
2025 / 11 / 21

Di Wang
Programming Languages Lab, Peking University

CStar:
Unifying Programming and
Verification in C

formal verification to the rescue?

Towards Safer Systems Software

2

formal verification to the rescue?

Towards Safer Systems Software

verified kernels
2

formal verification to the rescue?

Towards Safer Systems Software

verified kernels verified compilers
2

formal verification to the rescue?

Towards Safer Systems Software

verified kernels verified compilers verified protocols
2

formal verification to the rescue?

Towards Safer Systems Software

verified kernels verified compilers verified protocols
2

Isabelle/HOL
HOL4

formal verification to the rescue?

Towards Safer Systems Software

verified kernels verified compilers verified protocols
2

Isabelle/HOL
HOL4

Rocq
(formerly Coq)

formal verification to the rescue?

Towards Safer Systems Software

verified kernels verified compilers verified protocols
2

Isabelle/HOL
HOL4

Rocq
(formerly Coq)

Dafny
F*

formal verification to the rescue?

Towards Safer Systems Software

verifi verifi verifi
3

Isa
HOL4

Rocq
(formerly Coq)

Da
F*

"theorem prover" sounds scary

let us focus on C & Rust

Language Enhancement?

4

let us focus on C & Rust

Language Enhancement?

4

enhancement strength

verification efficiency

strength

efficiency

let us focus on C & Rust

Language Enhancement?

4

enhancement strength

๏ verified properties: memory / thread safety,
functional correctness, security, ...

verification efficiency

strength

efficiency

let us focus on C & Rust

Language Enhancement?

4

enhancement strength

๏ verified properties: memory / thread safety,
functional correctness, security, ...

๏ trustworthiness: non-foundational /
foundational

verification efficiency

strength

efficiency

let us focus on C & Rust

Language Enhancement?

4

enhancement strength

๏ verified properties: memory / thread safety,
functional correctness, security, ...

๏ trustworthiness: non-foundational /
foundational

verification efficiency

๏ learning curve

strength

efficiency

let us focus on C & Rust

Language Enhancement?

4

enhancement strength

๏ verified properties: memory / thread safety,
functional correctness, security, ...

๏ trustworthiness: non-foundational /
foundational

verification efficiency

๏ learning curve

๏ automation, modularity, reusability, evolution

strength

efficiency

let us focus on C & Rust

Language Enhancement?

4

enhancement strength

๏ verified properties: memory / thread safety,
functional correctness, security, ...

๏ trustworthiness: non-foundational /
foundational

verification efficiency

๏ learning curve

๏ automation, modularity, reusability, evolution

๏ synergy with existing tooling

strength

efficiency

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

let us focus on C & Rust

Language Enhancement?

4

enhancement strength

๏ verified properties: memory / thread safety,
functional correctness, security, ...

๏ trustworthiness: non-foundational /
foundational

verification efficiency

๏ learning curve

๏ automation, modularity, reusability, evolution

๏ synergy with existing tooling

strength

efficiency
C

Checked C

C-rusted

Rust

Flux

Verus

Frama-C

VeriFast
CN QCP

VST-A

RefinedC

Prusti

BiSheng C

VCC

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

if aiming for high efficiency

Obs I: VC Generation is Required

5
strength

efficiency
C

Checked C

C-rusted

Rust

Flux

Verus

Frama-C

VeriFast
CN QCP

VST-A

RefinedC

Prusti

BiSheng C

VCC

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

if aiming for high efficiency

Obs I: VC Generation is Required

5
strength

efficiency
C

Checked C

C-rusted

Rust

Flux

Verus

Frama-C

VeriFast
CN QCP

VST-A

RefinedC

Prusti

BiSheng C

VCC

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

automatically generate verification conditions (VCs)
from user annotations

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

if aiming for high efficiency

Obs I: VC Generation is Required

5
strength

efficiency
C

Checked C

C-rusted

Rust

Flux

Verus

Frama-C

VeriFast
CN QCP

VST-A

RefinedC

Prusti

BiSheng C

VCC

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

automatically generate verification conditions (VCs)
from user annotations

some of them utilize SMT solvers (such as Z3)
to discharge VCs

CStar Demo: VC Generation
nothing new yet

6

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

if aiming at strong strength

Obs: Manual Proof is Unavoidable

7
strength

efficiency
C

Checked C

C-rusted

Rust

Flux

Verus

Frama-C

VeriFast
CN QCP

VST-A

RefinedC

Prusti

BiSheng C

VCC

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

if aiming at strong strength

Obs: Manual Proof is Unavoidable

7
strength

efficiency
C

Checked C

C-rusted

Rust

Flux

Verus

Frama-C

VeriFast
CN QCP

VST-A

RefinedC

Prusti

BiSheng C

VCC

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

backended by an interactive theorem
prover to prove VCs manually

theorem provers are nice, but ...

Prob I: Proof Encapsulation
current status in CN (and many others):

proofs are delegated to Rocq

8

theorem provers are nice, but ...

Prob I: Proof Encapsulation

๏ obs: libraries constitute the hidden substrate of
modern (systems) software

current status in CN (and many others):
proofs are delegated to Rocq

8

theorem provers are nice, but ...

Prob I: Proof Encapsulation

๏ obs: libraries constitute the hidden substrate of
modern (systems) software

๏ obs: multilingual libraries, on the other hand,
might cause cross-language-boundary issues

current status in CN (and many others):
proofs are delegated to Rocq

8

theorem provers are nice, but ...

Prob I: Proof Encapsulation

๏ obs: libraries constitute the hidden substrate of
modern (systems) software

๏ obs: multilingual libraries, on the other hand,
might cause cross-language-boundary issues

principle: integrate proof-
specification-implementation
together into one language

current status in CN (and many others):
proofs are delegated to Rocq

8

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

if aiming at strong strength

Obs: Manual Proof is Unavoidable

9
strength

efficiency
C

Checked C

C-rusted

Rust

Flux

Verus

Frama-C

VeriFast
CN QCP

VST-A

RefinedC

Prusti

BiSheng C

VCC

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

if aiming at strong strength

Obs: Manual Proof is Unavoidable

9
strength

efficiency
C

Checked C

C-rusted

Rust

Flux

Verus

Frama-C

VeriFast
CN QCP

VST-A

RefinedC

Prusti

BiSheng C

VCC

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

support language-integrated
proof commands

10
example program with proof commands in CN

10example program with proof commands in Jahobexample program with proof commands in CN

proof commands are nice, but ...

Prob II: Programmable Proof

integrated proof commands in Jahob 11

proof commands are nice, but ...

Prob II: Programmable Proof

๏ obs: manual proofs are inevitable for complex
reasoning tasks

integrated proof commands in Jahob 11

proof commands are nice, but ...

Prob II: Programmable Proof

๏ obs: manual proofs are inevitable for complex
reasoning tasks

๏ obs: using a fixed set of proof commands feels
neither comprehensive nor extensible

integrated proof commands in Jahob 11

proof commands are nice, but ...

Prob II: Programmable Proof

๏ obs: manual proofs are inevitable for complex
reasoning tasks

๏ obs: using a fixed set of proof commands feels
neither comprehensive nor extensible

principle: support using the full
language to programmatically
construct proof

integrated proof commands in Jahob 11

logic for computable functions

The LCF Solution

12

logic for computable functions

The LCF Solution

๏ the LCF architecture for theorem proving by Robin Milner in the 1970s

12

logic for computable functions

The LCF Solution

๏ the LCF architecture for theorem proving by Robin Milner in the 1970s

๏ programming formal proof is to compute theorems using a protected interface

12

Proof Kernel User Proof
protected interface

IMPLEMENTED IN A SINGLE PROGRAMMING LANGUAGE WITH TYPE ABSTRACTION

logic for computable functions

The LCF Solution

๏ the LCF architecture for theorem proving by Robin Milner in the 1970s

๏ programming formal proof is to compute theorems using a protected interface

๏ correct-by-construction even when extended with arbitrary user proof code

12

Proof Kernel User Proof
protected interface

IMPLEMENTED IN A SINGLE PROGRAMMING LANGUAGE WITH TYPE ABSTRACTION

CStar Demo: Proof Programming
a practice of LCF in C

13

14

it is now already possible to prove VCs in C

14

it is now already possible to prove VCs in C

but we can do better by introducing
program-proof states

14

CStar Demo: Program-Proof State
essentially, a symbolic representation of the program state

15

16

a VC is a prop "pre |-- post" at a program point

16

a VC is a prop "pre |-- post" at a program point

16

both are program-proof states

a VC is a prop "pre |-- post" at a program point

proving a VC is coupled with programming in CStar

16

both are program-proof states

a VC is a prop "pre |-- post" at a program point

proving a VC is coupled with programming in CStar
you write a proof to transform from pre to post

16

both are program-proof states

CStar Demo: Program Proof
unify program and proof

17

how to ensure correct-by-construction

The Architecture of CStar

18

how to ensure correct-by-construction

The Architecture of CStar

๏ the original LCF design heavily relies on type abstraction provided by the ML language

18

how to ensure correct-by-construction

The Architecture of CStar

๏ the original LCF design heavily relies on type abstraction provided by the ML language

๏we worked out a language-agnostic variant of the LCF-architecture with process separation

18

HOL Light HOL for CIPC
Server

IPC
Client

Proof Kernel Proof Library

User Proof

User Code

Safe language Unsafe language

how to maintain the program-proof states

The Architecture of CStar

19

how to maintain the program-proof states

The Architecture of CStar

๏ compute symbolic heap information via forward symbolic execution

19

how to maintain the program-proof states

The Architecture of CStar

๏ compute symbolic heap information via forward symbolic execution

๏ CStar now employs (but is largely agnostic of) QCP's symbolic executor for separation-logic reasoning

19https://arxiv.org/pdf/2505.12878

https://arxiv.org/pdf/2505.12878

how to maintain the program-proof states

The Architecture of CStar

๏ compute symbolic heap information via forward symbolic execution

๏ CStar now employs (but is largely agnostic of) QCP's symbolic executor for separation-logic reasoning

๏ QCP evolves the program-proof states for program code; CStar evolves the program-proof states for proof code

19

C★ Program

Implementation Code
&

Specifications and
Intermediate Assertions

Proof-code Blocks

LCF-style
Proof Kernel

Symbolic
Execution

Operational
Proof Program

Assertion-annotated
Code Segments

Slice

Proof Code
Assemble

Generate

Residual
Proof Program

Verification
Conditions

Proof Code

Stage I
Translation

Stage II
Operational Proof Checking

Stage III
Residual Proof Checking

User

https://arxiv.org/pdf/2505.12878

https://arxiv.org/pdf/2505.12878

users can now use the full power of C
to conduct proof and verification

20

CStar Demo: Tactics
all implemented outside the proof kernel

21

CStar Demo: SMT Integration

22

achieve controllable automation

CStar Demo: Proof Encapsulation
one can implement program-proof libraries

23

Unifying Programming and Verification in C

CStar

24

Unifying Programming and Verification in C

CStar

prob i: proof encapsulation

24

Unifying Programming and Verification in C

CStar

prob i: proof encapsulation

prob ii: programmable proof

24

Unifying Programming and Verification in C

CStar

prob i: proof encapsulation

prob ii: programmable proof

principle i: integrate proof-
specification-implementation

together into one language

24

Unifying Programming and Verification in C

CStar

prob i: proof encapsulation

prob ii: programmable proof

principle i: integrate proof-
specification-implementation

together into one language

24

Unifying Programming and Verification in C

CStar

prob i: proof encapsulation

prob ii: programmable proof

principle i: integrate proof-
specification-implementation

together into one language

principle ii: support using the full
language to programmatically

construct proof

24

Unifying Programming and Verification in C

CStar

prob i: proof encapsulation

prob ii: programmable proof

principle i: integrate proof-
specification-implementation

together into one language

principle ii: support using the full
language to programmatically

construct proof

24

Unifying Programming and Verification in C

CStar

prob i: proof encapsulation

prob ii: programmable proof

principle i: integrate proof-
specification-implementation

together into one language

principle ii: support using the full
language to programmatically

construct proof

24

Unifying Programming and Verification in C

CStar

prob i: proof encapsulation

prob ii: programmable proof

principle i: integrate proof-
specification-implementation

together into one language

principle ii: support using the full
language to programmatically

construct proof

principle iii: allow users to inspect
and manipulate program-proof

states
24

Unifying Programming and Verification in C

CStar

prob i: proof encapsulation

prob ii: programmable proof

principle i: integrate proof-
specification-implementation

together into one language

principle ii: support using the full
language to programmatically

construct proof

principle iii: allow users to inspect
and manipulate program-proof

states
24

Unifying Programming and Verification in C

CStar

๏ CStar reuses clang's toolchain

๏ use clang for compilation

๏ use clangd for language serverprob i: proof encapsulation

prob ii: programmable proof

principle i: integrate proof-
specification-implementation

together into one language

principle ii: support using the full
language to programmatically

construct proof

principle iii: allow users to inspect
and manipulate program-proof

states
24

Unifying Programming and Verification in C

CStar

๏ CStar reuses clang's toolchain

๏ use clang for compilation

๏ use clangd for language server

๏ its design is language-agnostic

prob i: proof encapsulation

prob ii: programmable proof

principle i: integrate proof-
specification-implementation

together into one language

principle ii: support using the full
language to programmatically

construct proof

principle iii: allow users to inspect
and manipulate program-proof

states
24

Unifying Programming and Verification in C

CStar

๏ CStar reuses clang's toolchain

๏ use clang for compilation

๏ use clangd for language server

๏ its design is language-agnostic

๏ RustStar?

prob i: proof encapsulation

prob ii: programmable proof

principle i: integrate proof-
specification-implementation

together into one language

principle ii: support using the full
language to programmatically

construct proof

principle iii: allow users to inspect
and manipulate program-proof

states
24

Unifying Programming and Verification in C

CStar

๏ CStar reuses clang's toolchain

๏ use clang for compilation

๏ use clangd for language server

๏ its design is language-agnostic

๏ RustStar?

๏ you own language-Star?

prob i: proof encapsulation

prob ii: programmable proof

principle i: integrate proof-
specification-implementation

together into one language

principle ii: support using the full
language to programmatically

construct proof

principle iii: allow users to inspect
and manipulate program-proof

states
24

there are two looming "clouds"

What are Still Missing

25

there are two looming "clouds"

What are Still Missing

๏minor one: the logical layer is functional, which is not C-style

25

there are two looming "clouds"

What are Still Missing

๏minor one: the logical layer is functional, which is not C-style

๏ the logical core is simply-typed lambda calculus, which is
in many ways simpler than C

25

there are two looming "clouds"

What are Still Missing

๏minor one: the logical layer is functional, which is not C-style

๏ the logical core is simply-typed lambda calculus, which is
in many ways simpler than C

๏major one: program-proof states are non-local

25

there are two looming "clouds"

What are Still Missing

๏minor one: the logical layer is functional, which is not C-style

๏ the logical core is simply-typed lambda calculus, which is
in many ways simpler than C

๏major one: program-proof states are non-local

๏ at every program point, there is a single global state

25

there are two looming "clouds"

What are Still Missing

๏minor one: the logical layer is functional, which is not C-style

๏ the logical core is simply-typed lambda calculus, which is
in many ways simpler than C

๏major one: program-proof states are non-local

๏ at every program point, there is a single global state

25excerpts from the verified attach_page function in CN

there are two looming "clouds"

What are Still Missing

๏minor one: the logical layer is functional, which is not C-style

๏ the logical core is simply-typed lambda calculus, which is
in many ways simpler than C

๏major one: program-proof states are non-local

๏ at every program point, there is a single global state

๏ it breaks modularity and readability of reasoning

25excerpts from the verified attach_page function in CN

there are two looming "clouds"

What are Still Missing

๏minor one: the logical layer is functional, which is not C-style

๏ the logical core is simply-typed lambda calculus, which is
in many ways simpler than C

๏major one: program-proof states are non-local

๏ at every program point, there is a single global state

๏ it breaks modularity and readability of reasoning

๏ ongoing work: program-proof states reified as local
capabilities

25excerpts from the verified attach_page function in CN

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

strength

efficiency

C

Checked C

C-rusted

Rust

Flux

Verus

Frama-C

VeriFast
CN

QCP

VST-A

RefinedC

Prusti

BiSheng C

VCC

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

CStar

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

strength

efficiency

C

Checked C

C-rusted

Rust

Flux

Verus

Frama-C

VeriFast
CN

QCP

VST-A

RefinedC

Prusti

BiSheng C

VCC

DISCLAIMER: THIS PLOT IS
SUBJECTIVE AND INCOMPREHENSIVE

CStar

with more and more libraries

with AI support

