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Probabilistic Systems are Becoming Pervasive

~

Randomized Algorithms Cyber-Physical Systems Artificial Intelligence
(improve efficiency) (model uncertainty) (describe statistical models)




Application: Randomized Quicksort

Randomized Quicksort

Randomized-Partition(A. p. r
1. i« Random(p, r)

® |m prave efficien Y 2. exchange A[r] < A[i]
3. return Partition(A, p, r)

® From O(n°) to ®(n log n) (expected)

Randomized-Quicksort(A, p, r)

1. fp<r
® Samp\eSOrt 2. then g < Randomized-Partition(A, p, r)
3. Randomized-Quicksort(A, p ,g-1)
: 4. Randomized-Quicksort(A, g+1, Swap
® Use >1 random samples as pivots AT IONARA

! =

p1vot

Image source: https://geekfactorial.blogspot.com/2016/08/randomized-quick-sort-algorithm.html.
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Application: Airborne Collision Avoidance

Updates
once per second Fast table
, Sensor lookups
® Model uncertainty noasromants
S — State —  Action
_ estimation _| selection
® Probabilistic dynamics BVl State Resolution
- distribution -
y
® Probabilistic sensors K LS oonaest it enggee
v | 0011101100011011001
Probabilistic 1010010000110010111
dynamic model : 0100010111011000101
L nd - R
® Hignh-confidence system Probabilistic .
sensor model Optimized
logic table

Image source: Kochenderfer, et al. “Next-Generation Airborne Collision Avoidance System.” Lincoln Laboratory Journal (2012).
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® [escribe statistical models
@ Automated reasoning

® Apply Bayesian inference to
infer evolutionary history

@ Solve previously intractable
problems

Deuterostomia

Chordata
(vertebrates, mammals, humans) .
~60,000 species

Echinodermata
(starfishes, sea urchins)

This tree of life shows the relationships
among common groups of animals. The
main branch in this tree, which separates
the animals into two distinct groups,
Deuterostomia and Protostomia, split
about seven hundred million years ago.

This tree shows how today’s animal ~700 million
species have diverged over time from years ago

common ancestors.

—
'G‘)\ Porifera

~5,000
species

NATIONAL
GEOGRAPHIC

| \\) (sponges)

@

Arthropoda N\ .:’f%‘\}
4 (insects, crustaceans, spiders, ticks) /§ = \
~1,500,000 species k
Nematoda
(roundworms) Tardigrada
(water bears)
~1,200 species
Mollusca y
(clams, snails, squids) i\ =3
SA)

~20,000 species
~8,500 species

Annelida

Brachiopoda s 7% Y

(lamp shells) \N,Q‘lj/
~300 species

Platyhelmintha ﬁ
(flatworms) > :
~13,000 species A

Cnidaria
(sea anemones, ./
corals, hydra,
jellyfishes)
~9,000 species

Ronquist, et al. “Universal probabilistic programming offers a powerful approach to statistical phylogenetics” Communications Biology (2021).

Image source: https://www.nationalgeographic.org/media/tree-life/.



Probabilistic Programs

Draw random data from distributions Change control-flow at random

Image sources: https://www.libertystorch.info/2022/02/21/the-grab-bag/; https://www.stockvault.net/photo/179872/at-a-crossroads-decisions-and-choices-concept-with-large-arrow-signs.
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Probabilistic Programs

if
prob(1/3) — cholce =
® True randomness srob(1/3) = choice = 2
prob(1/3) — choice +

@ Adistribution on execution paths
fi

® Probabilistic hondeterminism



Probabilistic Programs

if
prob(1/3) — choice = 1
® True randomness vrob(1/3) = choice = 2
prob(1/3) — choice +

@ Adistribution on execution paths
fi

® Probabilistic hondeterminism

choice :ep (1 @1/3 | 2 @ 1/3 | & & =



Demonic Programs

® Dijkstra’s Guarded Command Language (CCL)
® Asetof execution paths

® Demonic hondeterminism

1f

fi

true — prize

true
LIie

Ol ZE

L2




Demonic Programs

1f
. true 2 prize & §
® Dijkstra’s Guarded Command Language (GCL) brie o a0
true ~* prize = o

® Asetof execution paths
fi

prize ‘eq 0

® Demonic hondeterminism



Fxample: Monty Hall

Image source: Maria Gorinova’s Advances in Programming Languages (Guest Lecture) slides on Probabilistic Programming.
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Fxample: Monty Hall
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Fxample: Monty Hall

® Mclver and Morgan’s probabilistic

Guarded Command Language (pCCL) P ~+4% 4 11,2,3};

choice :ep (1 @1/3 | 2 @ 1/2 | 1 @ T

® Combine two forms of nondeterminism: host :€q4 {1,2,3} \ {prize,choice};
if switch then

. choice :e€4 11,2,3} \ ichoice It
® Demonic £

® Probabilistic
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Fxample: Monty Hall

® Mclver and Morgan’s probabilistic

Guarded Command Language (pCCL) P ~+4% 4 11,2,3};

choice :ep (1 @1/3 | 2 @ 1/2 | 1 @ T

® Combine two forms of nondeterminism: host :eq 11,2,3} \ 1prize,choicej;
if switch then

. choice :€4 {11, 2,3} \ ichoice o=t
® Demonic £4

® Probabilistic

P(choice = prize) = 7
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Fxample: Monty Hall

® Mclver and Morgan’s probabilistic

Guarded Command Language (pCCL) P ~+4% 4 11,2,3};

choice :ep (1 @1/3 | 2 @ 1/2 | 1 @ T

® Combine two forms of nondeterminism: host :eq 11,2,3} \ 1prize,choicej;
if switch then

. choice :€4 {11, 2,3} \ ichoice o=t
® Demonic £4

® Probabilistic

P(choice = prize) = 7

® “‘Demons” minimize the probability

10



Fxample: Failure Modeling
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Fxample: Failure Modeling

® An example of probabilistic modeling faill := FALSE;
checking ¢ oteg 10,1 20
while not(fail) and ¢ > 0 do
® Send ¢ messages, each with a failure fail :e, (TRUE @ 0.1 | FALSE (@ G =,
probability 0.1 e o0 1

od

1



Fxample: Failure Modeling

® An example of probabilistic modeling faill := FALSE;
checking L e 101,20
while not(fail) and ¢ > 0 do
® Send ¢ messages, each with a failure tail (TRUE @ 0.1 | FALSE @ &
probability 0.1 T
od

® What s the probability of success? P(fail = FALSE) = 1

1



Fxample: Abstraction
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Fxample: Abstraction

® Program analysis introduces abstraction
fall = FA aF

® Predicate Abstraction '€=0| 1es | TRUE BALSE 3

while not(fail) and not(|c=0]) do

fail :€p (TRUE @ 0.1 FALSE @ 0.9 );
c=0] :es {TRUE, FALSES
od;

® [c=0] isaBoolean variable

12



Fxample: Abstraction

® Program analysis introduces abstraction
fall = FA aF

@ Predicate Abstraction 'c=0] :€q {TRUE FALSF
while not(fail) and not([c=0]) do

® [c=0] isaBoolean variable

fail (TRUE @ 0.1 | FALSE @ @ & =5
c=0} :c. {IRE FALS
od:

P(fail = FALSE) =
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Fxample: Abstraction

® Program analysis introduces abstraction
fall = FA aF

@ Predicate Abstraction 'c=0] :€q {TRUE FALSF
while not(fail) and not([c=0]) do

® [c=0] isaBoolean variable

fail (TRUE @ 0.1 | FALSE e 0. ®

® Abstraction nondeterminism c=0] :e. {TRUE,FALSE
od:

P(fail = FALSE) =

® Maximize —> Upper bound

& I\ himize— | ower bolnd
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How to automate such|quantitativelreasoning
about probabilistic programs?

13



How to automate such|quantitativelreasoning
about probabilistic programs?

Examples

What is the probability that an assertion holds?
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How to automate such|quantitativelreasoning
about probabilistic programs?

Examples
What is the probability that an assertion holds?

What is the expected value of an expression?
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How to automate such|quantitativelreasoning
about probabilistic programs?

Examples
What is the probability that an assertion holds?
What is the expected value of an expression?

What is the expected time complexity of a program?

13



Challenge I:
How to support multiple confluence operations?

14



Semantic Algebras

®© Kleene Algebras: A compositional and flexible framework for program semantics

Program Construct Algebraic Representation
A program S An interpretation S of § into the algebra
Branching between A and B AP DB
Sequencing of A and B AR B
Iteration (i.e., loop) of A AF

“abort’ “skip’ 0,1

15



Do Kleene Algebras Suffice?

16



if

fi

1rue "> x :
LIriue * x :
1true > x

Do Kleene Algebras Suffice?

e
w N =

16




if

fi

1rue "> x :
Lrie > x :
1true > x

Do Kleene Algebras Suffice?

= ([true] @ x:=1)
P . @D ([true] ® x = 2)
= 3 D ([true] @ x = 3)
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Do Kleene Algebras Suffice?

if
relie > ¢ — | ([true] @ x:=1)
e oy = ) @D ([true] ® x = 2)
true = x = 3 P ([true] ® x :=3)

fi

if

ll
[y

prob(1/3) — x :
Biobl 1 /3) ~ x = )
prob(1/3) — x :
fi

|l
L)

16



if

fi

1f

1rue "> x :
LIriue * x :
1true > x

prob(’

fi

prob (1

Do Kleene Algebras Suffice?

e
w N =

prob(1/3) — x

S L
3y

([true| @ x:=1)
D ([true] ® x = 2)
D ([true] @ x = 3)

([prob(1/3)] ® x=1)
D ([prob(1/3)] ® x=2)
® ([prob(1/3)] ® x=3)




Do Kleene Algebras Suffice?

if
true * ¥ :e, (1 @ 1/2 ) 260 % @
frie > ¥ ‘e (3@ 1/2 | 4@ 17

fi

17



Do Kleene Algebras Suffice?

if
true -4 ¢ e (1@ 1/
frte Y X ‘c, 13 @ 1/2

fi

2812
h @ 1/2)

(([prob(1/2)] ® x=1) & ([prob(1/2)] ® x = 2))
D (([prob(1/2)] & x:=3) @ ([prob(1/2)] ® x = 4))




Do Kleene Algebras Suffice?

1T
true * ¥ :e, (1 @ 1/2 ) 260 % @
frie > x ‘e, (3@ 1/2 4@ 12

fi

(([prob(1/2)] ® x=1) & ([prob(1/2)] ® x = 2))
D (([prob(1/2)] & x:=3) @ ([prob(1/2)] ® x = 4))

= ([prob(1/2)] ® x:=1)
D ([prob(1/2)] ® x = 2)
® ([prob(1/2)] ® x :=3)
® ([prob(1/2)] @ x = 4)

17



Do Kleene Algebras Suffice?

1f
= X (g 12 2@ 1/2)
— X (3@ 1/2 4@ 12

fi

(([prob(1/2)] ® x=1) & ([prob(1/2)] ® x = 2))
D (([prob(1/2)] & x:=3) @ ([prob(1/2)] ® x = 4))

= ([prob(1/2)] @ x:=1)
® ([prob(1/2)] ® x=2) Probabilities sum up to 2!
® ([prob(1/2)] ® x=3)
D ([prob(1/2)] ® x = 4)

17




Our Approach: Markov Algebras

® Key observation: Probabilistic programs have multiple confluence operations

<M9 E 9®9¢@9H9991>
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Our Approach: Markov Algebras

® Key observation: Probabilistic programs have multiple confluence operations

<M9 E 9®9¢@9H9991>

.

Program denotations
forma CPO
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Our Approach: Markov Algebras

® Key observation: Probabilistic programs have multiple confluence operations

<M9 E 9®9¢@9H9991>

yF

Program denotations Sequencing, branching, and
form.a C PO nondeterministic-choice
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Our Approach: Markov Algebras

® Key observation: Probabilistic programs have multiple confluence operations

<M9 E 9®9¢@9H9991>

yF

Program denotations Sequencing, branching, and
forma CPO nondeterministic-choice

Easy to extend with more

confluence operations!
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Our Approach: Markov Algebras

® Key observation: Probabilistic programs have multiple confluence operations

<M9 E ’ ® 9¢@ ° ] 9gal>
Program denotations Sequencing, branching, and O interprets abort
form a CPO nondeterministic-choice 1 interprets skip

Easy to extend with more

confluence operations!
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Our Approach: Markov Algebras

® Key observation: Probabilistic programs have multiple confluence operations

<M9 E 9®9¢@9H9991>

yF

Program denotations Sequencing, branching, and
forma CPO nondeterministic-choice

Easy to extend with more

confluence operations!
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Our Approach: Markov Algebras

® Key observation: Probabilistic programs have multiple confluence operations

<M9 E 9®9¢@9H9991>

/ l @®b)R®c=aQ® (b c)

Program denotations Sequencing, branching, and a®@l=1®@a=a
form a CPO nondeterministic-choice a,®b =050 a

alla = a

Easy to extend with more

confluence operations!

18



Markov Algebras Suffice!
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Markov Algebras Suffice!

1f
e e, (1 @1/2 | 2 @1/2)
e ) ¢ e (3@1/2 | 4@ 1/2)

fi

19



1f

fi

Markov Algebras Suffice!

e ) cc, (1. @ 1/2
e ) x o, (3 @ 1/2

2.4 1/2)
A1/

19

(X

10D x:

2) M (x

312D X

4)



Markov Algebras Suffice!

1f
e e, (1 @1/2 | 2 @1/2)

i 7 2 1 = =
s o e, (B@l/2 | 4@ 1/2) (=112 x:=2) M (x= 31, x:=4)

fi

while x>0 do
s x¢l @ 1/2 | x-1 @ 1/2)
od
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Markov Algebras Suffice!

1f
e e, (1 @1/2 | 2 @1/2)

i 7 2 1 = =
s o e, (B@l/2 | 4@ 1/2) (=112 x:=2) M (x= 31, x:=4)

fi

while x>0 do
s x¢l @ 1/2 | x-1 @ 1/2)
od

uS . (X = x+11pB x = %-1) @ §)x>01D SKIp
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Markov Algebras Suffice!

1f
e e, (1 @1/2 | 2 @1/2)

— 1 =7 = =
IR ) X e, (B3 @1/2 | 4@1/2) (X=11p@ x=2) M (X =3 D X = 4)

fi

while x>0 do
s x¢l @ 1/2 | x-1 @ 1/2)
od

uS . (X = x+11pB x = %-1) @ §)x>01D SKIp

Recursive Program Scheme

19



Flexibility: Different Semantics
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Flexibility: Different Semantics

Standard: State — State @ # @

20



GCL: State — go(State)

20



Probabilistic: State — D(State)

20



PGCL: State — go(D(State)) ®

20



Flexibility: Different Models for Nondeterminism

21



Flexibility: Different Models for Nondeterminism

® pGCL: State — g(D(State))

e {L\IJ_\}




Flexibility: Different Models for Nondeterminism

® pGCL: State — g(D(State))

g {|_L}

@ Cousot’s Probabilistic Abstract Interpretation (PAI): (State — go(State))

S o=p(000]

21



Flexibility: Different Models for Nondeterminism

® pGCL: State — g(D(State))
o = [N\ |A

@ Cousot’s Probabilistic Abstract Interpretation (PAI): (State — go(State))
S o=p(000]

@ Compile-Time/Relational Nondeterminism: @(State — D(State))

(o=p|/\ .0=>| N }



Challenge II:
How to construct recursive program schemes?

while x>0 do
X (k1§ /2| x-1@1/2)
od

=)

//tS : ((X = X+1 1/2<> X = X’1) ® S)[X>O]<> Skip

22



A Control-flow Graph's Perspective

® Kleene Algebras are compatible with control-flow graphs via regular expressions

Program Construct Algebraic Representation

A program S An interpretation S of § into the algebra
The control-flow graph of § A regular expressionover0, 1, @, ®, and *

23



A Control-flow Graph's Perspective

® Kleene Algebras are compatible with control-flow graphs via regular expressions

Program Construct Algebraic Representation
A program S An interpretation S of § into the algebra
The control-flow graph of § A regular expressionover0, 1, @, ®, and *
skip = ,
entry—————» exit

=1

I i 2
=3 nel

21 =0 |
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A Control-flow Graph's Perspective

® Kleene Algebras are compatible with control-flow graphs via regular expressions

Program Construct Algebraic Representation
A program S An interpretation S of § into the algebra
The control-flow graph of § A regular expressionover0, 1, @, ®, and *
entry&» Dl exit
=1

I i 2
=3 nel

_ : S
n%2==0] @ n:=n/2 P
([n!l] ®( ::%2!:0: X rFl::;*rnl )® i:i+1) & [n==1]

21 =0 |



Do Control-flow Graphs Suffice?

24



Do Control-flow Graphs Suffice?

1f
Py ) e, (1 @1/2 | 2@1/2)
P Y ¢ ‘e, (3@1/2 | 4 @ 1/2)

fi

24



if

fi

Do Control-flow Graphs Suffice?

e » X e, (1@ 1/2
e Y ¢ (3@ 1/2

@12
G L

24

prob(1/2)

O

skip

prob(1/2)

»

.

skip

@

wb(l/Z)

prob(1/2)

>




Do Control-flow Graphs Suffice?

. prob(1/2) )‘\ _
if 9 S

e ¢ e (1 @1/2 ] 2a@1/2) ‘%Skip prob(172) b@— ®
P Y ¢ ‘e, (3@1/2 | 4 @ 1/2) |

fi

Probabilities sum up to 2!

24



. =
p(1/2) .
Qo (2], ——
= p 2
skip
1/2) .%skip p(1/2)|—>‘/| T
¢ 14 74 1/2) ‘p(m)J\ i%
] ol 2 4§ ~@
true 2 (3 @
™ X :c;
true
fi

25



Hyper-edge
(for confluence)

if

Py ) e, (1 @1/2 | 2@1/2)
P Y ¢ ‘e, (3@1/2 | 4 @ 1/2)

fl p(l/Z)J\A X = 4

wn wn
. N
He | B
1 ®) L®)
f |o©
[
N
NO
P >
i I i
w
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if

fi

e » X e, (1@ 1/2
e Y ¢ (3@ 1/2

Hyper-edge
(for confluence)

25



Hyper-edge
(for confluence)

if

e » X e, (1@ 1/2
e Y ¢ (3@ 1/2

fi

Hyper-path
(like a tree)

25



Hyper-paths are Infinite Trees!
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Hyper-paths are Infinite Trees!

T+

| x>0 |

true
false

prob(0.6)
false true

X::X+1 - X_l

26



F:-t+1
[ x>0 ]
true
false
prob(0.6)
false true
Y=+ =X~

26



Recursive Program Schemes

2



2



2



! 1)

k cond[x > O](prob[0.6](seq[x := x — 1](seql? := 1t + 1](S));
p(0.6) 1S seqlr :=x + ll(seqji == ¢ ¢ El{0

7



A Control-flow Hyper-graph’'s Perspective

® Markov Algebras are compatible with control-flow hyper-graphs via recursive program
schemes

28



A Control-flow Hyper-graph’'s Perspective

® Markov Algebras are compatible with control-flow hyper-graphs via recursive program

schemes
while x>0 do
if prob(0.6) then x:=x+1
else x:=x-1 f1;
L
od

28



A Control-flow Hyper-graph’'s Perspective

@ Markov Algebras are compatible with control-flow hyper-graphs via recursive program

schemes
while x>0 do
[x>0] if prob(0.6) then x=x+1
fai/\ else x=x-1 1
E=r
prob(0.6) od
false true

X:=X+1 /

28



A Control-flow Hyper-graph’'s Perspective

® Markov Algebras are compatible with control-flow hyper-graphs via recursive program

schemes
t:=t+] while x>0 do

[x>0] if prob(0.6) then x=x+1

fai/\:”e else x:=x-1 fi;
gl
O prob(0.6)
/\E i
false rue

e seqlx ;= x + 1](seqlt ;=1 + LIS

[cond[x > 0](prob[0.6](seq[x :=x — 1](seq[t := ¢t + 1](S));
usS

28



Challenge Ill:
How to carry out quantitative analyses efficiently?

while do
X = X &+ 1
od

29



'terative Analysis

while prob(2/3) do
= Il/lS : ((X = X+1) ® S)Z/BGB Skip
od

30



'terative Analysis

while prob(2/3) do
= //lS : ((X = X+1) ® S)z/s@ Skip
od

® Markov algebra for computing [E| Ax]

® Sequencing:r@té I+ 1
® Branching: 7, ¢ =p¥r4(l—-p)*t

30



'terative Analysis

while prob(2/3) do
= Il/lS : ((X = X+1) ® S)z/s@ Skip

od
k0 =0

D =2/3*1 4+ +1/3*%0=2/3
kP =2/3*1+x")+1/3*%0=10/9

® Markov algebra for computing [E| Ax]

® Sequencing:r @t S r4t¢

® Branching: 7, ¢ =p¥r4(l—-p)*t
e

30



'terative Analysis

while do
= e //lS : ((X = X+1) ® S)Z/B@ Skip

od
k0 =0

D =2/3*1 4+ +1/3*%0=2/3
kP =2/3*1+x")+1/3*%0=10/9

® Markov algebra for computing [E| Ax]

® Seqguencing:r @t S r4t¢

® Branching: 7, ¢ =p¥r4(l—-p)*t
Need oo iterations to

convergel

30



Non-iterative Analysis

while prob(2/3) do
= //lS : ((X = X+1) ® S)z/s@ Skip
od

® Markov algebra for computing [E| Ax]

® Sequencing:r@té I+ 1
® Branching: 7, ¢ =p¥r4(l—-p)*t

31



Non-iterative Analysis

while prob(2/3) do
= Il/lS : ((X = X+1) ® S)Z/BGB Skip

od
Fquivalent to solve:

s=2/3*1+s)+1/3%0,
Analytical solution:
® Branching:rp@tép*r+(l—p)*t L
No need for iteration!

® Markov algebra for computing [E| Ax]

® Sequencing:r @t S r4t¢

31



Non-iterative Intra-procedural Analysis

37



Non-iterative Intra-procedural Analysis

@ Observation: Loops are (right-)linear recursions, thus we can always extract a system of

linear equations

® Foreachu$.E, weextractanequation$ = E
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Non-iterative Intra-procedural Analysis

@ Observation: Loops are (right-)linear recursions, thus we can always extract a system of

linear equations

® ForeachuS.E, weextractanequationS = E

® Technigues to solve linear equation systems extracted from probabilistic programs:

@ Linear Programming: Compute probabilities or expectations

@ Loop-Invariant Generation: Derive probabilistic or expectation invariants

37



Inter-procedural Analysis

Control-flow System of |
Program . , Solution
hyper-graph nonlinear equations

35



Inter-procedural Analysis

Control-flow System of |
Program . , Solution
hyper-graph nonlinear equations

proc X begin
if prob(1/3)
then skip
else
call X;
call X
fi
end

R — B . ]

35



Inter-procedural Analysis

Control-flow System of

Program Solution

hyper-graph nonlinear equations

proc X begin

if prob(1/3) p(1/3)?P(2/3)
then skip
else

call X; , call X
call X skip

fi “/,JID
end ‘ call X

35



Inter-procedural Analysis

Abstraction
engine

Control-flow System of |
Program . , Solution
hyper-graph nonlinear equations
proc X begin ?
if prob(1/3) (1/3) Ap(2/3)
then skip ’ /\
else
call X; , call X
call X skip

fi ‘(//IIP
end ‘ call X

R —— — — T—

35



Inter-procedural Analysis

Abstraction
engine

Droorarm Control-flow System of Solution
5 hyper-graph nonlinear equations
proc X begin ?
if prob(1/3) p(1/3) Ap(2/3)
then skip '\ .
else X = (skip ® 1)
call X; : call X O XRXR®1)
call X skip

fi ‘(//IIP
end ‘ call X

T — —— T— T—— TT— T——

35



Inter-procedural Analysis

Abstraction

. FEquation solver
engine

Drooranm Control-flow System of Solution
5 hyper-graph nonlinear equations
proc X begin ?
if prob(1/3) p(1/3) Ap(2/3)
then skip /\ .
else X = (skip ® 1)
call X; : call X O XRXR®1)
call X skip

fi ‘(//llb
end ‘ call X

T — —— T — ———— T —————
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Inter-procedural Analysis

Abstraction

. FEquation solver
engine

Drooranm Control-flow System of Solution
5 hyper-graph nonlinear equations
proc X begin ?
l;egrgﬁglﬁ) p(1/3‘)/\li(2/3) X ="termination
olse P X = (skip ® 1) orobability is 1/2"
call X; : call X O XRXR®1)
call X skip

fi ‘(//llb
end ‘ call X

TT— —— T— — T— T— I— ———
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Inter-procedural Analysis

Abstraction

. FEquation solver
engine

Drooram Control-flow System of Colution
5 hyper-graph nonlinear equations
proc X begin ?
l;eﬁrgﬁglﬁ) p(1/32/\|:(2/3) X ="termination
else p X =(skip® 1) probability is 1/2"
call X;
call X7 skip catl 13® XX D) Also a procedure

fi ‘/‘ summary for X
end ‘ call X

—— TE—— s
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The Functional Approach for Inter-procedural Analysis
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The Functional Approach for Inter-procedural Analysis

® letX;representthe procedure summary of P,

Xl :fi(Xl,Xz, ...,XN)
X2 :f.z(Xl,Xz, ""XN)

XN — fN(Xl’ X2, c oo XN)
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The Functional Approach for Inter-procedural Analysis

® letX;representthe procedure summary of P,

@ Solve the equation system using successive approximation (e.g., Kleene iteration)
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The Newtonian Approach for Inter-procedural Analysis

Esparza, ]., Kiefer, S, and Luttenberger, M. 2010. Newtonian program analysis. ). ACM 57, 6, Article 33, (October 2010), 47 pages.
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® Kleeneiteration

il
kUt = AxW)

Esparza, ]., Kiefer, S, and Luttenberger, M. 2010. Newtonian program analysis. ). ACM 57, 6, Article 33, (October 2010), 47 pages.
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® Kleeneiteration

il
kUt = AxW)

@ Newton iteration

P =1
g (i+1) =f(1/(i)) a5
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® Kleeneiteration

il
kUt = AxW)

@ Newton iteration

P =1
g (i+1) =f(1/(i)) 2>

Esparza, ]., Kiefer, S, and Luttenberger, M. 2010. Newtonian program analysis. ). ACM 57, 6, Article 33, (October 2010), 47 pages.
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The Newtonian Approach for Inter-procedural Analysis

® Kleeneiteration

. = |
i+ — f(K(i))

@ Newton iteration

i
W = |

D = {0 @ LinearCorrectionTerm(f, v\V)

e

Esparza, ], Kiefer, S, and Luttenberger, M. 2010. Newtonian program analysis. J. ACM 57, 6, Article 33, (October 2010), 47 pages.
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The Newtonian Approach for Inter-procedural Analysis

proc X begin
if prob(1/3) then
skip
else
call 1
call X
fi
end

36



The Newtonian Approach for Inter-procedural Analysis

X = skip; 1P X ® X)
proc X begin
if prob(1/3) then
skip
else
call 1
call X
fi
end
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The Newtonian Approach for Inter-procedural Analysis

proc X begin
if prob(1/3) then
skip
else
call 1
call X
fi
end

+ Computing |

p=1/3%1+2/3%(p*p)
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proc X begin
if prob(1/3)
skip
else
call 1
call X
fi
end

then * Combti

p=1/3%1+2/3%(p*p)
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The Newtonian Approach for Inter-procedural Analysis

proc X begin

if il-:Ob(l/ES) then * Computing P[terminate]
skip

else p=1/371+2/3"4p "]
call 1

fi

end
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The Newtonian Approach for Inter-procedural Analysis

proc X begin
if prob(1/3)
skip
else
call 1
call X
fi
end

then * Combti

p=1/3%1+2/3%(p*p)

Newtons’'s method

=131 +72/5 (0 4
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Newton's Method Converges Faster
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——0— Kleene
0.0 ‘ —®— Newton
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Newtonian Program Analysis for Probabilistic Programs

® |dea: Apply Newton's method to algebraic structures, e.g., Markov algebras

® Derive the syntactic differential of algebraic expressions

Procedure call to X
IX)=X

D(f4® 8) = Df D Dg
D(fR g = (VR d(fR Dg)
2N 2 (f&DNHNEgdDg) O (frg)
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Newtonian Program Analysis for Probabilistic Programs

® |dea: Apply Newton's method to algebraic structures, e.g., Markov algebras

® Derive the syntactic differential of algebraic expressions

PX)2 X
D(f® g) = Df D Dg
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D(fR g = (VR d(fR Dg)
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Newtonian Program Analysis for Probabilistic Programs

® |dea: Apply Newton's method to algebraic structures, e.g., Markov algebras

® Derive the syntactic differential of algebraic expressions

IX)=X
D(f® g) = Df B Dg
D(fR 8 2 (2R & (f® Dg)
choice D(fNY=E(fODNHN(EgDdDg)O(fNg)

Nondeterministic-
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Newtonian Program Analysis for Probabilistic Programs

@ |dea: Apply Newton's method to algebraic structures, e.g., Markov algebras

We change the structure from

@ Derive the syntactic differential of algebraic expressions <M, C,®.,8.M.0, 1>
DX)= X -
(): <Ma@9®9¢@9n’9’l>
@(fcb@ gl = gfqﬁ@ 28 to admit a partially-ordered
D(f®8) = (2f® L (fQ Dg) semiring

2(fNg 2 (fO2HNE® D) O(fNg
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Newtonian Program Analysis for Probabilistic Programs

proc X begin
if prob(1/3) then
skip
else
call X;
call X
fi
end
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Newtonian Program Analysis for Probabilistic Programs

proc X begin

if prob(1/3) then p(1/3) p(2/3
skip
else T zall "
¢altl |
call X
fl call X
end "
X = f(X)
where

JX)=(skip® 1) ;0 X®X® 1)

— T——

39




Newtonian Program Analysis for Probabilistic Programs

proc X begin
if prob(1/3) then

skip
else
call X;
call X
fi
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Newtonian Program Analysis for Probabilistic Programs

proc X begin
if prob(1/3) then

skip
else
¢altl |
call X
fi
end
X = f(X) Y= 086 (YQv) D ¥ ®Y)))
where where

JX)=@6kip® 1), (XQ@X® 1) 0o=fv)Ov

—— T ER— —————
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Newtonian Program Ana ESEyieeaeaEEigeEn

contains at mostone call!

proc X begin
if prob(1/3) then p(1/3A3(2/3)

skip Differentiate
else 1 call X
call X
’ o
call X 1y WhenX=y
fi
end
X = f(X) Y= 086 (YQv) D ¥ ®Y)))
where where

JX)=@6kip® 1), (XQ@X® 1) 0o=fv)Ov

——— — — ——
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proc X begin
if prob(1/3) then p(1/3A3(2/3)

skip Differentiate
else 1 call X
¢altl |
call X ® .
fi Ca
end
X = f(X) Y= 086 (YQv) D ¥ ®Y)))
where where

JX)=@6kip® 1), (XQ@X® 1) 0o=fv)Ov
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Case Studies
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Towards aandframework for

program analysis of probabilistic programs

i Semantics: Markov Algebras for Multiple Kinds of Confluences
ol Structure: Construction of Recursive Program Schemes

i Algorithm: Newton's Method for Markov Algebras
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