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"theorem prover" sounds scary
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automatically generate verification conditions (VCs) 
from user annotations

some of them utilize SMT solvers (such as Z3) 
to discharge VCs



CStar Demo: VC Generation
nothing new yet
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backended by an interactive theorem 
prover to prove VCs manually
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proof commands are nice, but ...

Prob II: Programmable Proof 

๏ obs: manual proofs are inevitable for complex 
reasoning tasks

๏ obs: using a fixed set of proof commands feels 
neither comprehensive nor extensible

principle: support using the full 
language to programmatically 
construct proof

integrated proof commands in Jahob 11
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logic for computable functions

The LCF Solution

๏ the LCF architecture for theorem proving by Robin Milner in the 1970s

๏ programming formal proof is to compute theorems using a protected interface

๏ correct-by-construction even when extended with arbitrary user proof code

12

Proof Kernel User Proof
protected interface

IMPLEMENTED IN A SINGLE PROGRAMMING LANGUAGE WITH TYPE ABSTRACTION



CStar Demo: Proof Programming
a practice of LCF in C
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CStar Demo: Program-Proof State
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a VC is a prop "pre |-- post" at a program point

proving a VC is coupled with programming in CStar
you write a proof to transform from pre to post

16
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CStar Demo: Program Proof
unify program and proof
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how to ensure correct-by-construction

The Architecture of CStar

๏ the original LCF design heavily relies on type abstraction provided by the ML language

๏we worked out a language-agnostic variant of the LCF-architecture with process separation

18

HOL Light HOL for CIPC 
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User Proof
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Safe language Unsafe language
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how to maintain the program-proof states

The Architecture of CStar

๏ compute symbolic heap information via forward symbolic execution

๏ CStar now employs (but is largely agnostic of) QCP's symbolic executor for separation-logic reasoning

๏ QCP evolves the program-proof states for program code; CStar evolves the program-proof states for proof code
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users can now use the full power of C 
to conduct proof and verification
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CStar Demo: Tactics
all implemented outside the proof kernel
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CStar Demo: SMT Integration
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CStar Demo: Proof Encapsulation
one can implement program-proof libraries
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there are two looming "clouds"

What are Still Missing

๏minor one: the logical layer is functional, which is not C-style

๏ the logical core is simply-typed lambda calculus, which is 
in many ways simpler than C

๏major one: program-proof states are non-local

๏ at every program point, there is a single global state

๏ it breaks modularity and readability of reasoning

๏ ongoing work: program-proof states reified as local 
capabilities

25excerpts from the verified attach_page function in CN
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CStar

with more and more libraries

with AI support


