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Towards Safer Systems Software

formal verification to the rescue?

"theorem prover" sounds scary
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from user annotations
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CStar Demo: VC Generation

nothing new yet
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Obs: Manual Proofis Unavoidable

if aiming at strong strength

efficiency
o
® Checked C
@® C-rusted
® BiSheng C
® Rust
¢ F.lusrusti backended by an interactive theorem
®\/CC prover to prove VCs manually
® Frama-C
® \erus
@ \erifast

®CN QReﬂnedC .QCP
® VST-A

strength



Prob I: Proof Encapsulation

theorem provers are nice, but...
current status in CN (and many others):

proofs are delegated to Rocq

lemma append_nil (datatype seq 11)
requires true;
ensures append(11, Nil {}) == 11;

lemma append_cons (datatype seq 11, i32 x, datatype seq 12)
requires true;
ensures append(11, Cons {head: x, tail: 12})
== append(snoc(11, x), 12);

struct node *xtmp = cur->tail;

cur—>tail = last;

last = cur;

cur = tmp;

/*¥@ unfold rev(L2); @/

/*@ apply append_cons (rev (tl(L2)), hd(L2), L1); @/
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Prob I: Proof Encapsulation

theorem provers are nice, but...
current status in CN (and many others):

proofs are delegated to Rocq

® obs: libraries constitute the hidden substrate of
modern (SyStemS‘ sortware lemma append_nil (datatype seq 11)

requires true;

® obs: multilingual libraries, on the other hand, ensures append(11, Nil {}) == 11;
might cause cross-language-boundary issues
lemma append_cons (datatype seq 11, i32 x, datatype seq 12)
requires true;
ensures append(11, Cons {head: x, tail: 12})
== append(snoc(11, x), 12);

prInCIp‘e: Integrate prOOF- struct node *tmp = cur—>tail;
specification-implementation | cur->tait = tast;

. last = cur;
together into one language cur = tmp;
/*¥@ unfold rev(L2); @/
/*@ apply append_cons (rev (tl(L2)), hd(L2), L1); @/
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Obs: Manual Proofis Unavoidable

if aiming at strong strength

efficiency
®C
® Checked C
® C-rusted
® BiSheng C
® Rust
® Flux :
® Prust support language-integrated
®\/CC proof commands
® frama-C
® \erus
@® \erifast

®CN QReﬂnedC .QCP
® \VST-A

strength



struct node xreverse(struct node xxs)
/*@ requires take L = IntList(xs);
ensures take L_ = IntList(return);
L == rev(L);
@x/

struct node *xlast = 0;
struct node *cur = Xxs;
/*@ apply append_nil(rev(L)); @/
while(1)
/*@ inv take L1 = IntList(last);
take L2 = IntList(cur);
append(rev(L2), L1) == rev(L);
@x/
{
if (cur == 0) {
/*@ unfold rev(Nil {}); @/
/*@ unfold append(Nil {}, L1); @/

return last;
I3
struct node *xtmp = cur—>tail;
cur—>tail = last;
last = cur;
cur = tmp;
/*@ unfold rev(L2); @x/
/*@ apply append_cons (rev (tl(L2)), hd(L2), L1); @*/

example program with proof commands in CN

10



struct node *xreverse(struct node xxs)
/*@ requires take L = IntList(xs);
ensures take L_ = IntList(return);
L == rev(L);
@x/

struct node xlast = 0;
struct node *cur = Xs;
/*@ apply append_nil(rev(L)); @/
while(1)
/*@ inv take L1 = IntList(last);
take L2 = IntList(cur);
append(rev(L2), L1) == rev(L);
@x/
{
if (cur == 0) {
/*@ unfold rev(Nil {}); @/
/*@ unfold append(Nil {}, L1); @/

return last;

}

struct node *xtmp = cur—>tail;

cur—>tail = last;

last = cur;

cur = tmp;

/*@ unfold rev(L2); @x/

/*@ apply append_cons (rev (tl(L2)), hd(L2), L1); @/

example program with proof commands in CN

public boolean remove(Object o)
/x: requires " init”
modifies content, csize
ensures
"(result — (3 i. (i,0)Eold content A
(-3 j. j<i A (j,0)€old content) A
(V je. 0<jAj<i—(]j,e)Econtent=(j,e)€Eold content) A
(i<jAj<csize—(],e)Econtent=(j+1,e)Eold content)) A
(—result — (content=old contentA—di. (i,0)€old content))” */
{int index = 0O;
while /x: inv " (V]. 0<jAj<index—o7#elements.[j]) A
0<index A size=old size” x/
(index < size) {
if (elements[index] == o) {
shift (index);
/*: note ObjectRemoved:
"Vj e. (0<jAj<index—(j,e)Econtent=(j,e)Eold content) A
(index<jAj<csize—(j,e)Econtent=(j+1,e)Eold content)”

from shift_Postcondition , Looplnv, LoopCondition
content_def, csize_def ;

witness index for
"3i. (i,0)€old content A (—3j. j<i A (j,0)Eold content) A
(Vj e. (0<jAj<i—(]j,e)Econtent=(j,e)€Eold content) A
(i<jAj<csize—(j,e)Econtent=(j+1,e)Eold content))” */
return true;

}
index = index + 1;
}
return false ;
}

example program with proof commands in Jahob
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Prob II: Programmable Proof

proof commands are nice, but ...

P = DP1sDo .
assert [: F' from h

note I:F from h

localize in (p ; note [: F')

mp l:(F — G)

assuming lr:F in (p;note lg:G)
cases F for I:G
showedCasezofl: F1 V...V F,
byContradiction [: F' in p
contradiction [: F’

instantiate [:VZ.F with t

witness ¢ for :3Z.F

pickWitness & for [F:F' in (p ;notelg:G)
pickAny Z in (p; note [: F)

induct [:F' overn in p

1

integrated proof commands in Jahob
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Prob II: Programmable Proof

proof commands are nice, but ...

P = DP1sDo .
assert [: F' from h

note I: F from h
localize in (p; note [: F')

® obs: using a fixed set of proof commands feels ;nsgs)uln(nl;']‘;FG% in (p 3 note lg:G)

neither comprehensive nor extensible -
cases F' for l:G

showedCasezofl: F1 V...V F,
byContradiction [:F' in p
contradiction [: F’

® obs: manual proofs are inevitable for complex
reasoning tasks

principle: support using the ful instantiate [:VZ. F with

0 witness ¢ for [:3Z.F
\anguage (o programmatlca"y pickWitness X for [r:F'in (p ; notelg:G)
construct proof pickAny & in (p ; note I: F)

induct [:F overn in p

1

integrated proof commands in Jahob
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The L.CF Solution

logic for computable functions

® the LCF architecture for theorem proving by Robin Milner in the 1970s

@ programming formal proof is to compute theorems using a protected interface

® correct-by-construction even when extended with arbitrary user proof code

protected interface
Proof Kernel D User Proof

12



CStar Demo: Proof Programming

a practice of LCFin C
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it is now already possible to prove VCs in C

but we can do better by introducing
program-proof states



CStar Demo: Program-Proof State

essentially, a symbolic representation of the program state
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a VCis a prop "pre |- post" at a program point

16



both are program-proof states

a VCis a prop "pre |- post" at a program point

16



both are program-proof states

a VCis a prop "pre |- post" at a program point

proving a VC is coupled with programming in CStar

16



both are program-proof states

a VCis a prop "pre |- post" at a program point

proving a VC is coupled with programming in CStar
you write a proof to transform from pre to post



CStar Demo: Program Proof

unify program and proof
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how to ensure correct-by-construction

® the original LCF design heavily relies on type abstraction provided by the ML language
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The Architecture of CStar

how to ensure correct-by-construction

® the original LCF design heavily relies on type abstraction provided by the ML language

® we worked out a language-agnostic variant of the LCF-architecture with process separation

Proof Kernel

Proof Library

HOL Light —m L RPN I!’C <+—> User Proof
Server X X Client

Safe language Unsafe language

18



The Architecture of CStar

how to maintain the program-proof states
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® compute symbolic heap information via Forward symbolic execution
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The Architecture of CStar

how to maintain the program-proof states

® compute symbolic heap information via Forward symbolic execution

® CStar now employs (but is largely agnostic of) QCP's symbolic executor for separation-logic reasoning

QCP: A Practical Separation Logic-based C
Program Verification Tool

Xiwei Wu'!, Yueyang Fengl’*, Xiaoyang Lul’*, Tianchuan Lin', Kan Liu?,
Zhiyi Wang?, Shushu Wu!, Lihan Xie!, Chengxi Yang!, Hongyi Zhong', Naijun

Zhan?, Zhenjiang Hu?, and Qinxiang Caol'

! Shanghai Jiao Tong University
{yashen, fyyvexoben, luxyl1115, caoqinxiang}@sjtu.edu.cn
? Peking University
2301111964@stu.pku.edu.cn

https:/arxiv.org/pdf/2505.12878 19
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The Architecture of CStar

how to maintain the program-proof states

® compute symbolic heap information via Forward symbolic execution
® CStar now employs (but is largely agnostic of) QCP's symbolic executor for separation-logic reasoning

® (JCP evolves the program-proof states for program code; CStar evolves the program-proof states for proof code

LCF-style
Proof Kernel QCP: A Practical Separation Logic-based C

Operational R JREN Residual Program Verification Tool
Cx Program Proof Program e’ ' R Proof Program
4 4 A . 4 A
. R . . . * . * . . o
Implemenztmn Code Assertion-annotated G Xiwei Wu!, Yueyang Feng!> , Xiaoyang Lu!’ , Tianchuan Lin!, Kan Liu?,
Code Segments Conditions . 2 1 713 .1 : 1 . 1 Y
Specifications and | g L==)p Symbolic ' Zhiyi Wang“, Shushu Wu", Lihan Xie", Chengxi Yang", HongTyl Zhong", Naijun
Intermediate Assertions PRI T ccution : Zhan?, Zhenjiang Hu?, and Qinxiang Cao®
i Proof Code I Proof Code 1 oo , ,
Proof-code Blocks I Shanghai Jiao Tong University
: : {yashen, fyyvexoben, luxyl1115, caoqinxiang}@sjtu.edu.cn
- o I - < I > Peking University
1 1 2301111964@stu.pku.edu.cn
| |
| |
Stage I Stage II Stage II1I

Translation Operational Proof Checking Residual Proof Checking h ttD S // arxiv.org / D df / 250512878 19
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users can now use the full power of C
to conduct proof and verification



CStar Demo: Tactics

all implemented outside the proof kernel
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CStar Demo: SMT Integration

achieve controllable automation



CStar Demo: Proof Encapsulation

one can implement program-proof libraries
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in many ways simpler than C

@ major one: program-proof states are non-local

@ at every program point, there is a single global state
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for (; (order + 1) < pool->max_order; order++)

What are Still Missing

there are two IOOming "CIOUdS" ;:g i:z iz: éP==Zg‘;zz:%§c()c();l)<))igit/er) ((p_i2 * 4096) - hyp_physvirt_offset), 1, order) @x/

/*@ inv let hyp_vmemmap = (pointer) __hyp_vmemmap @x/

/*@ inv let start_i2 = (*pool).range_start / 4096 @x/

/*@ inv let end_i2 = (*pool).range_end / 4096 @x/

/*@ inv let off_i = hyp_physvirt_offset / 4096 @x/

/*@ inv let V2 = each (integer i; start_i2 <= i && i < end_i2)
{Owned<struct hyp_page>(hyp_vmemmap+(ix32)) } @x/

/*@ inv let p_page = V2.value[p_i2] @x*/

/*@ inv let p_page_tweaked2 = (p_page){.order = order} @x/

® minor one: the logical layer is functional, which is not C-style e o vneng, V5 M2 - ppge twesked, posl, spo03) &4

/*@ inv each(integer i; @ <= i && i < ((*pool).max_order))
{freeArea_cell_wf (i, hyp_vmemmap, V2.value, pool, (*pool))} @x/
/*@ inv hyp_pool_wf(pool, *pool, hyp_vmemmap, hyp_physvirt_offset) @x/
/*@ inv let R = each(integer i; start_i2 <= (i + off_i) && (i + off_i) < end_i2

B — && (V2.value[i + off_i]).refcount ==
® the logical core is simply-typed lambda calculus, which is 35 (2wl + oft A refeont = 0 o onder O)
{ ZeroPage(((pointer) @) + (i*4096), 1, (V2.value[i+off_i]).order) } @/
. /*@ inv @ <= order; order+1 <= (*pool).max_order @x/

/*@ inv cellPointer(hyp_vmemmap,32,start_i2,end_i2,p) @x*/

n many ways simpler than C
/*@ inv (p_page.refcount) == 0; (p_page.order) == (hyp_no_order ()); (p_page.pool) == pool @x/
/*@ inv (p_page.node.next) == &(p->node); (p_page.node.prev) == &(p->node) @x/
/*@ inv order_aligned(p_i2,order) @/
/*@ inv (p_i2 * 4096) + (page_size_of_order(order)) <= (*pool).range_end @x/

° f I I /*@ inv each(integer i; {p_i}@start < i & i < end_i2)
o - - V.value[i]}@start).refcount == @) || V2.valuel[i]) == {V.valuel[i]}@start)} @x/
@ major one: program-prool states are non-loca e iy ¢ p (L valueiDestart) 11 ¢ ) = (valueliTjastors)

inv {__hyp_vmemmap} unchanged; {hyp_physvirt_offset} unchanged; {pool} unchanged @x/
/*@ inv ({*pool}@start){.free_area = (*pool).free_area} == *pool @x/

buddy = __find_buddy_avail (pool, p, order);
. h . ° I I b I if (!buddy)
@ at every program point, there Is a single global state
/*CN*/instantiate vmemmap_b_wf, hyp_page_to_pfn(buddy);
/*CNx/unpack ZeroPage (hyp_page_to_virt(p), 1, order);
/*CN*/unpack ZeroPage (hyp_page_to_virt(buddy), 1, order);
/*CNx/lemma_attach_inc_loop (*pool, p, order);
/*CN*/lemma2 (hyp_page_to_pfn(p), order);
/*CN*/lemma_page_size_of_order_inc(order);
/*CN%x/if ((buddy->node).next != &pool->free_arealorder])
/*CN*/ instantiate vmemmap_b_wf,
hyp_page_to_pfn(container_of ((buddy->node).next, struct hyp_page, node));
/*CNx/1if ((buddy->node).prev != &pool->free_areal[order])
/*CN%*/ instantiate vmemmap_b_wf,
hyp_page_to_pfn(container_of ((buddy->node).prev, struct hyp_page, node));
/*CN%x/1f ((buddy->node).prev != (buddy->node).next);
list_del_init (&buddy->node);
buddy ->order = HYP_NO_ORDER;
p = min(p, buddy);
/*CNx/pack ZeroPage (hyp_page_to_virt(p), 1, order + 1);

excerpts from the verified attach_page function in CN =
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inv {__hyp_vmemmap} unchanged; {hyp_physvirt_offset} unchanged; {pool} unchanged @x/
/*@ inv ({*pool}@start){.free_area = (*pool).free_area} == *pool @x/

buddy = __find_buddy_avail (pool, p, order);
° ° ° if (!buddy)
@ at every program point, there is a single global state “oreak
/*CN*/instantiate vmemmap_b_wf, hyp_page_to_pfn(buddy);
/*CNx/unpack ZeroPage (hyp_page_to_virt(p), 1, order);
/*CN*/unpack ZeroPage (hyp_page_to_virt(buddy), 1, order);
/*CNx/lemma_attach_inc_loop (*pool, p, order);

. . i . /*CN*/lemma2 (hyp_page_to_pfn(p), order);
® it breaks modularity and readability of reasoning s e o inoren
/*CN%x/if ((buddy->node).next != &pool->free_arealorder])
/*CN*/ instantiate vmemmap_b_wf,
hyp_page_to_pfn(container_of ((buddy->node).next, struct hyp_page, node));
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/*CN%x/1f ((buddy->node).prev != (buddy->node).next);
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/*CNx/pack ZeroPage (hyp_page_to_virt(p), 1, order + 1);
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@ at every program point, there is a single global state “oreak
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/*CN*/unpack ZeroPage (hyp_page_to_virt(buddy), 1, order);
/*CNx/lemma_attach_inc_loop (*pool, p, order);

. . °|° ° /*CN*/1 (hyp_ _to_pfn(p), order);
@ it breaks modularity and readability of reasoning e e e
/*CN%x/if ((buddy->node).next != &pool->free_arealorder])
/*CNx/ instantiate vmemmap_b_wf,

hyp_page_to_pfn(container_of ((buddy->node).next, struct hyp_page, node));
/*CNx/1if ((buddy->node).prev != &pool->free_areal[order])

® ongoing work: program-proof states reified as local

/*CN%x/1f ((buddy->node).prev != (buddy->node).next);
*ISL? list_del_init (&buddy->node);
capab|l|t|es Lot del it oy o)
p = min(p, buddy);
/*CNx/pack ZeroPage (hyp_page_to_virt(p), 1, order + 1);
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