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Probabilistic Systems are Becoming Pervasive

Randomized Algorithms 
(improve efficiency)

Cyber-Physical Systems 
(model uncertainty)

Artificial Intelligence 
(describe statistical models)
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Application: Randomized Quicksort

Image source: https://geekfactorial.blogspot.com/2016/08/randomized-quick-sort-algorithm.html.

๏ Improve efficiency 

๏ From  to  (expected) 

๏ Samplesort 
๏ Use >1 random samples as pivots

Θ(n2) Θ(n log n)
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https://geekfactorial.blogspot.com/2016/08/randomized-quick-sort-algorithm.html


Application: Airborne Collision Avoidance

๏ Model uncertainty 

๏ Probabilistic dynamics 

๏ Probabilistic sensors 

๏ High-confidence system
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Image source: Kochenderfer, et al. “Next-Generation Airborne Collision Avoidance System.” Lincoln Laboratory Journal (2012).



Application: Statistical Phylogenetics

๏ Describe statistical models 

๏ Automated reasoning 

๏ Apply Bayesian inference to 
infer evolutionary history 

๏ Solve previously intractable 
problems
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Ronquist, et al. “Universal probabilistic programming offers a powerful approach to statistical phylogenetics.” Communications Biology (2021). 
Image source: https://www.nationalgeographic.org/media/tree-life/.



Probabilistic Programs
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Draw random data from distributions Change control-flow at random

Image sources: https://www.libertystorch.info/2022/02/21/the-grab-bag/; https://www.stockvault.net/photo/179872/at-a-crossroads-decisions-and-choices-concept-with-large-arrow-signs.

https://www.libertystorch.info/2022/02/21/the-grab-bag/
https://www.stockvault.net/photo/179872/at-a-crossroads-decisions-and-choices-concept-with-large-arrow-signs


Probabilistic Programs

๏ True randomness 

๏ A distribution on execution paths 

๏ Probabilistic nondeterminism

7

if 
| prob(1/3) → choice ≔ 1 
| prob(1/3) → choice ≔ 2 
| prob(1/3) → choice ≔ 3 
fi



Probabilistic Programs

๏ True randomness 

๏ A distribution on execution paths 

๏ Probabilistic nondeterminism

7

if 
| prob(1/3) → choice ≔ 1 
| prob(1/3) → choice ≔ 2 
| prob(1/3) → choice ≔ 3 
fi

choice :∈p (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3)



Demonic Programs

๏ Dijkstra’s Guarded Command Language (GCL) 

๏ A set of execution paths 

๏ Demonic nondeterminism

8

if 
| true → prize ≔ 1 
| true → prize ≔ 2 
| true → prize ≔ 3 
fi
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๏ Dijkstra’s Guarded Command Language (GCL) 

๏ A set of execution paths 

๏ Demonic nondeterminism

8

if 
| true → prize ≔ 1 
| true → prize ≔ 2 
| true → prize ≔ 3 
fi

prize :∈d {1,2,3}



Example: Monty Hall

1 2 3

Image source: Maria Gorinova’s Advances in Programming Languages (Guest Lecture) slides on Probabilistic Programming.
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Example: Monty Hall
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Example: Monty Hall

๏ McIver and Morgan’s probabilistic 
Guarded Command Language (pGCL)

๏ Combine two forms of nondeterminism: 
๏ Probabilistic 
๏ Demonic

10

prize :∈d {1,2,3}; 
choice :∈p (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3); 
host :∈d {1,2,3} \ {prize,choice}; 
if switch then 
  choice :∈d {1,2,3} \ {choice,host} 
fi 
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Example: Monty Hall

๏ McIver and Morgan’s probabilistic 
Guarded Command Language (pGCL)

๏ Combine two forms of nondeterminism: 
๏ Probabilistic 
๏ Demonic

๏ “Demons” minimize the probability

10

prize :∈d {1,2,3}; 
choice :∈p (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3); 
host :∈d {1,2,3} \ {prize,choice}; 
if switch then 
  choice :∈d {1,2,3} \ {choice,host} 
fi 
ℙ(choice = prize) = ?



Example: Failure Modeling
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Example: Failure Modeling

๏ An example of probabilistic modeling 
checking

๏ Send c messages, each with a failure 
probability 0.1

11

fail := FALSE; 
c :∈d {0,1,2}; 
while not(fail) and c > 0 do 
  fail :∈p (TRUE @ 0.1 | FALSE @ 0.9 ); 
  c := c - 1 
od 



Example: Failure Modeling

๏ An example of probabilistic modeling 
checking

๏ Send c messages, each with a failure 
probability 0.1

๏ What is the probability of success?

11

fail := FALSE; 
c :∈d {0,1,2}; 
while not(fail) and c > 0 do 
  fail :∈p (TRUE @ 0.1 | FALSE @ 0.9 ); 
  c := c - 1 
od 
ℙ( fail = FALSE) = ?



Example: Abstraction
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Example: Abstraction

๏ Program analysis introduces abstraction

๏ Predicate Abstraction 
๏ [c=0] is a Boolean variable

12

fail := FALSE; 
[c=0] :∈d {TRUE,FALSE}; 
while not(fail) and not([c=0]) do 
  fail :∈p (TRUE @ 0.1 | FALSE @ 0.9 ); 
  [c=0] :∈a {TRUE,FALSE} 
od; 
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Example: Abstraction

๏ Program analysis introduces abstraction

๏ Predicate Abstraction 
๏ [c=0] is a Boolean variable

๏ Abstraction nondeterminism 
๏ Maximize —> Upper bound 
๏ Minimize —> Lower bound

12

fail := FALSE; 
[c=0] :∈d {TRUE,FALSE}; 
while not(fail) and not([c=0]) do 
  fail :∈p (TRUE @ 0.1 | FALSE @ 0.9 ); 
  [c=0] :∈a {TRUE,FALSE} 
od; 
ℙ( fail = FALSE) = ?



How to automate such quantitative reasoning 
about probabilistic programs? 
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What is the expected value of an expression?



How to automate such quantitative reasoning 
about probabilistic programs? 

13

Examples

What is the probability that an assertion holds?

What is the expected value of an expression?

What is the expected time complexity of a program?



Challenge I: 
How to support multiple confluence operations?
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… :∈p … 
… :∈d … 
… :∈a …



Semantic Algebras

๏ Kleene Algebras: A compositional and flexible framework for program semantics

15

Program Construct

A program S An interpretation  of  into the algebra 𝕊 S
Branching between  and A B 𝔸 ⊕ 𝔹

Sequencing of  and A B 𝔸 ⊗ 𝔹
Iteration (i.e., loop) of A 𝔸*

“abort”, “skip” , 0 1

Algebraic Representation



Do Kleene Algebras Suffice?
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Do Kleene Algebras Suffice?
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(([prob(1/2)] ⊗ x ≔ 1) ⊕ ([prob(1/2)] ⊗ x ≔ 2))
⊕ (([prob(1/2)] ⊗ x ≔ 3) ⊕ ([prob(1/2)] ⊗ x ≔ 4))

if 
| true → x :∈p (1 @ 1/2 | 2 @ 1/2) 
| true → x :∈p (3 @ 1/2 | 4 @ 1/2) 
fi

= ([prob(1/2)] ⊗ x ≔ 1)
⊕ ([prob(1/2)] ⊗ x ≔ 2)
⊕ ([prob(1/2)] ⊗ x ≔ 3)
⊕ ([prob(1/2)] ⊗ x ≔ 4)

Probabilities sum up to 2!
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…

(a ⊗ b) ⊗ c = a ⊗ (b ⊗ c)
a ⊗ 1 = 1 ⊗ a = a
aϕ⊕ b = bϕ⊕ a
a ⊓ a = a

๏ Key observation: Probabilistic programs have multiple confluence operations

Our Approach: Markov Algebras

18

Program denotations 
form a CPO

Sequencing, branching, and 
nondeterministic-choice

⟨M, ⊑ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩

Easy to extend with more 
confluence operations!
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Markov Algebras Suffice!

if 
| true → x :∈p (1 @ 1/2 | 2 @ 1/2) 
| true → x :∈p (3 @ 1/2 | 4 @ 1/2) 
fi

19

(x ≔ 11/2⊕ x ≔ 2) ⊓ (x ≔ 31/2⊕ x ≔ 4)

while x>0 do 
  x :∈p (x+1 @ 1/2 | x-1 @ 1/2) 
od

μS . ((x ≔ x+11/2⊕ x ≔ x-1) ⊗ S)[x>0]⊕ skip

Recursive Program Scheme
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Standard: State → State

GCL: State → ℘(State)
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{ }

{ }

, ,
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State → ℘(𝔻(State))

Flexibility: Different Models for Nondeterminism

๏ pGCL:
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State → ℘(𝔻(State))

𝔻(State → ℘(State))

Flexibility: Different Models for Nondeterminism

๏ pGCL:

๏ Cousot’s Probabilistic Abstract Interpretation (PAI):
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State → ℘(𝔻(State))

𝔻(State → ℘(State))

℘(State → 𝔻(State))

Flexibility: Different Models for Nondeterminism

๏ pGCL:

๏ Cousot’s Probabilistic Abstract Interpretation (PAI):

๏ Compile-Time/Relational Nondeterminism:

21

{ },

{ },

{ }, ,



Challenge II: 
How to construct recursive program schemes?

22

while x>0 do 
  x :∈p (x+1 @ 1/2 | x-1 @ 1/2) 
od

μS . ((x ≔ x+11/2⊕ x ≔ x-1) ⊗ S)[x>0]⊕ skip



A Control-Flow-Graph’s Perspective

๏ Kleene Algebras are compatible with control-flow graphs via regular expressions

Program Construct Algebraic Representation

A program S An interpretation  of  into the algebra 𝕊 S
The control-flow graph of S A regular expression over , , , , and 0 1 ⊕ ⊗ *
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๏ Kleene Algebras are compatible with control-flow graphs via regular expressions

Program Construct Algebraic Representation

A program S An interpretation  of  into the algebra 𝕊 S
The control-flow graph of S A regular expression over , , , , and 0 1 ⊕ ⊗ *

[n==1]

[n!=1]

[n%2==0]

[n%2!=0]

i:=i+1

n:=n/2

n:=3*n+1

entry exit
skip

[n!=1]
⊗ ⊕[n%2==0] n:=n/2
⊗[n%2!=0] n:=3*n+1

⊗( )⊗ i:=i+1( )*⊗ [n==1]

23
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prob(1/2)

prob(1/2)

prob(1/2)

prob(1/2)

x := 0

x ≔ 2

x ≔ 3

x ≔ 4

x ≔ 1

skip

skip

if 
| true → x :∈p (1 @ 1/2 | 2 @ 1/2) 
| true → x :∈p (3 @ 1/2 | 4 @ 1/2) 
fi

Probabilities sum up to 2!x' = 1
1/2

x' = 2
1/2

x' = 3
1/2

x' = 4
1/2
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Our Approach: Control-Flow Hyper-Graphs
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if 
| true → x :∈p (1 @ 1/2 | 2 @ 1/2) 
| true → x :∈p (3 @ 1/2 | 4 @ 1/2) 
fi

x := 0

x ≔ 2

x ≔ 3

x ≔ 4

x ≔ 1

skip

skip

p(1/2)

p(1/2)

p(1/2)

p(1/2)

p(1/2)

x' = 1 x' = 2 x' = 3 x' = 4

{ , }p(1/2) p(1/2) p(1/2) p(1/2)

Hyper-edge 
(for confluence) 

Hyper-path 
(like a tree)
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[x>0]

false
true

prob(0.6)

truefalse

x≔x-1x≔x+1

t:=t+1

μS .
cond[x > 0](prob[0.6](seq[x := x − 1](seq[t := t + 1](S));

seq[x := x + 1](seq[t := t + 1](S)));
1)

while x>0 do 
  if prob(0.6) then x≔x+1 
  else x≔x-1 fi; 
  t≔t+1 
od
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od
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30

κ(0) = 0
κ(1) = 2/3 * (1 + κ(0)) + 1/3 * 0 = 2/3
κ(2) = 2/3 * (1 + κ(1)) + 1/3 * 0 = 10/9

⋯
κ(∞) = 2 Need  iterations to 

converge!
∞
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𝔼[Δx]
r ⊗ t ≜ r + t

rp⊕ t ≜ p * r + (1 − p) * t

while prob(2/3) do 
  x ≔ x + 1 
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Equivalent to solve: 
 

Analytical solution: 
 

No need for iteration!

s = 2/3 * (1 + s) + 1/3 * 0,

s = 2

๏ Markov algebra for computing  

๏ Sequencing:  

๏ Branching: 

𝔼[Δx]
r ⊗ t ≜ r + t

rp⊕ t ≜ p * r + (1 − p) * t

while prob(2/3) do 
  x ≔ x + 1 
od

μS . ((x ≔ x+1) ⊗ S)[2/3]⊕ skip
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Non-iterative Intra-procedural Analysis

๏ Observation: Loops are (right-)linear recursions, thus we can always extract a system of 
linear equations 

๏ For each , we extract an equation μS . E S = E

๏ Techniques to solve linear equation systems extracted from probabilistic programs: 

๏ Linear Programming: Compute probabilities, expectations, or matrices 

๏ Loop-Invariant Generation: Derive probabilistic or expectation invariants
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f(x) = 1/3 * 1 + 2/3 * (x * x)

Δ(i) = ( f(p(i)) − p(i)) + f′￼(p(i)) * Δ(i)

p(i+1) ← p(i) + Δ(i)

Non-linear!
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๏ Start from an initial approximation ν(0)

๏ At step , solve a linear equation
, i.e., set 

i
f(ν(i)) + f′￼(ν(i)) * (y − ν(i)) = 0
ν(i+1) = ν(i) − f(ν(i))/f′￼(ν(i))

34

p = 1/3 * 1 + 2/3 * (p * p)

f(x) = 1/3 * 1 + 2/3 * (x * x) − x
= 2/3 * x2 − x + 1/3

f′￼(x) = 4/3 * x − 1

ν(0) ← 0
ν(1) = 0 − f(0)/f′￼(0) = 1/3
ν(2) = 1/3 − f(1/3)/f′￼(1/3) = 7/15
ν(3) = 7/15 − f(7/15)/f′￼(7/15) = 127/255

⋯
ν(∞) = 1/2



Newton’s Method Converges Faster
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proc X begin 
  if prob(1/3) then 
    skip 
  else 
    call X; 
    call X 
  fi 
end 
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call X

call X

1

p(1/3) p(2/3)

call Δ

call Δ

0
v

v

Differentiate

Every root-to-leaf path 
contains at most one call!

Linear!

Esparza, J., Kiefer, S, and Luttenberger, M. 2010. Newtonian program analysis. J. ACM 57, 6, Article 33, (October 2010), 47 pages.

d( f * g)
dx

=
df
dx

* g + f *
dg
dx

When X=v
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Linearized 
Equation 

System

Differentiate at ν(i)

Solve the linear system to get ν(i+1)
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Towards a flexible and efficient framework for 
program analysis of probabilistic programs
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Algorithm:

Markov Algebras for Multiple Kinds of Confluences 

Construction of Recursive Program Schemes  

Newton’s Method for pre-Markov Algebras
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