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Operational semantics adapted from  Borgström et al. 2016

• If expression E types as A under context Γ with Q units of initial 
potential, then the expected cost of evaluating E is bounded by Q 
plus the potential in Γ.

• If the cost model counts evaluation steps, then the existence of an 
expected cost bound implies almost-sure termination.
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let rec gr Alice Bob =
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Program description Bound #Constraints Time (in sec.)

goat (probs=[1/2,3/4]) (B+1)(2(G+1)-GB) 2084 0.15

goat (probs=[2/3,3/4]) 3B+3 2084 0.14

goat (probs=[1/2,2/3,3/4]) (B+1)(2(G+1.5)-GB) 5336 0.25

goat (probs=[1/2,3/5,2/3,3/4]) (B+1)(2(G+2.5)-GB) 10996 1.95

trade (probs=[3/5,1/3]) 1/15*T2+1/3*T*P+4/15*T 157 0.04

trade (probs=[3/5,1]) 1/5*T2+T*P+4/5*T 157 0.03

trade (probs=[2/5,1]) 3/10*T2+T*P+7/10*T 157 0.03

trade (probs=[2/5,1/3]) 1/10*T2+1/3*T*P+7/30*T 157 0.04

probabilistic loop 3/4 probability 61 0.01

bayes sampling 3/5 probability 112 0.01

die simulation from coin 1/6 per die face 5731 0.33

random no-op nested variant M2+M 205 0.03
miner 15/2*M 31 0.01

fill and consume (1/3+p/6)*M 633 0.11



let rec bernoulli () =

	 let () = tick(1.0) in

	 match flip(0.5) with 

	 | H -> ()

	 | T -> bernoulli () 

let rec mem x lst =

	 let () = tick(1.0) in

	 match lst with 

	 | [] -> false

	 | h::t -> 

	 	 if compare h x = 0

	 	 then true
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A type-based cost analysis for probabilistic programs

Type soundness proof with respect to a probabilistic operational cost 
semantics

Implementation that supports multivariate polynomial bounds
Experiments on average-case cost estimation and sample complexity analysis
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