CStar:
Unifying Programming and
Verification in C

D1 Wang
Programming Languages Lab, Peking University

2025/ 11/ 21

Towards Safer Systems Software

formal verification to the rescue?

Security. Performance. Proof.

COMPCERT

Low™

For C-like programs

Embedded domain-specific languages

s@paration logic

i TLS Key Schedule &=———]miTLS-fstar
L Vo L
| State Separating Proofs | TLS Rec. | | QUIC Rec.
[Protocol proofs)
g — 4 V4 /)
Crypto
viderl EVErCrypt -
provider yp smpeneto || TLS || QUIC Windows NV
Ad hoc form
Assembly ﬁ H A C LX N :ZCW X . 5 O 9 for v?r:uglizai::n
crypto — x Certificates
| C %« | Portable QD *
Va e I’ypt HACL Cryptoin C ASN]. 3D
I] with broad
L Cryptographic algorithms / coverage / Mats & tools y
e L N\
Vale EverParse Steel
Verified formatting tools
For assembly
programs Copicurrency &

”

Z3—

_Proof-oriented programming framework

b

¥

| Monotonic State

— Rel-F*
Meta-F~*

Dijkstra
monads

\

Ve f
Compilation targets

/ KaRaMel
}

~N N

P
Deployment

Windows, Hyper-V, Linux, Firefox, Python, ElectionGuard, ...

—

—

V4
4

Towards Safer Systems Software

formal verification to the rescue?

Security. Performance. Proof.

verified kernels

COMPCERT

A4

Vale

programs

For assembly

Low™

For C-like programs

Embedded domain-specific languages

EverParse

Verified formatting tools

Steel

Copicurrency &
s@paration logic

| TLS Key Schedule =——— miTLS-fstar
I Voo /
| State Separating Proofs | TLS Rec. | | QUIC Rec.
[Protocol proofs)
(Crypto EverCA:Vt [/ / i |
provider yp smpeneto || TLS || QUIC Windows NV
ﬁ AcL] = Tcso0] i
crypto / » Certificates
ValeCrypt || HACL* |ewpome || QD | | ASN.1* | | 3D
Cryptograilihic algorithms / :\:)i\tl:rl;::ead ‘\/W Mats & tools ,

\

”

Z3—

_Proof-oriented programming framework

b

¥

| Monotonic State

— Rel-F*
Meta-F~*

Dijkstra
monads

\

Ve f
Compilation targets

KaRaMel

=

}

~N N

p <
Deployment
Windows, Hyper-V, Linux, Firefox, Python, ElectionGuard, ...

S—— ——

Towards Safer Systems Software

formal verification to the rescue?

Security. Performance. Proof.

CertliKOS

verified kernels

COMPCERT

A4

Vale

programs

For assembly

Low™

For C-like programs

Embedded domain-specific languages

EverParse

Verified formatting tools

Steel

Copicurrency &
s@paration logic

| TLS Key Schedule =——— miTLS-fstar
I Voo /
| State Separating Proofs | TLS Rec. | | QUIC Rec.
[Protocol proofs)
(Crypto EverCA:Vt [/ / i |
provider yp smpeneto || TLS || QUIC Windows NV
ﬁ AcL] = Tcso0] i
crypto / » Certificates
ValeCrypt || HACL* |ewpome || QD | | ASN.1* | | 3D
Cryptograilihic algorithms / :\:)i\tl:rl;::ead ‘\/W Mats & tools ,

\

”

Z3—

_Proof-oriented programming framework

b

¥

| Monotonic State

— Rel-F*
Meta-F~*

Dijkstra
monads

\

Ve f
Compilation targets

KaRaMel

=

}

~N N

verified compilers

p <
Deployment
Windows, Hyper-V, Linux, Firefox, Python, ElectionGuard, ...

S—— ——

Towards Safer Systems Software

formal verification to the rescue?

Security. Performance. Proof.

CertliKOS

verified kernels

A

A Verified Implementation of ML

COMPCERT

verified compilers

A4

Vale

programs

For assembly

EverParse

Low™

For C-like programs

Embedded domain-specific languages

Verified formatting tools

| TLS Key Schedule =——— miTLS-fstar
I Voo /
| State Separating Proofs | TLS Rec. | | QUIC Rec.
[Protocol proofs)
[e EverC‘:V t = e i \
provider yp smpeneto || TLS || QUIC Windows NV
ﬁ AcL] = Tcso0] i
crypto / » Certificates
ValeCrypt || HACL* |ewpome || QD | | ASN.1* | | 3D
Cryptograilihic algorithms / :\:)i\tl:rl;::ead ‘\/W Mats & tools ,

\

Steel

Copicurrency &
s@paration logic

”

Z3—

_Proof-oriented programming framework

b

¥

| Monotonic State

— Rel-F*
Meta-F*——
Dijkstra

monads

\

f
Compilation targets

/ KaRall\/leL \ \ |

p <
Deployment
Windows, Hyper-V, Linux, Firefox, Python, ElectionGuard, ...

S—— ——

verified protocols

Towards Safer Systems Software

formal verification to the rescue?

Isabelle/HOL

HOL4

Security. Performance. Proof.

A Verified Implementation of ML

CertliKOS

verified kernels

COMPCERT

verified compilers

>

/

| TLS Key Schedule =——— miTLS-fstar
R Vo L
| State Separating Proofs | TLS Rec. | | QUIC Rec.

[Protocol proofs y
Crypto E é/t (4 / - Y
provider| CVEILIYP smpeneto || TLS || QUIC Windows NV

sy~ nc0 | ERE T 00] A

crypto

« Certificates

%« | Portable
Valecrypt HACL Cryptoin C QD ASN].* 3D
I ith broad
L Cryptographic algorithms z:verar;a / Mats & tools .
4 N

Vale

For assembly

EverParse

programs

Low™

For C-like programs

Embedded domain-specific languages

Verified formatting tools

\

Steel

Copicurrency &
s@paration logic

e

¥

| Monotonic State

Z3—

— Rel-F*
Meta-F*——
Dijkstra

_Proof-oriented programming framework l monads
Compilati'on targets / Ka Ra M e |_ \ h
—
— £
Deployment
Windows, Hyper-V, Linux, Firefox, Python, ElectionGuard, ...
—— —_—1

verified protocols

Towards Safer Systems Software

formal verification to the rescue?

Isabelle/HOL
HOL4

Rocq
(Formerly Coq)

Security. Performance. Proof.

A Verified Implementation of ML

CertliKOS

COMPCERT

Protocol proofs
N

| TLS Key Schedule #———
SR VT
| State Separating Proofs |

miTLS-fstar

7

TLS Rec. QUIC

Rec.

\

=

}

Z
Ve — 7 3

ier| EverCrypt ‘ = Windows NV

provider
SIMD crypto TLS QU IC naows
Packet form:. Ad hoc formats
Assembly ﬁ H A C I—X N me X . 5 O 9 for|virtualization
crypto — x Certificates
%« | Portable
ValeCrypt || HACL" |eyptoine || QD | | ASN.1* | | 3D
[] with broad
L Cryptographic algorithms / AR / Mats & tools g
e — N
Vale EverParse Steel
Verified formatting tools
For asse| mbly
programs Coyicurrency &
s@paration logic
For C-like programs
L Embedded domain-specific languages)
s ~ <
| Monotonic State :
— Rel-F*
Meta-F*——
Z Dijkstra
_Proof-oriented programming framework l monads
Compilati'on targets Ka Ra M e L

~N N

verified kernels

verified compilers

o <
Deployment
Windows, Hyper-V, Linux, Firefox, Python, ElectionGuard, ...

S— ——

verified protocols

Towards Safer Systems Software

formal verification to the rescue?

Isabelle/HOL
HOL4

Rocq
(Formerly Coq)

Security. Performance. Proof.

A Verified Implementation of ML

CertliKOS

COMPCERT

Protocol proofs
N

| TLS Key Schedule #———
SR VT
| State Separating Proofs |

miTLS-fstar

7

TLS Rec. QUIC

Rec.

\

=

}

Z
Ve — 7 3

ier| EverCrypt ‘ = Windows NV

provider
SIMD crypto TLS QU IC naows
Packet form:. Ad hoc formats
Assembly ﬁ H A C I—X N me X . 5 O 9 for|virtualization
crypto — x Certificates
%« | Portable
ValeCrypt || HACL" |eyptoine || QD | | ASN.1* | | 3D
[] with broad
L Cryptographic algorithms / AR / Mats & tools g
e — N
Vale EverParse Steel
Verified formatting tools
For asse| mbly
programs Coyicurrency &
s@paration logic
For C-like programs
L Embedded domain-specific languages)
s ~ <
| Monotonic State :
— Rel-F*
Meta-F*——
Z Dijkstra
_Proof-oriented programming framework l monads
Compilati'on targets Ka Ra M e L

~N N

verified kernels

verified compilers

o <
Deployment
Windows, Hyper-V, Linux, Firefox, Python, ElectionGuard, ...

S— ——

verified protocols

Towards Safer Systems Software

formal verification to the rescue?

"theorem prover" sounds scary

[Language Enhancement?

let us focus on C & Rust

[Language Enhancement?

let us focus on C & Rust efficiency

enhancement strength

verification efficiency

4

strength

[Language Enhancement?

let us focus on C & Rust efficiency

enhancement strength

® verified properties: memory / thread safety,
Functional correctness, security, ...

verification efficiency

4

strength

[Language Enhancement?

let us focus on C & Rust efficiency

enhancement strength

® verified properties: memory / thread safety,
Functional correctness, security, ...

® trustworthiness: non-foundational /
foundational

verification efficiency

4

strength

[Language Enhancement?

let us focus on C & Rust efficiency

enhancement strength

® verified properties: memory / thread safety,
Functional correctness, security, ...

® trustworthiness: non-foundational /
foundational

verification efficiency

® |earning curve

4

strength

[Language Enhancement?

let us focus on C & Rust efficiency

enhancement strength

® verified properties: memory / thread safety,
Functional correctness, security, ...

® trustworthiness: non-foundational /
foundational

verification efficiency
® |earning curve

® automation, modularity, reusability, evolution

4

strength

[Language Enhancement?

let us focus on C & Rust efficiency

enhancement strength

® verified properties: memory / thread safety,
Functional correctness, security, ...

® trustworthiness: non-foundational /
foundational

verification efficiency
® |earning curve
® automation, modularity, reusability, evolution

® synergy with existing tooling

4

strength

[Language Enhancement?

let us focus on C & Rust

efficiency
@ L

enhancement strength ® Checked C
® verified properties: memory / thread safety, ® C-rusted

Functional correctness, security, ... ® BiSheng C
® trustworthiness: non-foundational / ® Rust

Foundational

® flux
@® Prusti
®\/CC
verification efficiency ® Frama-C
® |learning curve ® Verus
® \erifast
® automation, modularity, reusability, evolution ®CN @®RefinedC g (cp
® synergy with existing tooling ® VST-A
4

strength

Obs I.:VC Generation is Required

if aiming for high efficiency

efficiency
®C
® Checked C
@® C-rusted
® BiSheng C
® Rust
® Flux
® Prust
®\/CC
® Frama-C
® Verus
@ \erifast

®CN QReﬂnedC .OCP

® \/ST-A

strength

Obs I.:VC Generation is Required

if aiming for high efficiency

efficiency
®C
@® Checked C
@ C-rusted
® BiSheng C
® Ruct automatically generate verification conditions (VCs)
US .
fFrom user annotations
® Flux
® Prusti
®\/CC
® Frama-C
® \erus
@ \erifast

®CN QReﬂnedC .QCP
® \VST-A

strength

Obs I.:VC Generation is Required

if aiming for high efficiency

efficiency
®C
@® Checked C
® C-rusted
® BiSheng C
- automatically generate verification conditions (VCs)
U .
from user annotations
® Flux
® Prusti
®\/(CC some of them utilize SMT solvers (such as Z3)
® frama-C to discharge VCs
® \erus

@ \erifast
.CN QReﬂnedC .QCP

® \/ST-A

strength

CStar Demo: VC Generation

nothing new yet

Obs: Manual Proofis Unavoidable

if aiming at strong strength

efficiency
®C
® Checked C
@® C-rusted
® BiSheng C
® Rust
® Flux
® Prust
®\/CC
® Frama-C
® Verus
@ \erifast

®CN QReﬂnedC .OCP

® \/ST-A

strength

Obs: Manual Proofis Unavoidable

if aiming at strong strength

efficiency
o
® Checked C
@® C-rusted
® BiSheng C
® Rust
¢ F.lusrusti backended by an interactive theorem
®\/CC prover to prove VCs manually
® Frama-C
® \erus
@ \erifast

®CN QReﬂnedC .QCP
® VST-A

strength

Prob I: Proof Encapsulation

theorem provers are nice, but...
current status in CN (and many others):

proofs are delegated to Rocq

lemma append_nil (datatype seq 11)
requires true;
ensures append(11, Nil {}) == 11;

lemma append_cons (datatype seq 11, i32 x, datatype seq 12)
requires true;
ensures append(11, Cons {head: x, tail: 12})
== append(snoc(11, x), 12);

struct node *xtmp = cur->tail;

cur—>tail = last;

last = cur;

cur = tmp;

/*¥@ unfold rev(L2); @/

/*@ apply append_cons (rev (tl(L2)), hd(L2), L1); @/

Prob I: Proof Encapsulation

theorem provers are nice, but...
current status in CN (and many others):

proofs are delegated to Rocq

® obs: libraries constitute the hidden substrate of

modern (Systemsa software lemma append_nil (datatype seq 11)

requires true;
ensures append(11, Nil {}) == 11;

lemma append_cons (datatype seq 11, i32 x, datatype seq 12)

requires true;
ensures append(11, Cons {head: x, tail: 12})
== append(snoc(11, x), 12);

struct node *xtmp = cur->tail;

cur—>tail = last;

last = cur;,

cur = tmp;

/*¥@ unfold rev(L2); @/

/*@ apply append_cons (rev (tl(L2)), hd(L2), L1); @/

Prob I: Proof Encapsulation

theorem provers are nice, but...

® obs: libraries cons
modern (systems.

1ty

SO

e the hidden substrate of

‘tware

® obs: multilingual libraries, on the other hand,
might cause cross-language-boundary issues

current status in CN (and many others):

proofs are delegated to Rocq

lemma append_nil (datatype seq 11)
requires true;
ensures append(11, Nil {}) == 11;

lemma append_cons (datatype seq 11, i32 x, datatype seq 12)
requires true;
ensures append(11, Cons {head: x, tail: 12})
== append(snoc(11, x), 12);

struct node *xtmp = cur->tail;

cur—>tail = last;

last = cur;,

cur = tmp;

/*¥@ unfold rev(L2); @/

/*@ apply append_cons (rev (tl(L2)), hd(L2), L1); @/

Prob I: Proof Encapsulation

theorem provers are nice, but...
current status in CN (and many others):

proofs are delegated to Rocq

® obs: libraries constitute the hidden substrate of
modern (SyStemS‘ sortware lemma append_nil (datatype seq 11)

requires true;

® obs: multilingual libraries, on the other hand, ensures append(11, Nil {}) == 11;
might cause cross-language-boundary issues
lemma append_cons (datatype seq 11, i32 x, datatype seq 12)
requires true;
ensures append(11, Cons {head: x, tail: 12})
== append(snoc(11, x), 12);

prInCIp‘e: Integrate prOOF- struct node *tmp = cur—>tail;
specification-implementation | cur->tait = tast;

. last = cur;
together into one language cur = tmp;
/*¥@ unfold rev(L2); @/
/*@ apply append_cons (rev (tl(L2)), hd(L2), L1); @/

Obs: Manual Proofis Unavoidable

if aiming at strong strength

efficiency
®C
® Checked C
@® C-rusted
® BiSheng C
® Rust
® Flux
® Prust
®\/CC
® Frama-C
® Verus
@ \erifast

®CN QReﬂnedC .OCP

® \/ST-A

strength

Obs: Manual Proofis Unavoidable

if aiming at strong strength

efficiency
®C
® Checked C
® C-rusted
® BiSheng C
® Rust
® Flux :
® Prust support language-integrated
®\/CC proof commands
® frama-C
® \erus
@® \erifast

®CN QReﬂnedC .QCP
® \VST-A

strength

struct node xreverse(struct node xxs)
/*@ requires take L = IntList(xs);
ensures take L_ = IntList(return);
L == rev(L);
@x/

struct node *xlast = 0;
struct node *cur = Xxs;
/*@ apply append_nil(rev(L)); @/
while(1)
/*@ inv take L1 = IntList(last);
take L2 = IntList(cur);
append(rev(L2), L1) == rev(L);
@x/
{
if (cur == 0) {
/*@ unfold rev(Nil {}); @/
/*@ unfold append(Nil {}, L1); @/

return last;
I3
struct node *xtmp = cur—>tail;
cur—>tail = last;
last = cur;
cur = tmp;
/*@ unfold rev(L2); @x/
/*@ apply append_cons (rev (tl(L2)), hd(L2), L1); @*/

example program with proof commands in CN

10

struct node *xreverse(struct node xxs)
/*@ requires take L = IntList(xs);
ensures take L_ = IntList(return);
L == rev(L);
@x/

struct node xlast = 0;
struct node *cur = Xs;
/*@ apply append_nil(rev(L)); @/
while(1)
/*@ inv take L1 = IntList(last);
take L2 = IntList(cur);
append(rev(L2), L1) == rev(L);
@x/
{
if (cur == 0) {
/*@ unfold rev(Nil {}); @/
/*@ unfold append(Nil {}, L1); @/

return last;

}

struct node *xtmp = cur—>tail;

cur—>tail = last;

last = cur;

cur = tmp;

/*@ unfold rev(L2); @x/

/*@ apply append_cons (rev (tl(L2)), hd(L2), L1); @/

example program with proof commands in CN

public boolean remove(Object o)
/x: requires " init”
modifies content, csize
ensures
"(result — (3 i. (i,0)Eold content A
(-3 j. j<i A (j,0)€old content) A
(V je. 0<jAj<i—(]j,e)Econtent=(j,e)€Eold content) A
(i<jAj<csize—(],e)Econtent=(j+1,e)Eold content)) A
(—result — (content=old contentA—di. (i,0)€old content))” */
{int index = 0O;
while /x: inv " (V]. 0<jAj<index—o7#elements.[j]) A
0<index A size=old size” x/
(index < size) {
if (elements[index] == o) {
shift (index);
/*: note ObjectRemoved:
"Vj e. (0<jAj<index—(j,e)Econtent=(j,e)Eold content) A
(index<jAj<csize—(j,e)Econtent=(j+1,e)Eold content)”

from shift_Postcondition , Looplnv, LoopCondition
content_def, csize_def ;

witness index for
"3i. (i,0)€old content A (—3j. j<i A (j,0)Eold content) A
(Vj e. (0<jAj<i—(]j,e)Econtent=(j,e)€Eold content) A
(i<jAj<csize—(j,e)Econtent=(j+1,e)Eold content))” */
return true;

}
index = index + 1;
}
return false ;
}

example program with proof commands in Jahob

10

Prob II: Programmable Proof

proof commands are nice, but ...

P = DP1sDo .
assert [: F' from h

note I:F from h

localize in (p ; note [: F')

mp l:(F — G)

assuming lr:F in (p;note lg:G)
cases F for I:G
showedCasezofl: F1 V...V F,
byContradiction [: F' in p
contradiction [: F’

instantiate [:VZ.F with t

witness ¢ for :3Z.F

pickWitness & for [F:F' in (p ;notelg:G)
pickAny Z in (p; note [: F)

induct [:F' overn in p

1

integrated proof commands in Jahob

Prob II: Programmable Proof

proof commands are nice, but ...

P = DP1sDo .

assert [: F' from h

note I:F from h

localize in (p ; note [: F')

mp l:(F — G)

assuming [r:F' in (p;note lg:G)
cases F for I:G
showedCasezofl: F1 V...V F,

byContradiction [:F'in p
contradiction [: F’

instantiate [:VZ.F with t

witness ¢ for [:3Z.F

pickWitness & for [F:F' in (p ;notelg:G)
pickAny Z in (p; note [: F)

induct [:F' overn in p

® obs: manual proofs are inevitable for complex
reasoning tasks

1

integrated proof commands in Jahob

Prob II: Programmable Proof

proof commands are nice, but ...

P = DP1sDo .

assert [: F' from h

note I:F from h

localize in (p ; note [: F)

mp l:(F — G)

assuming [r:F' in (p;note lg:G)
cases F for I:G
showedCasezofl: F1 V...V F,
byContradiction [:F'in p
contradiction [: F’

instantiate [:VZ.F with ¢
witness t for [:3Z.F

pickWitness & for [F:F' in (p ;notelg:G)
pickAny Z in (p; note [: F)
induct [:F' overn in p

® obs: manual proofs are inevitable for complex
reasoning tasks

® obs: using a fixed set of proof commands feels
neither comprehensive nor extensible

1

integrated proof commands in Jahob

Prob II: Programmable Proof

proof commands are nice, but ...

P = DP1sDo .
assert [: F' from h

note I: F from h
localize in (p; note [: F')

® obs: using a fixed set of proof commands feels ;nsgs)uln(nl;']‘;FG% in (p 3 note lg:G)

neither comprehensive nor extensible -
cases F' for l:G

showedCasezofl: F1 V...V F,
byContradiction [:F' in p
contradiction [: F’

® obs: manual proofs are inevitable for complex
reasoning tasks

principle: support using the ful instantiate [:VZ. F with

0 witness ¢ for [:3Z.F
\anguage (o programmatlca"y pickWitness X for [r:F'in (p ; notelg:G)
construct proof pickAny & in (p ; note I: F)

induct [:F overn in p

1

integrated proof commands in Jahob

The L.CF Solution

logic for computable functions

12

The L.CF Solution

logic for computable functions

® the LCF architecture for theorem proving by Robin Milner in the 1970s

12

The L.CF Solution

logic for computable functions

® the LCF architecture for theorem proving by Robin Milner in the 1970s

@ programming formal proof is to compute theorems using a protected interface

protected interface
Proof Kernel D User Proof

12

The L.CF Solution

logic for computable functions

® the LCF architecture for theorem proving by Robin Milner in the 1970s

@ programming formal proof is to compute theorems using a protected interface

® correct-by-construction even when extended with arbitrary user proof code

protected interface
Proof Kernel D User Proof

12

CStar Demo: Proof Programming

a practice of LCFin C

14

it is now already possible to prove VCs in C

it is now already possible to prove VCs in C

but we can do better by introducing
program-proof states

CStar Demo: Program-Proof State

essentially, a symbolic representation of the program state

16

a VCis a prop "pre |- post" at a program point

16

both are program-proof states

a VCis a prop "pre |- post" at a program point

16

both are program-proof states

a VCis a prop "pre |- post" at a program point

proving a VC is coupled with programming in CStar

16

both are program-proof states

a VCis a prop "pre |- post" at a program point

proving a VC is coupled with programming in CStar
you write a proof to transform from pre to post

CStar Demo: Program Proof

unify program and proof

The Architecture of CStar

how to ensure correct-by-construction

The Architecture of CStar

how to ensure correct-by-construction

® the original LCF design heavily relies on type abstraction provided by the ML language

18

The Architecture of CStar

how to ensure correct-by-construction

® the original LCF design heavily relies on type abstraction provided by the ML language

® we worked out a language-agnostic variant of the LCF-architecture with process separation

Proof Kernel

Proof Library

HOL Light —m L RPN I!’C <+—> User Proof
Server X X Client

Safe language Unsafe language

18

The Architecture of CStar

how to maintain the program-proof states

The Architecture of CStar

how to maintain the program-proof states

® compute symbolic heap information via Forward symbolic execution

19

The Architecture of CStar

how to maintain the program-proof states

® compute symbolic heap information via Forward symbolic execution

® CStar now employs (but is largely agnostic of) QCP's symbolic executor for separation-logic reasoning

QCP: A Practical Separation Logic-based C
Program Verification Tool

Xiwei Wu'!, Yueyang Fengl’*, Xiaoyang Lul’*, Tianchuan Lin', Kan Liu?,
Zhiyi Wang?, Shushu Wu!, Lihan Xie!, Chengxi Yang!, Hongyi Zhong', Naijun

Zhan?, Zhenjiang Hu?, and Qinxiang Caol'

! Shanghai Jiao Tong University
{yashen, fyyvexoben, luxyl1115, caoqinxiang}@sjtu.edu.cn
? Peking University
2301111964@stu.pku.edu.cn

https:/arxiv.org/pdf/2505.12878 19

https://arxiv.org/pdf/2505.12878

The Architecture of CStar

how to maintain the program-proof states

® compute symbolic heap information via Forward symbolic execution
® CStar now employs (but is largely agnostic of) QCP's symbolic executor for separation-logic reasoning

® (JCP evolves the program-proof states for program code; CStar evolves the program-proof states for proof code

LCF-style
Proof Kernel QCP: A Practical Separation Logic-based C

Operational R JREN Residual Program Verification Tool
Cx Program Proof Program e’ ' R Proof Program
4 4 A . 4 A
. R . . . * . * . . o
Implemenztmn Code Assertion-annotated G Xiwei Wu!, Yueyang Feng!> , Xiaoyang Lu!’ , Tianchuan Lin!, Kan Liu?,
Code Segments Conditions . 2 1 713 .1 : 1 . 1 Y
Specifications and | g L==)p Symbolic ' Zhiyi Wang“, Shushu Wu", Lihan Xie", Chengxi Yang", HongTyl Zhong", Naijun
Intermediate Assertions PRI T ccution : Zhan?, Zhenjiang Hu?, and Qinxiang Cao®
i Proof Code I Proof Code 1 oo , ,
Proof-code Blocks I Shanghai Jiao Tong University
: : {yashen, fyyvexoben, luxyl1115, caoqinxiang}@sjtu.edu.cn
- o I - < I > Peking University
1 1 2301111964@stu.pku.edu.cn
| |
| |
Stage I Stage II Stage II1I

Translation Operational Proof Checking Residual Proof Checking h ttD S // arxiv.org / D df / 250512878 19

https://arxiv.org/pdf/2505.12878

users can now use the full power of C
to conduct proof and verification

CStar Demo: Tactics

all implemented outside the proof kernel

2

CStar Demo: SMT Integration

achieve controllable automation

CStar Demo: Proof Encapsulation

one can implement program-proof libraries

CStar

Unifying Programming and Verification in C

24

CStar

Unifying Programming and Verification in C

prob i: proof encapsulation

24

CStar

Unifying Programming and Verification in C

prob i: proof encapsulation

prob ii: programmable proof

24

CStar

Unifying Programming and Verification in C

principle i: integrate proof-
specification-implementation
together into one language

prob i: proof encapsulation

prob ii: programmable proof

24

CStar

Unifying Programming and Verification in C

principle i: integrate proof-
specification-implementation
together into one language

prob i: proof encapsulation

prob ii: programmable proof

24

CStar

Unifying Programming and Verification in C

prob i: proof encapsulation

prob ii: programmable proof

principle i: integrate proof-
specification-implementation
together into one language

principle ii: support using the full
language to programmatically
construct proof

24

CStar

Unifying Programming and Verification in C

prob i: proof encapsulation

prob ii: programmable proof

principle i: integrate proof-
specification-implementation
together into one language

principle ii: support using the full
language to programmatically
construct proof

24

CStar

Unifying Programming and Verification in C

prob i: proof encapsulation

prob ii: programmable proof

principle i: integrate proof-
specification-implementation
together into one language

principle ii: support using the full
language to programmatically
construct proof

24

CStar

Unifying Programming and Verification in C

principle i: integrate proof-
specification-implementation
together into one language

prob i: proof encapsulation
principle ii: support using the full
language to programmatically
construct proof

prob ii: programmable proof

principle iii: allow users to inspect
and manipulate program-proof
states

24

CStar

Unifying Programming and Verification in C

principle i: integrate proof-
specification-implementation
together into one language

prob i: proof encapsulation
principle ii: support using the full
language to programmatically
construct proof

prob ii: programmable proof

principle iii: allow users to inspect
and manipulate program-proof
states

24

CStar

Unifying Programming and Verification in C

principle i: integrate proof-
specification-implementation
together into one language ® use clang for compilation

@ CStar reuses clang's toolchain

prob i: proof encapsulation ® use clangd for language server
principle ii: support using the full
language to programmatically
construct proof

prob ii: programmable proof

principle iii: allow users to inspect
and manipulate program-proof
states

24

CStar

Unifying Programming and Verification in C

principle i: integrate proof-
specification-implementation
together into one language ® use clang for compilation

@ CStar reuses clang's toolchain

prob i: proof encapsulation ® use clangd for language server
principle ii: support using the full
language to programmatically
construct proof

prob ii: programmable proof ® its design is language-agnostic

principle iii: allow users to inspect
and manipulate program-proof
states

24

CStar

Unifying Programming and Verification in C

prob i: proof encapsulation

prob ii: programmable proof

principle i: integrate proof-
specification-implementation
together into one language

principle ii: support using the full
language to programmatically
construct proof

principle iii: allow users to inspect
and manipulate program-proof
states

® CStar reuses clang's toolchain
® use clang for compilation

® use clangd for language server

® its design is language-agnostic

® RustStar?

24

CStar

Unifying Programming and Verification in C

prob i: proof encapsulation

prob ii: programmable proof

principle i: integrate proof-
specification-implementation
together into one language

principle ii: support using the full
language to programmatically
construct proof

principle iii: allow users to inspect
and manipulate program-proof
states

® CStar reuses clang's toolchain
® use clang for compilation

® use clangd for language server

® its design is language-agnostic
® RustStar?

® you own language-Star?

24

What are Still Missing

there are two looming "clouds”

What are Still Missing

there are two looming "clouds”

@ minor one: the logical layer is functional, which is not C-style

25

What are Still Missing

there are two looming "clouds”

@ minor one: the logical layer is functional, which is not C-style

® the logical core is simply-typed lambda calculus, which is
in many ways simpler than C

25

What are Still Missing

there are two looming "clouds”

@ minor one: the logical layer is functional, which is not C-style

® the logical core is simply-typed lambda calculus, which is
in many ways simpler than C

@ major one: program-proof states are non-local

25

What are Still Missing

there are two looming "clouds”

@ minor one: the logical layer is functional, which is not C-style

® the logical core is simply-typed lambda calculus, which is
in many ways simpler than C

@ major one: program-proof states are non-local

@ at every program point, there is a single global state

25

for (; (order + 1) < pool->max_order; order++)

What are Still Missing

there are two IOOming "CIOUdS" ;:g i:z iz: éP==Zg‘;zz:%§c()c();l)<))igit/er) ((p_i2 * 4096) - hyp_physvirt_offset), 1, order) @x/

/*@ inv let hyp_vmemmap = (pointer) __hyp_vmemmap @x/

/*@ inv let start_i2 = (*pool).range_start / 4096 @x/

/*@ inv let end_i2 = (*pool).range_end / 4096 @x/

/*@ inv let off_i = hyp_physvirt_offset / 4096 @x/

/*@ inv let V2 = each (integer i; start_i2 <= i && i < end_i2)
{Owned<struct hyp_page>(hyp_vmemmap+(ix32)) } @x/

/*@ inv let p_page = V2.value[p_i2] @x*/

/*@ inv let p_page_tweaked2 = (p_page){.order = order} @x/

® minor one: the logical layer is functional, which is not C-style e o vneng, V5 M2 - ppge twesked, posl, spo03) &4

/*@ inv each(integer i; @ <= i && i < ((*pool).max_order))
{freeArea_cell_wf (i, hyp_vmemmap, V2.value, pool, (*pool))} @x/
/*@ inv hyp_pool_wf(pool, *pool, hyp_vmemmap, hyp_physvirt_offset) @x/
/*@ inv let R = each(integer i; start_i2 <= (i + off_i) && (i + off_i) < end_i2

B — && (V2.value[i + off_i]).refcount ==
® the logical core is simply-typed lambda calculus, which is 35 (2wl + oft A refeont = 0 o onder O)
{ ZeroPage(((pointer) @) + (i*4096), 1, (V2.value[i+off_i]).order) } @/
. /*@ inv @ <= order; order+1 <= (*pool).max_order @x/

/*@ inv cellPointer(hyp_vmemmap,32,start_i2,end_i2,p) @x*/

n many ways simpler than C
/*@ inv (p_page.refcount) == 0; (p_page.order) == (hyp_no_order ()); (p_page.pool) == pool @x/
/*@ inv (p_page.node.next) == &(p->node); (p_page.node.prev) == &(p->node) @x/
/*@ inv order_aligned(p_i2,order) @/
/*@ inv (p_i2 * 4096) + (page_size_of_order(order)) <= (*pool).range_end @x/

° f I I /*@ inv each(integer i; {p_i}@start < i & i < end_i2)
o - - V.value[i]}@start).refcount == @) || V2.valuel[i]) == {V.valuel[i]}@start)} @x/
@ major one: program-prool states are non-loca e iy ¢ p (L valueiDestart) 11 ¢) = (valueliTjastors)

inv {__hyp_vmemmap} unchanged; {hyp_physvirt_offset} unchanged; {pool} unchanged @x/
/*@ inv ({*pool}@start){.free_area = (*pool).free_area} == *pool @x/

buddy = __find_buddy_avail (pool, p, order);
. h . ° I I b I if (!buddy)
@ at every program point, there Is a single global state
/*CN*/instantiate vmemmap_b_wf, hyp_page_to_pfn(buddy);
/*CNx/unpack ZeroPage (hyp_page_to_virt(p), 1, order);
/*CN*/unpack ZeroPage (hyp_page_to_virt(buddy), 1, order);
/*CNx/lemma_attach_inc_loop (*pool, p, order);
/*CN*/lemma2 (hyp_page_to_pfn(p), order);
/*CN*/lemma_page_size_of_order_inc(order);
/*CN%x/if ((buddy->node).next != &pool->free_arealorder])
/*CN*/ instantiate vmemmap_b_wf,
hyp_page_to_pfn(container_of ((buddy->node).next, struct hyp_page, node));
/*CNx/1if ((buddy->node).prev != &pool->free_areal[order])
/*CN%*/ instantiate vmemmap_b_wf,
hyp_page_to_pfn(container_of ((buddy->node).prev, struct hyp_page, node));
/*CN%x/1f ((buddy->node).prev != (buddy->node).next);
list_del_init (&buddy->node);
buddy ->order = HYP_NO_ORDER;
p = min(p, buddy);
/*CNx/pack ZeroPage (hyp_page_to_virt(p), 1, order + 1);

excerpts from the verified attach_page function in CN =

for (; (order + 1) < pool->max_order; order++)

What are Still Missing

there are two IOOming "CIOUdS" ;:g i:z iz: éP==Zg‘;zz:%§c()c();l)<))igit/er) ((p_i2 * 4096) - hyp_physvirt_offset), 1, order) @x/

/*@ inv let hyp_vmemmap = (pointer) __hyp_vmemmap @x/

/*@ inv let start_i2 = (*pool).range_start / 4096 @x/

/*@ inv let end_i2 = (*pool).range_end / 4096 @x/

/*@ inv let off_i = hyp_physvirt_offset / 4096 @x/

/*@ inv let V2 = each (integer i; start_i2 <= i && i < end_i2)
{Owned<struct hyp_page>(hyp_vmemmap+(ix32)) } @x/

/*@ inv let p_page = V2.value[p_i2] @x*/

/*@ inv let p_page_tweaked2 = (p_page){.order = order} @x/

® minor one: the logical layer is functional, which is not C-style e o vneng, V5 M2 - ppge twesked, posl, spo03) &4

/*@ inv each(integer i; @ <= i && i < ((*pool).max_order))
{freeArea_cell_wf (i, hyp_vmemmap, V2.value, pool, (*pool))} @x/
/*@ inv hyp_pool_wf(pool, *pool, hyp_vmemmap, hyp_physvirt_offset) @x/
/*@ inv let R = each(integer i; start_i2 <= (i + off_i) && (i + off_i) < end_i2

B — && (V2.value[i + off_i]).refcount ==
® the logical core is simply-typed lambda calculus, which is 35 (2wl + oft A refeont = 0 o onder O)
{ ZeroPage(((pointer) @) + (i*4096), 1, (V2.value[i+off_i]).order) } @/
. /*@ inv @ <= order; order+1 <= (*pool).max_order @x/

/*@ inv cellPointer(hyp_vmemmap,32,start_i2,end_i2,p) @x*/

n many ways simpler than C
/*@ inv (p_page.refcount) == 0; (p_page.order) == (hyp_no_order ()); (p_page.pool) == pool @x/
/*@ inv (p_page.node.next) == &(p->node); (p_page.node.prev) == &(p->node) @x/
/*@ inv order_aligned(p_i2,order) @/
/*@ inv (p_i2 * 4096) + (page_size_of_order(order)) <= (*pool).range_end @x/

° f I I /*@ inv each(integer i; {p_i}@start < i & i < end_i2)
o - - V.value[i]}@start).refcount == @) || V2.valuel[i]) == {V.valuel[i]}@start)} @x/
@ major one: program-prool states are non-loca e iy ¢ p (L valueiDestart) 11 ¢) = (valueliTjastors)

inv {__hyp_vmemmap} unchanged; {hyp_physvirt_offset} unchanged; {pool} unchanged @x/
/*@ inv ({*pool}@start){.free_area = (*pool).free_area} == *pool @x/

buddy = __find_buddy_avail (pool, p, order);
° ° ° if (!buddy)
@ at every program point, there is a single global state “oreak
/*CN*/instantiate vmemmap_b_wf, hyp_page_to_pfn(buddy);
/*CNx/unpack ZeroPage (hyp_page_to_virt(p), 1, order);
/*CN*/unpack ZeroPage (hyp_page_to_virt(buddy), 1, order);
/*CNx/lemma_attach_inc_loop (*pool, p, order);

. . i . /*CN*/lemma2 (hyp_page_to_pfn(p), order);
® it breaks modularity and readability of reasoning s e o inoren
/*CN%x/if ((buddy->node).next != &pool->free_arealorder])
/*CN*/ instantiate vmemmap_b_wf,
hyp_page_to_pfn(container_of ((buddy->node).next, struct hyp_page, node));
/*CNx/1if ((buddy->node).prev != &pool->free_areal[order])
/*CN%*/ instantiate vmemmap_b_wf,
hyp_page_to_pfn(container_of ((buddy->node).prev, struct hyp_page, node));
/*CN%x/1f ((buddy->node).prev != (buddy->node).next);
list_del_init (&buddy->node);
buddy ->order = HYP_NO_ORDER;
p = min(p, buddy);
/*CNx/pack ZeroPage (hyp_page_to_virt(p), 1, order + 1);

excerpts from the verified attach_page function in CN =

for (; (order + 1) < pool->max_order; order++)

What are Still Missing

there are two IOOming "CIOUdS" ;:g i:z iz: éP==Zg‘;zz:%§c()c();l)<))igit/er) ((p_i2 * 4096) - hyp_physvirt_offset), 1, order) @x/

/*@ inv let hyp_vmemmap = (pointer) __hyp_vmemmap @x/

/*@ inv let start_i2 = (*pool).range_start / 4096 @x/

/*@ inv let end_i2 = (*pool).range_end / 4096 @x/

/*@ inv let off_i = hyp_physvirt_offset / 4096 @x/

/*@ inv let V2 = each (integer i; start_i2 <= i && i < end_i2)
{Owned<struct hyp_page>(hyp_vmemmap+(ix32)) } @x/

/*@ inv let p_page = V2.value[p_i2] @x*/

/*@ inv let p_page_tweaked2 = (p_page){.order = order} @x/

® minor one: the logical layer is functional, which is not C-style e o vneng, V5 M2 - ppge twesked, posl, spo03) &4

/*@ inv each(integer i; @ <= i && i < ((*pool).max_order))
{freeArea_cell_wf (i, hyp_vmemmap, V2.value, pool, (*pool))} @x/
/*@ inv hyp_pool_wf(pool, *pool, hyp_vmemmap, hyp_physvirt_offset) @x/
/*@ inv let R = each(integer i; start_i2 <= (i + off_i) && (i + off_i) < end_i2

B — && (V2.value[i + off_i]).refcount ==
® the logical core is simply-typed lambda calculus, which is 35 (2wl + oft A refeont = 0 o onder O)
{ ZeroPage(((pointer) @) + (i*4096), 1, (V2.value[i+off_i]).order) } @/
. /*@ inv @ <= order; order+1 <= (*pool).max_order @x/

/*@ inv cellPointer(hyp_vmemmap,32,start_i2,end_i2,p) @x*/

n many ways simpler than C
/*@ inv (p_page.refcount) == 0; (p_page.order) == (hyp_no_order ()); (p_page.pool) == pool @x/
/*@ inv (p_page.node.next) == &(p->node); (p_page.node.prev) == &(p->node) @x/
/*@ inv order_aligned(p_i2,order) @/
/*@ inv (p_i2 * 4096) + (page_size_of_order(order)) <= (*pool).range_end @x/

° f I I /*@ inv each(integer i; {p_i}@start < i & i < end_i2)
o - - V.value[i]}@start).refcount == @) || V2.valuel[i]) == {V.valuel[i]}@start)} @x/
@ major one: program-prool states are non-loca e iy ¢ p (L valueiDestart) 11 ¢) = (valueliTjastors)

inv {__hyp_vmemmap} unchanged; {hyp_physvirt_offset} unchanged; {pool} unchanged @x/
/*@ inv ({*pool}@start){.free_area = (*pool).free_area} == *pool @x/

buddy = __find_buddy_avail (pool, p, order);
° ° ° if (!buddy)
@ at every program point, there is a single global state “oreak
/*CN*/instantiate vmemmap_b_wf, hyp_page_to_pfn(buddy);
/*CNx/unpack ZeroPage (hyp_page_to_virt(p), 1, order);
/*CN*/unpack ZeroPage (hyp_page_to_virt(buddy), 1, order);
/*CNx/lemma_attach_inc_loop (*pool, p, order);

. . °|° ° /*CN*/1 (hyp_ _to_pfn(p), order);
@ it breaks modularity and readability of reasoning e e e
/*CN%x/if ((buddy->node).next != &pool->free_arealorder])
/*CNx/ instantiate vmemmap_b_wf,

hyp_page_to_pfn(container_of ((buddy->node).next, struct hyp_page, node));
/*CNx/1if ((buddy->node).prev != &pool->free_areal[order])

® ongoing work: program-proof states reified as local

/*CN%x/1f ((buddy->node).prev != (buddy->node).next);
*ISL? list_del_init (&buddy->node);
capab|l|t|es Lot del it oy o)
p = min(p, buddy);
/*CNx/pack ZeroPage (hyp_page_to_virt(p), 1, order + 1);

excerpts from the verified attach_page function in CN =

efficiency

®C
® Checked C
@® C-rusted
® BiSheng C
® Rust
® Flux
® Prusti
®\/CC
® Frama-C

® \erus
@ Verifast

OCN @ @RefinedC
® (OCP

® \V/ST-A

strength

efficiency

®C
® Checked C
@® C-rusted
® BiSheng C
4
® Rust '.'
® fFlux '
® Prusti with Al support

®\/CC :
® FramaC with more and more libraries

[}
|

® Verus
® \erifast

OCN @ @RefinedC
® (CP

® \V/ST-A

strength

