
AUTOMATING EXPECTED COST ANALYSIS
WITH TYPES

Di Wang, David M. Kahn, Jan Hoffmann
Carnegie Mellon University

RAISING EXPECTATIONS:

COST ANALYSIS

2

Programs Performance

Time
Memory
Power
…

COST ANALYSIS

2

Programs

Scenarios

Performance

Time
Memory
Power
…

Identifying bottlenecks

COST ANALYSIS

2

Programs

Scenarios

Performance

Time
Memory
Power
…

Timing side channels

Identifying bottlenecks

COST ANALYSIS

2

Programs

Scenarios

Performance

Time
Memory
Power
…

Timing side channels

Gas usage in blockchains

Identifying bottlenecks

COST ANALYSIS

2

Programs

Scenarios

Performance

Time
Memory
Power
…

Timing side channels

Gas usage in blockchains

Carbon footprint

Identifying bottlenecks

AUTOMATED COST ANALYSIS

3

Programs

[RaML] J. Hoffmann, A. Das, and S.-C. Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In POPL’17.

AUTOMATED COST ANALYSIS

3

Programs

Typecheck

[RaML] J. Hoffmann, A. Das, and S.-C. Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In POPL’17.

AUTOMATED COST ANALYSIS

3

Programs

Typecheck

Sound cost bounds

[RaML] J. Hoffmann, A. Das, and S.-C. Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In POPL’17.

AUTOMATED COST ANALYSIS

3

Programs Sound cost bounds

[RaML] J. Hoffmann, A. Das, and S.-C. Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In POPL’17.

RaML

AUTOMATED COST ANALYSIS

3

Programs Sound cost bounds

[RaML] J. Hoffmann, A. Das, and S.-C. Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In POPL’17.

RaML

Probability
(Randomized/Statistical algorithms)

AUTOMATED COST ANALYSIS

3

Programs Sound cost bounds

[RaML] J. Hoffmann, A. Das, and S.-C. Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In POPL’17.

RaML

Probability
(Randomized/Statistical algorithms)

This work

AUTOMATED COST ANALYSIS

3

Programs Sound cost bounds

[RaML] J. Hoffmann, A. Das, and S.-C. Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In POPL’17.

RaML

Probability
(Randomized/Statistical algorithms)

This work

Sound expected-cost bounds
𝔼[]

POTENTIAL METHOD

4

POTENTIAL METHOD

4

POTENTIAL METHOD}
cost

4

let rec mem x lst =

	 match lst with

	 |[] -> false

	 | h::t ->

	 	 if compare h x = 0

	 	 then true

	 	 else mem x t

MEM

5

let rec mem x lst =

	 match lst with

	 |[] -> false

	 | h::t ->

	 	 if compare h x = 0

	 	 then true

	 	

MEM

5

let rec mem x lst =

	 match lst with

	 |[] -> false

	 | h::t ->

	 	 if compare h x = 0

	 	 then true

	 	 else let () = tick(1.0) in

	 mem x t

MEM

5

let rec mem x lst =

	 match lst with

	 |[] -> false

	 | h::t ->

	 	 if compare h x = 0

	 	 then true

	 	 else let () = tick(1.0) in

	 mem x t

x : a lst : L1(a)

0 resources

MEM

5

let rec mem x lst =

	 match lst with

	 |[] -> false

	 | h::t ->

	 	 if compare h x = 0

	 	 then true

	 	 else let () = tick(1.0) in

	 mem x t

x : a lst : L1(a)

0 resources

mem : <a*L1(a),0> -> <bool,0>

MEM

5

let rec mem x lst =

	 match lst with

	 |[] -> false

	 | h::t ->

	 	 if compare h x = 0

	 	 then true

	 	 else let () = tick(1.0) in

	 mem x t

x : a lst : L1(a)

0 resources

mem : <a*L1(a),0> -> <bool,0>

MEM

5

let rec mem x lst =

	 match lst with

	 |[] -> false

	 | h::t ->

	 	 if compare h x = 0

	 	 then true

	 	 else let () = tick(1.0) in

	 mem x t

x : a lst : L1(a)

0 resources

mem : <a*L1(a),0> -> <bool,0>

MEM

5

let rec mem x lst =

	 match lst with

	 |[] -> false

	 | h::t ->

	 	 if compare h x = 0

	 	 then true

	 	 else let () = tick(1.0) in

	 mem x t

x : a lst : L1(a)

0 resources

mem : <a*L1(a),0> -> <bool,0>

h : a t : L1(a)

1 resource

MEM

5

let rec mem x lst =

	 match lst with

	 |[] -> false

	 | h::t ->

	 	 if compare h x = 0

	 	 then true

	 	 else let () = tick(1.0) in

	 mem x t

x : a lst : L1(a)

0 resources

mem : <a*L1(a),0> -> <bool,0>

h : a t : L1(a)

1 resource

1 >= 0 resources

MEM

5

let rec mem x lst =

	 match lst with

	 |[] -> false

	 | h::t ->

	 	 if compare h x = 0

	 	 then true

	 	 else let () = tick(1.0) in

	 mem x t

x : a lst : L1(a)

0 resources

mem : <a*L1(a),0> -> <bool,0>

h : a t : L1(a)

1 resource

1 >= 0 resources

0 resources

MEM

5

let rec mem x lst =

	 match lst with

	 |[] -> false

	 | h::t ->

	 	 if compare h x = 0

	 	 then true

	 	 else let () = tick(1.0) in

	 mem x t

x : a lst : L1(a)

0 resources

mem : <a*L1(a),0> -> <bool,0>

h : a t : L1(a)

1 resource

1 >= 0 resources

0 resources
0 resources

MEM

5

FLIP RULE

6

FLIP RULE

Typing Context

6

FLIP RULE

Typing Context

Resources Present

6

FLIP RULE

Typing Context

Resources Present

Resource-Annotated Type

6

FLIP RULE

Typing Context

Resources Present

Resource-Annotated Type

Coin Flip Probability

6

FLIP RULE

Typing Context

Resources Present

Resource-Annotated Type

Coin Flip Probability

Branches

6

FLIP RULE

Typing Context

Resources Present

Resource-Annotated Type

Coin Flip Probability

Context Weighted Sum Branches

6

FLIP RULE

Typing Context

Resources Present

Resource-Annotated Type

Coin Flip Probability

Context Weighted Sum
Resource Weighted Sum

Branches

6

FLIP RULE

Typing Context

Resources Present

Resource-Annotated Type

Coin Flip Probability

Context Weighted Sum
Resource Weighted Sum

Branches

Our implementation uses multivariate polynomial bounds
that can mention parameterized probabilities

6

SOUNDNESS

7

SOUNDNESS

7

Operational semantics adapted from Borgström et al. 2016

SOUNDNESS

7

Operational semantics adapted from Borgström et al. 2016

• If expression E types as A under context Γ with Q units of initial
potential, then the expected cost of evaluating E is bounded by Q
plus the potential in Γ.

SOUNDNESS

7

Operational semantics adapted from Borgström et al. 2016

• If expression E types as A under context Γ with Q units of initial
potential, then the expected cost of evaluating E is bounded by Q
plus the potential in Γ.

• If the cost model counts evaluation steps, then the existence of an
expected cost bound implies almost-sure termination.

BERNOULLI

let rec bernoulli () =

	 let () = tick(1.0) in

	 match flip(0.5) with

	 | H -> ()

	 | T -> bernoulli () in

	 	

8

BERNOULLI

let rec bernoulli () =

	 let () = tick(1.0) in

	 match flip(0.5) with

	 | H -> ()

	 | T -> bernoulli () in

	 	

2 resources

8

BERNOULLI

let rec bernoulli () =

	 let () = tick(1.0) in

	 match flip(0.5) with

	 | H -> ()

	 | T -> bernoulli () in

	 	

2 resources bernoulli : <unit,2> -> <bool,0>

8

BERNOULLI

let rec bernoulli () =

	 let () = tick(1.0) in

	 match flip(0.5) with

	 | H -> ()

	 | T -> bernoulli () in

	 	

2 resources bernoulli : <unit,2> -> <bool,0>

1 resource

8

BERNOULLI

let rec bernoulli () =

	 let () = tick(1.0) in

	 match flip(0.5) with

	 | H -> ()

	 | T -> bernoulli () in

	 	

2 resources bernoulli : <unit,2> -> <bool,0>

1 resource

0 resources

8

BERNOULLI

let rec bernoulli () =

	 let () = tick(1.0) in

	 match flip(0.5) with

	 | H -> ()

	 | T -> bernoulli () in

	 	

2 resources bernoulli : <unit,2> -> <bool,0>

1 resource

0 resources
2 resources

8

BERNOULLI

let rec bernoulli () =

	 let () = tick(1.0) in

	 match flip(0.5) with

	 | H -> ()

	 | T -> bernoulli () in

	 	

2 resources bernoulli : <unit,2> -> <bool,0>

1 resource

0 resources
2 resources

(0.5 * 0) + (0.5 * 2) = 1

8

PROBABILISTIC MODELS

9

(* Gambler’s ruin *)

let rec gr Alice Bob =

 match Alice with

 | [] -> ()

 | ha::ta ->

 match Bob with

 | [] -> ()

 | hb::tb ->

 let _ = tick 1 in

 match flip 0.5 with

 | H -> gr ta (ha::Bob)

 | T -> gr (hb::Alice) tb

(* Makes a fair coin from a biased one *)

let rec von_neumann p =

 let _ = tick p*(1-p) in

 match flip p with

 | H ->

 let _ = tick p*(1-p) in

 match flip p with

 | H -> von_neumann p

 | T -> H

 | T ->

 let _ = tick p*(1-p) in

 match flip p with

 | H -> T

 | T -> von_neumann p

PROBABILISTIC MODELS

|Alice| * |Bob|

9

(* Gambler’s ruin *)

let rec gr Alice Bob =

 match Alice with

 | [] -> ()

 | ha::ta ->

 match Bob with

 | [] -> ()

 | hb::tb ->

 let _ = tick 1 in

 match flip 0.5 with

 | H -> gr ta (ha::Bob)

 | T -> gr (hb::Alice) tb

(* Makes a fair coin from a biased one *)

let rec von_neumann p =

 let _ = tick p*(1-p) in

 match flip p with

 | H ->

 let _ = tick p*(1-p) in

 match flip p with

 | H -> von_neumann p

 | T -> H

 | T ->

 let _ = tick p*(1-p) in

 match flip p with

 | H -> T

 | T -> von_neumann p

PROBABILISTIC MODELS

|Alice| * |Bob| 1/(p(1-p))

9

(* Gambler’s ruin *)

let rec gr Alice Bob =

 match Alice with

 | [] -> ()

 | ha::ta ->

 match Bob with

 | [] -> ()

 | hb::tb ->

 let _ = tick 1 in

 match flip 0.5 with

 | H -> gr ta (ha::Bob)

 | T -> gr (hb::Alice) tb

(* Makes a fair coin from a biased one *)

let rec von_neumann p =

 let _ = tick p*(1-p) in

 match flip p with

 | H ->

 let _ = tick p*(1-p) in

 match flip p with

 | H -> von_neumann p

 | T -> H

 | T ->

 let _ = tick p*(1-p) in

 match flip p with

 | H -> T

 | T -> von_neumann p

RESULTS TABLE

10

Program description Bound #Constraints Time (in sec.)

goat (probs=[1/2,3/4]) (B+1)(2(G+1)-GB) 2084 0.15

goat (probs=[2/3,3/4]) 3B+3 2084 0.14

goat (probs=[1/2,2/3,3/4]) (B+1)(2(G+1.5)-GB) 5336 0.25

goat (probs=[1/2,3/5,2/3,3/4]) (B+1)(2(G+2.5)-GB) 10996 1.95

trade (probs=[3/5,1/3]) 1/15*T2+1/3*T*P+4/15*T 157 0.04

trade (probs=[3/5,1]) 1/5*T2+T*P+4/5*T 157 0.03

trade (probs=[2/5,1]) 3/10*T2+T*P+7/10*T 157 0.03

trade (probs=[2/5,1/3]) 1/10*T2+1/3*T*P+7/30*T 157 0.04

probabilistic loop 3/4 probability 61 0.01

bayes sampling 3/5 probability 112 0.01

die simulation from coin 1/6 per die face 5731 0.33

random no-op nested variant M2+M 205 0.03
miner 15/2*M 31 0.01

fill and consume (1/3+p/6)*M 633 0.11

let rec bernoulli () =

	 let () = tick(1.0) in

	 match flip(0.5) with

	 | H -> ()

	 | T -> bernoulli ()

let rec mem x lst =

	 let () = tick(1.0) in

	 match lst with

	 | [] -> false

	 | h::t ->

	 	 if compare h x = 0

	 	 then true

	 	 else mem x t

vs

flip(0.5)

AVERAGE CASE ANALYSIS

11

CONTRIBUTION

12

A type-based cost analysis for probabilistic programs

Type soundness proof with respect to a probabilistic operational cost
semantics

Implementation that supports multivariate polynomial bounds
Experiments on average-case cost estimation and sample complexity analysis

D0 D1 D2 D3 … Dn

ΦE(D0) ΦE(D1) ΦE(D2) ΦE(D3) ΦE(Dn)

D4 D5
…

prob(0.75)

prob(0.25)

