
𝑖=1𝜑𝑖 ·𝜂𝑖 , thus

∑︀∞
𝑖=1𝜑𝑖 ·𝜌𝑖 ∈ ↓𝑔𝑐𝑜𝑛𝑣(𝐴). Therefore∑︀∞

𝑖=1𝜑𝑖 ·𝜅𝑖 ∈ 𝑔𝑐𝑜𝑛𝑣(𝐴). By 𝑔𝑐𝑜𝑛𝑣(𝐴) ⊆ 𝑔𝑐𝑜𝑛𝑣(𝐴) we conclude that 𝑔𝑐𝑜𝑛𝑣(𝐴) ⊆ 𝑔𝑐𝑜𝑛𝑣(𝐴).

2. For the ⊇-direction, we have

𝑔𝑐𝑜𝑛𝑣(
⋃︁

𝐴𝑖) ⊇ 𝑔𝑐𝑜𝑛𝑣(𝐴𝑖)

=⇒ 𝑔𝑐𝑜𝑛𝑣(
⋃︁

𝐴𝑖) ⊇ 𝑔𝑐𝑜𝑛𝑣(𝐴𝑖)

=⇒ 𝑔𝑐𝑜𝑛𝑣(
⋃︁

𝐴𝑖) ⊇
⋃︁

𝑔𝑐𝑜𝑛𝑣(𝐴𝑖)

=⇒ 𝑔𝑐𝑜𝑛𝑣(
⋃︁

𝐴𝑖) ⊇
⋃︁

𝑔𝑐𝑜𝑛𝑣(𝐴𝑖).

For the ⊆-direction, we know that

𝑔𝑐𝑜𝑛𝑣(
⋃︁

𝐴𝑖) = {
∞∑︁
𝑗=1

𝜑𝑗 ·𝜅𝑗 | {𝜅𝑗 }𝑗∈N+ ⊆
⋃︁

𝐴𝑖 ∧ {𝜑𝑗 }𝑗∈N+ ⊆W(𝑋)∧
∞∑︁
𝑗=1

𝜑𝑗 = 1̇}

by Lem. 4.7. Let 𝜅 def=
∑︀∞
𝑗=1𝜑𝑗 · 𝜅𝑗 be an element of 𝑔𝑐𝑜𝑛𝑣(

⋃︀
𝐴𝑖) where {𝜅𝑗 }𝑗∈N ⊆

⋃︀
𝐴𝑖 . For

all 𝑛 ∈N, because {𝐴𝑖 }𝑖∈ℐ is directed, there exists 𝐴𝑜(𝑛) satisfying {𝜅1, · · · ,𝜅𝑛} ⊆ 𝐴𝑜(𝑛). Thus∑︀𝑛
𝑗=1𝜑𝑗 ·𝜅𝑗 ∈ 𝑔𝑐𝑜𝑛𝑣(𝐴𝑜(𝑛)). By the definition of Scott-closure, we know that

⨆︀↑
𝑛∈N

∑︀𝑛
𝑗=1𝜑𝑗 ·𝜅𝑗 ∈⋃︀

𝑔𝑐𝑜𝑛𝑣(𝐴𝑖). Thus 𝜅 is contained in the right-hand-side and 𝑔𝑐𝑜𝑛𝑣(
⋃︀
𝐴𝑖) ⊆

⋃︀
𝑔𝑐𝑜𝑛𝑣(𝐴𝑖). Hence

we conclude that 𝑔𝑐𝑜𝑛𝑣(
⋃︀
𝐴𝑖) ⊆

⋃︀
𝑔𝑐𝑜𝑛𝑣(𝐴𝑖).

A.7 Lem. 4.9
Proof. [0,1] equipped with its usual linear order forms a Scott-compact topology. By Tychonoff’s

theorem we know that 𝑋 → [0,1] with the product topology is a Scott-compact space. Hence

24

A PROOFS 25

Γ
def= {(𝜑, 1̇ −𝜑) | 𝜑 ∈W(𝑋)} is also a Scott-compact space. The map from Γ ×𝒦(𝑋) ×𝒦(𝑋) to 𝒦(𝑋)

defined by ((𝜑, 1̇−𝜑),𝜅1,𝜅2) ↦→ 𝜅1 𝜑^𝜅2 is Scott-continuous. By Cor. 4.6 we know that 𝑔𝑐𝑜𝑛𝑣(𝐴∪𝐵)
is precisely the image of the Scott-compact set Γ ×𝐴×𝐵. Because Scott-continuous functions preserve
Scott-compactness, we conclude that 𝑔𝑐𝑜𝑛𝑣(𝐴∪𝐵) is also Scott-compact.

A.8 Lem. 4.10
Proof. 1. Let 𝑥 ∈ 𝑋, 𝜅1,𝜅2 ∈ 𝐴, and 𝑝 ∈ [0,1]. We want to show that 𝑝 ·𝜅1(𝑥) + (1− 𝑝) ·𝜅2(𝑥) ∈
{𝜅(𝑥) | 𝜅 ∈ 𝐴}. Let 𝜑 def= 𝜆𝑥.𝑝. Then 𝜅1 𝜑^𝜅2 ∈ 𝐴 because of g-convexity. We conclude the proof

by (𝜅1 𝜑^𝜅2)(𝑥) = 𝜑(𝑥) ·𝜅1(𝑥) + (1−𝜑(𝑥)) ·𝜅2(𝑥) = 𝑝 ·𝜅1(𝑥) + (1− 𝑝) ·𝜅2(𝑥).

2. Let 𝑥 ∈ 𝑋. Let 𝐹(𝜅) def= 𝜅(𝑥) be a map from 𝒦(𝑋) to 𝒟(𝑋). Because 𝐹 is Scott-continuous and
Scott-continuous functions preserve Scott-compactness, we conclude that 𝐹(𝐴) is Scott-compact
because 𝐴 is Scott-compact.

3. Straightforward by the fact that 𝒦(𝑋) = 𝑋→𝒟(𝑋) and 𝒦(𝑋) is ordered pointwise.

A.9 Lem. 4.11
Proof. We claim that there exists 𝑥 ∈ 𝑋 such that 𝐾(𝑥)∩𝐴(𝑥) = ∅.
If not, then for all 𝑥 ∈ 𝑋 there is 𝐾(𝑥) ∩ 𝐴(𝑥) , ∅. Hence we can define a kernel 𝜅 such that

𝜅(𝑥) ∈ 𝐾(𝑥)∩𝐴(𝑥) for every 𝑥. We want to show that 𝜅 ∈ 𝐴 and 𝜅 ∈ 𝐾 . This follows from g-convexity
of 𝐴 and 𝐾 : suppose 𝜅(𝑥) = 𝜅𝑥(𝑥) such that 𝜅𝑥 ∈ 𝐾 for all 𝑥, then 𝜅 =

∑︀
𝑥∈𝑋 (𝜆𝑥′ .[𝑥 = 𝑥′]) · 𝜅𝑥. This

contradicts the fact that 𝐾 and 𝐴 are disjoint.
Let 𝑥 ∈ 𝑋 such that 𝐾(𝑥)∩𝐴(𝑥) = ∅. By Lem. 4.10(ii)(iii) we know that 𝐾(𝑥) is Scott-compact and 𝐴(𝑥)

is Scott-closed. By [Tix et al. 2009, Thm. 3.8] we know that there exist a Scott-continuous linear map

𝐹 and an 𝑎 in R
+
0 such that 𝐹(𝜇) > 𝑎 > 1 ≥ 𝐹(𝜈) for all 𝜇 in 𝐾(𝑥) and 𝜈 in 𝐴(𝑥). Let 𝑉 def= {𝜅 | 𝐹(𝜅(𝑥)) > 𝑎}

be a Scott-open subset of 𝒦(𝑋). Then we know that 𝐾 ⊆ 𝑉 and 𝐴∩𝑉 = ∅. Then it suffices to show that
𝑉 is g-convex. For any {𝜅𝑖 }𝑖∈N+ ⊆ 𝑉 and {𝜑𝑖 }𝑖∈N+ ⊆W(𝑋) such that

∑︀∞
𝑖=1𝜑𝑖 = 1̇. Then

𝐹((
∞∑︁
𝑖=1

𝜑𝑖 ·𝜅𝑖)(𝑥)) = 𝐹(
∞∑︁
𝑖=1

𝜑𝑖 (𝑥) ·𝜅𝑖 (𝑥))

= 𝐹(
⨆︁↑

𝑛∈N

𝑛∑︁
𝑖=1

𝜑𝑖 (𝑥) ·𝜅𝑖 (𝑥))

=
⨆︁↑

𝑛∈N
𝐹(

𝑛∑︁
𝑖=1

𝜑𝑖 (𝑥) ·𝜅𝑖 (𝑥))

=
⨆︁↑

𝑛∈N

𝑛∑︁
𝑖=1

𝜑𝑖 (𝑥) ·𝐹(𝜅𝑖 (𝑥))

> 𝑎

hence
∑︀∞
𝑖=1𝜑𝑖 ·𝜅𝑖 ∈ 𝑉 .

A.10 Lem. 4.12
Proof. It suffices to show that any open-cover of 𝐾 is an open-cover of 𝑔𝑐𝑜𝑛𝑣(𝐾). Let 𝒞 be an

open-cover of 𝐾 . Let 𝑈 =
⋃︀
𝒞. If 𝑔𝑐𝑜𝑛𝑣(𝐾) is not contained in 𝑈 , then by Lem. 4.7, there exist

{𝜅𝑖 }𝑖∈N+ ⊆ 𝐾 and {𝜑𝑖 }𝑖∈N+ ⊆W(𝑋) such that
∑︀∞
𝑖=1𝜑𝑖 = 1̇ and 𝜅 def=

∑︀∞
𝑖=1𝜑𝑖 · 𝜅𝑖 ∈ 𝑔𝑐𝑜𝑛𝑣(𝐾) ∖𝑈 . Let

𝐴 = ↓𝜅 be a Scott-closed set, then 𝐴 is disjoint from 𝑈 , and thus disjoint from 𝐾 . Similar to the proof
of Lem. 4.11, we claim that there exist 𝑥 ∈ 𝑋 and a Scott-continuous linear map 𝐹 and an 𝑎 ∈ R+

0
such that 𝐹(𝜇) > 𝑎 > 1 ≥ 𝐹(𝜈) for all 𝜇 in 𝐾(𝑥) and 𝜈 ∈ 𝐴(𝑥). Then 𝐹(𝜅(𝑥)) = 𝐹((

∑︀∞
𝑖=1𝜑𝑖 · 𝜅𝑖)(𝑥)) =

𝐹(
∑︀∞
𝑖=1𝜑𝑖 (𝑥) ·𝜅𝑖 (𝑥)) =

⨆︀↑
𝑛∈N𝐹(

∑︀𝑛
𝑖=1𝜑𝑖 (𝑥) ·𝜅𝑖 (𝑥)) =

⨆︀↑
𝑛∈N𝜑𝑖 (𝑥) ·𝐹(𝜅𝑖 (𝑥)) > 𝑎 > 1, but because 𝜅 ∈ 𝐴 we

also know that 𝐹(𝜅(𝑥)) ≤ 1. We then conclude the proof by contradiction.

A.11 Thm. 4.13
Proof. It is straightforward to show that ⟨𝒢𝒦(𝑋),⊑𝐺⟩ forms a poset and ⊥𝐺 is the least element.

Then it suffices to show the powerdomain admits directed suprema. For a directed collection

𝒜 = {𝐴𝑖 }𝑖∈ℐ ⊆ 𝒢𝒦(𝑋), we define
⨆︀↑
𝑖 𝐴𝑖

def=
⋃︀
𝑖 ↓𝐴𝑖 ∩

⋂︀
𝑖 ↑𝐴𝑖 . We now show

⨆︀↑
𝑖 𝐴𝑖 is indeed the least

upper bound of 𝒜.

We already know𝒦(𝑋) is coherent by Thm. 4.1. Observe that
⨆︀↑
𝑖 𝐴𝑖 =

⋃︀
𝑖 ↓𝐴𝑖∩

⋂︀
𝑖 ↑𝐴𝑖 =

⋂︀
𝑖 (
⋃︀
↑𝐴𝑖∩

↑𝐴𝑖) and {
⋃︀
↑𝐴𝑖∩↑𝐴𝑖 }𝑖∈ℐ is a filtered family of nonempty lenses, or more generally, nonempty Lawson-

closed subsets thus nonempty Lawson-compact subsets because of the coherence of𝒦(𝑋). By Prop. 3.2

we know the filtered family admits a nonempty intersection. Thus
⨆︀↑
𝑖 𝐴𝑖 is a nonempty lens that is

indeed g-convex by Lem. 4.4 and the g-convexity of 𝐴𝑖 ’s. In this way we show that
⨆︀↑
𝑖 𝐴𝑖 ∈ 𝒢𝒦(𝑋).

Let 𝐵 def=
⨆︀↑
𝑖 𝐴𝑖 . To show that 𝐵 is the least upper bound of 𝒜, we claim that ↓𝐵 =

⋃︀
𝑖 ↓𝐴𝑖 and

↑𝐵 =
⋂︀
𝑖 ↑𝐴𝑖 . If so, then 𝐵 is obviously an upper bound of 𝒜 and if 𝐴𝑖 ⊑𝐺 𝐵′ for all 𝑖 ∈ ℐ , then

↓𝐴𝑖 ⊆ ↓𝐵′ and ↑𝐴𝑖 ⊇ ↑𝐵′ for all 𝑖 ∈ ℐ , thus ↓𝐵 =
⋃︀
𝑖 ↓𝐴𝑖 ⊆ ↓𝐵′ and ↑𝐵 =

⋂︀
𝑖 ↑𝐴𝑖 ⊇ ↑𝐵′ , or equivalently,

𝐵 ⊑𝐺 𝐵′ . Since 𝐵′ is arbitrarily chosen, we can conclude that 𝐵 is the least upper bound of 𝒜. We
adapt proofs from [Tix et al. 2009] as follows.

• To show ↓𝐵 =
⋃︀
𝑖 ↓𝐴𝑖 : Inclusion is trivial. For the reverse inclusion, it is sufficient to show

↓𝐵 ⊇
⋃︀
𝑖 ↓𝐴𝑖 since ↓𝐵 is Scott-closed. Fix 𝑥 ∈ ↓𝐴𝑖 for some 𝑖 ∈ ℐ . Then there exists 𝑦 ∈ 𝐴𝑖 such

that 𝑥 ⊑𝐾 𝑦. For all 𝑗 ∈ ℐ satisfying 𝐴𝑖 ⊑𝐺 𝐴𝑗 , there exists 𝑧 ∈ 𝐴𝑗 such that 𝑦 ⊑𝐾 𝑧. Therefore

↑𝑥 ∩
⋃︀
𝑖 ↓𝐴𝑖 ∩ ↑𝐴𝑗 , ∅. Again a filtered family of nonempty Lawson-compact sets admits a

nonempty intersection by Prop. 3.2, we have ↑𝑥 ∩
⋃︀
𝑖 ↓𝐴𝑖 ∩

⋂︀
𝑗 ↑𝐴𝑗 , ∅, i.e., ↑𝑥 ∩ 𝐵 , ∅, thus

𝑥 ∈ ↓𝐵.

• To show ↑𝐵 =
⋂︀
𝑖 ↑𝐴𝑖 : Inclusion is trivial. For the reverse inclusion, fix 𝑥 ∈

⋂︀
𝑖 ↑𝐴𝑖 . Then we

have ↓𝑥∩
⋃︀
𝑖 ↓𝐴𝑖 ∩ ↑𝐴𝑗 , ∅ for all 𝑗 ∈ ℐ . By a similar reasoning to the previous case we have

↓𝑥∩
⋃︀
𝑖 ↓𝐴𝑖 ∩

⋂︀
𝑗 ↑𝐴𝑗 , ∅, i.e., ↓𝑥∩𝐵 , ∅, thus 𝑥 ∈ ↑𝐵.

A.12 Lem. 4.14
Proof. The only nontrivial part of the proof is to show ⊗𝐺 preserves directed suprema. Firstly we

claim that ↓(𝐴⊗𝐺 𝐵) = 𝑔𝑐𝑜𝑛𝑣({𝑎⊗ 𝑏 | 𝑎 ∈ ↓𝐴∧ 𝑏 ∈ ↓𝐵}) and ↑(𝐴⊗𝐺 𝐵) = ↑𝑔𝑐𝑜𝑛𝑣({𝑎⊗ 𝑏 | 𝑎 ∈ ↑𝐴∧ 𝑏 ∈ ↑𝐵}).
Let’s write 𝐴⊗̇𝐵 for {𝑎⊗ 𝑏 | 𝑎 ∈ 𝐴∧ 𝑏 ∈ 𝐵}.

• To show ↓(𝐴⊗𝐺 𝐵) = 𝑔𝑐𝑜𝑛𝑣(↓𝐴⊗̇↓𝐵): Inclusion is trivial. For the reverse inclusion, we have

𝑔𝑐𝑜𝑛𝑣(↓𝐴⊗̇↓𝐵) ⊆ 𝑔𝑐𝑜𝑛𝑣(↓(𝐴⊗̇𝐵)) = 𝑔𝑐𝑜𝑛𝑣(↓(𝐴⊗̇𝐵)) = 𝑔𝑐𝑜𝑛𝑣(𝐴⊗̇𝐵) = 𝑔𝑐𝑜𝑛𝑣(𝐴⊗̇𝐵) ⊆ ↓(𝐴⊗𝐺 𝐵) by
Lem. 4.8(i) and Lawson-compactness of 𝐴⊗𝐺 𝐵.

• To show ↑(𝐴⊗𝐺 𝐵) = ↑𝑔𝑐𝑜𝑛𝑣(↑𝐴⊗̇↑𝐵): Inclusion is trivial. For the reverse inclusion, we have
↑𝑔𝑐𝑜𝑛𝑣(↑𝐴⊗̇↑𝐵) ⊆ ↑𝑔𝑐𝑜𝑛𝑣(↑(𝐴⊗̇𝐵)) ⊆ ↑𝑔𝑐𝑜𝑛𝑣(𝐴⊗̇𝐵) ⊆ ↑(𝐴⊗𝐺 𝐵).

26

A PROOFS 27

Then it suffices to show that ⊗𝐺 is Scott-continuous in the space of down-closures (i.e., {↓𝐴 | 𝐴 ∈
𝒢𝒦(𝑋)}), as well as in the space of up-closures (i.e., {↑𝐴 | 𝐴 ∈ 𝒢𝒦(𝑋)}).

• Let a directed family {𝐴𝑖 }𝑖∈ℐ (ordered by inclusion) and 𝐵 be nonempty Scott-closed g-

convex subsets of 𝒦(𝑋). We want to show that 𝑔𝑐𝑜𝑛𝑣(
⋃︀
𝐴𝑖 ⊗̇𝐵) =

⋃︀
𝑔𝑐𝑜𝑛𝑣(𝐴𝑖 ⊗̇𝐵), i.e., the

left-Scott-continuity. Indeed, we have 𝑔𝑐𝑜𝑛𝑣(
⋃︀
𝐴𝑖 ⊗̇𝐵) = 𝑔𝑐𝑜𝑛𝑣(

⋃︀
𝐴𝑖 ⊗̇𝐵) = 𝑔𝑐𝑜𝑛𝑣((

⋃︀
𝐴𝑖)⊗̇𝐵) =

𝑔𝑐𝑜𝑛𝑣((
⋃︀
𝐴𝑖)⊗̇𝐵) = 𝑔𝑐𝑜𝑛𝑣(

⋃︀
(𝐴𝑖 ⊗̇𝐵)) =

⋃︀
𝑔𝑐𝑜𝑛𝑣(𝐴𝑖 ⊗̇𝐵) by Lem. 4.8 and Scott-continuity of ⊗

from Lem. 4.2(ii). The right-Scott-continuity is proved in a similar way.

• Let a directed family {𝐴𝑖 }𝑖∈ℐ (ordered by reverse inclusion) and 𝐵 be nonempty Scott-compact
saturated g-convex subsets of𝒦(𝑋). We want to show that ↑𝑔𝑐𝑜𝑛𝑣((

⋂︀
𝐴𝑖)⊗̇𝐵) =

⋂︀
↑𝑔𝑐𝑜𝑛𝑣(𝐴𝑖 ⊗̇𝐵).

Inclusion is trivial. For the reverse inclusion, choose any g-convex Scott-open set 𝑈 containing
↑𝑔𝑐𝑜𝑛𝑣(

⋂︀
𝐴𝑖 ⊗̇𝐵). As every g-convex Scott-compact saturated subset of a dcpo is the intersection

of its g-convex Scott-open neighborhoods (by Lem. 4.11), it suffices to prove that the right-
hand-side is contained in 𝑈 . Observe that 𝑔𝑐𝑜𝑛𝑣((

⋂︀
𝐴𝑖)⊗̇𝐵) ⊆𝑈 and also (

⋂︀
𝐴𝑖)⊗̇𝐵 ⊆𝑈 , as ⊗ is

Scott-continuous by Lem. 4.2(ii) and
⋂︀
𝐴𝑖 and 𝐵 are Scott-compact saturated, we know that⋂︀

𝐴𝑖 and 𝐵 have Scott-open neighborhoods 𝑉 and 𝑊 respectively such that 𝑉 ⊗̇𝑊 ⊆𝑈 . Because⋂︀
𝐴𝑖 ⊆ 𝑉 , by Prop. 3.2 we know there is an 𝑖 such that 𝐴𝑖 ⊆ 𝑉 . Therefore 𝐴𝑖 ⊗̇𝐵 ⊆ 𝑉 ⊗̇𝑊 ⊆ 𝑈 ,

and because𝑈 is g-convex, we know 𝑔𝑐𝑜𝑛𝑣(𝐴𝑖 ⊗̇𝐵) ⊆𝑈 . Recall that𝑈 is Scott-open, we conclude
that

⋂︀
↑𝑔𝑐𝑜𝑛𝑣(𝐴𝑖 ⊗̇𝐵) ⊆𝑈 . The right-Scott-continuity is proved in a similar way.

A.13 Lem. 4.15
Proof. It is straightforward to show that −−∪𝐺 is idempotent, commutative, and associative, i.e., −−∪𝐺

is a semilattice operation. Similar to the argument in the proof of Lem. 4.14, it suffices to show the
Scott-continuity of −−∪𝐺 with respect to lower closures as well as upper closures.

• Let a directed family {𝐴𝑖 }𝑖∈ℐ (ordered by inclusion) and 𝐵 be nonempty Scott-closed g-convex

subsets of 𝒦(𝑋). We want to show 𝑔𝑐𝑜𝑛𝑣(
⋃︀
𝐴𝑖 ∪𝐵) =

⋃︀
𝑔𝑐𝑜𝑛𝑣(𝐴𝑖 ∪𝐵). Indeed, we have

𝑔𝑐𝑜𝑛𝑣(
⋃︀
𝐴𝑖 ∪𝐵) = 𝑔𝑐𝑜𝑛𝑣(

⋃︀
𝐴𝑖 ∪𝐵) = 𝑔𝑐𝑜𝑛𝑣(

⋃︀
𝐴𝑖 ∪𝐵) = 𝑔𝑐𝑜𝑛𝑣(

⋃︀
𝐴𝑖 ∪𝐵) = 𝑔𝑐𝑜𝑛𝑣(

⋃︀
(𝐴𝑖 ∪𝐵)) =⋃︀

𝑔𝑐𝑜𝑛𝑣(𝐴𝑖 ∪𝐵) by Lem. 4.8.

• Let a directed family {𝐴𝑖 }𝑖∈ℐ (ordered by reverse inclusion) and 𝐵 be nonempty Scott-compact
saturated g-convex subsets of𝒦(𝑋). We want to show that ↑𝑔𝑐𝑜𝑛𝑣((

⋂︀
𝐴𝑖)∪𝐵) =

⋂︀
↑𝑔𝑐𝑜𝑛𝑣(𝐴𝑖∪𝐵).

Inclusion is trivial. For reverse inclusion, it suffices to show that for every open set 𝑈 that
is a neighborhood of ↑𝑔𝑐𝑜𝑛𝑣((

⋂︀
𝐴𝑖)∪𝐵), we have 𝑈 contains the right-hand-side as a subset

by Lem. 4.11. Observe that 𝑔𝑐𝑜𝑛𝑣((
⋂︀
𝐴𝑖) ∪ 𝐵) ⊆ 𝑈 thus (

⋂︀
𝐴𝑖) ∪ 𝐵 ⊆ 𝑈 . Since

⋂︀
𝐴𝑖 and 𝐵

are Scott-compact saturated, there exist Scott-open neighborhoods 𝑉 and 𝑊 of
⋂︀
𝐴𝑖 and 𝐵,

respectively, such that 𝑉 ∪𝑊 ⊆𝑈 . Then by Prop. 3.2 we know that there exists 𝑖 ∈ ℐ such that
𝐴𝑖 ⊆ 𝑉 by the fact that

⋂︀
𝐴𝑖 ⊆ 𝑉 . Thus 𝐴𝑖 ∪ 𝐵 ⊆ 𝑉 ∪𝑊 ⊆ 𝑈 . Recall that 𝑈 is g-convex, we

have 𝑔𝑐𝑜𝑛𝑣(𝐴𝑖 ∪𝐵) ⊆ 𝑈 . Moreover, 𝑈 is Scott-open, thus saturated, hence we conclude that⋂︀
↑𝑔𝑐𝑜𝑛𝑣(𝐴𝑖 ∪𝐵) ⊆𝑈 .

A.14 Lem. 5.6
Lemma A.1. For any configuration ⟨𝑣,𝜔⟩, there is at most one ∆ such that ⟨𝑣,𝜔⟩ −→ ∆.

Proof. Straightforward.

Lemma A.2. −→ is a kernel.

Proof. Lem. A.1 tells us that −→ can be seen as a function ˆ−→ defined as follows:

ˆ−→(𝑥)(𝑦) def=
{︃
∆(𝑦) if 𝑥 −→ ∆

0 otherwise
.

For any 𝑥, it is straightforward to show that ˆ−→(𝑥) is a distribution.

Lemma A.3. −→𝑛 is a kernel for all 𝑛 ∈N.

Proof. By induction on 𝑛:

• −→0 can be seen as the everywhere-zero function ˆ−→0 which is trivially a kernel.

• −→𝑛+1 can be seen as the function defined as follows:

ˆ−→𝑛+1(⟨𝑣,𝜔⟩)(𝜔′) def=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[𝜔 =𝜔′] 𝑣 = 𝑣exit∑︁
𝜏∈supp(∆)

∆(𝜏) · ˆ−→𝑛(𝜏)(𝜔′) ⟨𝑣,𝜔⟩ −→ ∆ .

For any 𝑥, it is straightforward to show that ˆ−→𝑛+1(𝑥) is a distribution given that ˆ−→𝑛 is a
kernel.

Now we prove Lem. 5.6.

Proof. It is sufficient to show that

𝜆𝜔. sup
𝑛∈N
{ ˆ−→𝑛}(⟨𝑣entry,𝜔⟩) = (lfp⊑̇𝐾𝜆𝑣.⊥𝐾𝐹𝑃)(𝑣entry)

and we are instead going to show for all 𝑛 ∈N and 𝑣 ∈ 𝑉 the following holds

𝜆𝜔. ˆ−→𝑛(⟨𝑣,𝜔⟩) = 𝐹𝑛𝑃 (𝜆𝑣.⊥𝐾)(𝑣).

By induction on 𝑛, the base case is trivial because both sides compute to ⊥𝐾 . Suppose that for some 𝑛,
the equality holds for all 𝑣 ∈ 𝑉 . Then for all 𝑣 ∈ 𝑉 , we want to show that

𝜆𝜔. ˆ−→𝑛+1(⟨𝑣,𝜔⟩) = 𝐹𝑛+1
𝑃 (𝜆𝑣.⊥𝐾)(𝑣).

• If 𝑣 is not associated with any edges, then ˆ−→𝑛+1(⟨𝑣,𝜔⟩)(𝜔′) = [𝜔 = 𝜔′] for all 𝜔 and 𝜔′ . The
right-hand-side computes to 𝐹𝑃 (𝐹𝑛𝑃 (𝜆𝑣.⊥𝐾))(𝑣) and by the definition of 𝐹𝑃 we know it is equal
to 𝜆𝜔.𝜆𝜔′ .[𝜔 =𝜔′].

• If 𝑣 is associated with 𝑒 = ⟨𝑣, {𝑢1, · · · ,𝑢𝑘}⟩, then we know 𝜆𝜔. ˆ−→𝑛(⟨𝑢𝑖 ,𝜔⟩) = 𝐹𝑛𝑃 (𝜆𝑣.⊥𝐾)(𝑢𝑖) for
all 𝑖 by induction hypothesis.
– If 𝐶𝑡𝑟𝑙(𝑒) = 𝑠𝑒𝑞[act], then the right-hand-side is equal to JactK⊗𝐹𝑛𝑃 (𝜆𝑣.⊥𝐾)(𝑢1). The left-

hand-side is

𝜆𝜔.𝜆𝜔′ .
∑︁
𝜏

ˆ−→(⟨𝑣,𝜔⟩)(𝜏) · ˆ−→𝑛(𝜏)(𝜔′)

= 𝜆𝜔.𝜆𝜔′ .
∑︁
𝜔′′

JactK(𝜔)(𝜔′′) · ˆ−→𝑛(⟨𝑢1,𝜔
′′⟩)(𝜔′)

= JactK⊗𝐹𝑛𝑃 (𝜆𝑣.⊥𝐾)(𝑢1).

28

A PROOFS 29

– If 𝐶𝑡𝑟𝑙(𝑒) = 𝑐𝑜𝑛𝑑[𝜙], then the right-hand-side is equal to 𝐹𝑛𝑃 (𝜆𝑣.⊥𝐾)(𝑢1) J𝜙K^𝐹
𝑛
𝑃 (𝜆𝑣.⊥𝐾)(𝑢2).

The left-hand-side is

𝜆𝜔.𝜆𝜔′ .
∑︁
𝜏

ˆ−→(⟨𝑣,𝜔⟩)(𝜏) · ˆ−→𝑛(𝜏)(𝜔′)

= 𝜆𝜔.𝜆𝜔′ .(
∑︁
𝜔′′

J𝜙K(𝜔) · 𝛿(𝜔)(𝜔′′) · ˆ−→𝑛(⟨𝑢1,𝜔
′′⟩)(𝜔′) +

∑︁
𝜔′′

(1− J𝜙K(𝜔)) · 𝛿(𝜔)(𝜔′′) · ˆ−→𝑛(⟨𝑢2,𝜔
′′⟩)(𝜔′))

= 𝜆𝜔.𝜆𝜔′ .(J𝜙K(𝜔) · ˆ−→𝑛(⟨𝑢1,𝜔⟩)(𝜔′) + (1− J𝜙K(𝜔)) · ˆ−→𝑛(⟨𝑢2,𝜔⟩)(𝜔′))
= 𝜆𝜔.𝜆𝜔′ .(J𝜙K(𝜔) ·𝐹𝑛𝑃 (𝜆𝑣.⊥𝐾)(𝑢1)(𝜔)(𝜔′) + (1− J𝜙K(𝜔)) ·𝐹𝑛𝑃 (𝜆𝑣.⊥𝐾)(𝑢2)(𝜔)(𝜔′))

= 𝐹𝑛𝑃 (𝜆𝑣.⊥𝐾)(𝑢1) J𝜙K^𝐹
𝑛
𝑃 (𝜆𝑣.⊥𝐾)(𝑢2).

Thus we conclude the proof.

A.15 Thm. 6.3
Proof. We only show the proof for the over-approximations. By definition, we have C [𝑃] =

lfp⊑̇𝐶⊥̇𝐶 𝐹
C
𝑃 =

⨆︀↑
𝑛∈N(𝐹C

𝑃)𝑛(⊥̇𝐶), and Y ♯[𝑃] = lfp⊑̇𝑌⊥̇𝑌 𝐹
Y
𝑃 obtained by Knaster-Tarski. Then it suffices to

show that for every 𝑛 ∈N, we have (𝐹C
𝑃)𝑛(⊥̇𝐶)⊑̇𝐶 𝛾̇(Y ♯[𝑃]). Now we proceed by induction on 𝑛.

• If 𝑛 = 0, the result follows immediately because ⊥𝐶 is the least element in 𝒞.

• Suppose that (𝐹C
𝑃)𝑘(⊥̇𝐶)⊑̇𝐶 𝛾̇(Y ♯[𝑃]) for some 𝑘 ∈N. Let’s denote the left hand side by 𝐿𝐻𝑆 and

Y ♯[𝑃] by 𝑆𝑂𝐿. We want to show that 𝐹C
𝑃 (𝐿𝐻𝑆)⊑̇𝐶 𝛾̇(𝑆𝑂𝐿). This expands to 𝐹C

𝑃 (𝐿𝐻𝑆)(𝑣) ⊑𝐶
𝛾(𝑆𝑂𝐿(𝑣)) for all 𝑣 ∈ 𝑉 . We proceed by a case analysis on the kind of edges leaving 𝑣.

1. If 𝑣 = 𝑣exit𝑖 for some 𝑖, then 𝐹C
𝑃 (𝐿𝐻𝑆)(𝑣) = 1𝐶 . Then we can conclude this case by showing

that 𝑆𝑂𝐿(𝑣) = 1𝑌 . By definition of 𝑆𝑂𝐿, we know that 𝐹Y
𝑃 (𝑆𝑂𝐿) = 𝑆𝑂𝐿, thus 𝐹Y

𝑃 (𝑆𝑂𝐿)(𝑣) =

𝑆𝑂𝐿(𝑣). By definition of 𝐹Y
𝑃 , we know that 𝐹Y

𝑃 (𝑆𝑂𝐿)(𝑣) = 1𝑌 .

2. If 𝑣 , 𝑣exit𝑖 for all 𝑖, we have

𝐹C
𝑃 (𝐿𝐻𝑆)(𝑣) = −−−

⋃︁
𝐶
{ ̂𝐶𝑡𝑟𝑙(𝑒)(𝐿𝐻𝑆(𝑢1), · · · ,𝐿𝐻𝑆(𝑢𝑘)) | 𝑒 = ⟨𝑣, {𝑢1, · · · ,𝑢𝑘⟩ ∈ 𝐸}

⊑𝐶 −−−
⋃︁

𝐶
{ ̂𝐶𝑡𝑟𝑙(𝑒)(𝛾(𝑆𝑂𝐿(𝑢1)), · · · ,𝛾(𝑆𝑂𝐿(𝑢𝑘))) | 𝑒 = ⟨𝑣, {𝑢1, · · · ,𝑢𝑘}⟩ ∈ 𝐸}.

If we can prove that for any kind of 𝐶𝑡𝑟𝑙(𝑒) it holds that ̂𝐶𝑡𝑟𝑙(𝑒)(𝛾(𝑥1), · · · ,𝛾(𝑥𝑘)) ⊑𝐶
𝛾(̂𝐶𝑡𝑟𝑙(𝑒)(𝑥1, · · · ,𝑥𝑘)), then we can conclude the case by the following argument:

𝐹C
𝑃 (𝐿𝐻𝑆)(𝑣) ⊑𝐶 −−−

⋃︁
𝐶
{𝛾(̂𝐶𝑡𝑟𝑙(𝑒)(𝑆𝑂𝐿(𝑢1), · · · ,𝑆𝑂𝐿(𝑢𝑘))) | 𝑒 = ⟨𝑣, {𝑢1, · · · ,𝑢𝑘⟩ ∈ 𝐸}

⊑𝐶 𝛾(−−−
⋃︁

𝑌
{ ̂𝐶𝑡𝑟𝑙(𝑒)(𝑆𝑂𝐿(𝑢1), · · · ,𝑆𝑂𝐿(𝑢𝑘)) | 𝑒 = ⟨𝑣, {𝑢1, · · · ,𝑢𝑘} ∈ 𝐸⟩})

= 𝛾(𝐹Y
𝑃 (𝑆𝑂𝐿)(𝑣))

= 𝛾(𝑆𝑂𝐿(𝑣)).

Now consider the form of 𝐶𝑡𝑟𝑙(𝑒).

– 𝐶𝑡𝑟𝑙(𝑒) = 𝑠𝑒𝑞[act]: We want to show that ̂𝑠𝑒𝑞[act](𝛾(𝑥1)) ⊑𝐶 𝛾(̂𝑠𝑒𝑞[act](𝑥1)). It is equivalent
to JactKC ⊗𝐶 𝛾(𝑥1) ⊑𝐶 𝛾(JactKY ⊗𝑌 𝑥1). Indeed, we have

JactKC ⊗𝐶 𝛾(𝑥1) ⊑𝐶 𝛾(JactKY)⊗𝐶 𝛾(𝑥1) ⊑𝐶 𝛾(JactKY ⊗𝑌 𝑥1)

by assumption, monotonicity of ⊗𝐶 , and properties of 𝛾 .

– 𝐶𝑡𝑟𝑙(𝑒) = 𝑐𝑜𝑛𝑑[𝜙]: We want to show that ̂𝑐𝑜𝑛𝑑[𝜙](𝛾(𝑥1),𝛾(𝑥2)) ⊑𝐶 𝛾(̂𝑐𝑜𝑛𝑑[𝜙](𝑥1,𝑥2)). It is
equivalent to 𝛾(𝑥1)𝜙^𝐶 𝛾(𝑥2) ⊑𝐶 𝛾(𝑥1 𝜙^𝑌

𝑥2). Appeal to properties of 𝛾 .

– 𝐶𝑡𝑟𝑙(𝑒) = 𝑐𝑎𝑙𝑙[𝑖 → 𝑗]: We want to show that ̂𝑐𝑎𝑙𝑙[𝑖→ 𝑗](𝛾(𝑥1)) ⊑𝐶 𝛾(̂𝑐𝑎𝑙𝑙[𝑖→ 𝑗](𝑥1)). It is
equivalent to 𝐿𝐻𝑆(𝑣entry𝑗)⊗𝐶 𝛾(𝑥1) ⊑𝐶 𝛾(𝑆𝑂𝐿(𝑣entry𝑗)⊗𝑌 𝑥1). Indeed, we have

𝐿𝐻𝑆(𝑣entry𝑗)⊗𝐶 𝛾(𝑥1) ⊑𝐶 𝛾(𝑆𝑂𝐿(𝑣entry𝑗))⊗𝐶 𝛾(𝑥1) ⊑𝐶 𝛾(𝑆𝑂𝐿(𝑣entry𝑗)⊗𝑌 𝑥1)

by induction hypothesis, monotonicity of ⊗𝐶 , and properties of 𝛾 .

30

	1 Introduction
	2 An Operational Semantics for Low-Level Probabilistic Programs
	2.1 A Hyper-Graph Program Model
	2.2 A Distribution-Based Small-Step Operational Semantics
	2.3 Why is a Denotational Semantics Desirable?

	3 A Summary of Existing Domain-Theoretic Developments
	3.1 Background from Domain Theory
	3.2 Probabilistic Powerdomains
	3.3 Nondeterministic Powerdomains

	4 Nondeterminism-First
	4.1 A Powerdomain for Sub-Probability Kernels
	4.2 Generalized Convexity
	4.3 A g-convex Powerdomain for Nondeterminism-First

	5 An Algebraic Denotational Semantics
	5.1 A Fixpoint Semantics based on Markov Algebras
	5.2 An Equivalence Result

	6 Application: Static Analysis for Probabilistic Programs with Nondeterminism
	7 Discussion
	7.1 Continuous Distributions
	7.2 Higher-Order Functions

	8 Conclusion
	Acknowledgments
	References
	A Proofs
	A.1 The:KernCOH
	A.2 Lem:CondCompCont
	A.3 Lem:GConvPreservation
	A.4 Lem:OpPresConv
	A.5 Lem:ConvRepr
	A.6 Lem:ConvClosCont
	A.7 Lem:CHCompact
	A.8 Lem:GConvSeparation
	A.9 Lem:Separation
	A.10 Lem:ConvCompact
	A.11 The:GConvPowerdomainDCPO
	A.12 Lem:GConvPowerdomainOpCont
	A.13 Lem:FormalUnionCont
	A.14 Lem:OperationDenotationEq
	A.15 The:PMASoundness

