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• at least for now ...

• What about their

• correctness?

• efficiency?

• modularity?
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Correctness?

• Shao et al. 2025. Are LLMs Correctly Integrated into 
Software Systems? In ICSE'25. 

• "Our study finds that integration defects are 
widespread, with 77% of these applications 
containing more than 3 types of defects ... 
including unexpected fail-stops, incorrect software 
behaviors, slow execution, unfriendly UI, increased 
token cost, and secure vulnerabilities."
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Abstract—Large language models (LLMs) provide effective
solutions in various application scenarios, with the support of
retrieval-augmented generation (RAG). However, developers face
challenges in integrating LLM and RAG into software systems,
due to lacking interface specifications, various requirements from
software context, and complicated system management. In this
paper, we have conducted a comprehensive study of 100 open-
source applications that incorporate LLMs with RAG support,
and identified 18 defect patterns. Our study reveals that 77% of
these applications contain more than three types of integration
defects that degrade software functionality, efficiency, and secu-
rity. Guided by our study, we propose systematic guidelines for
resolving these defects in software life cycle. We also construct
an open-source defect library HYDRANGEA [1].

Index Terms—LLM, defects, empirical software engineering

I. INTRODUCTION

A. Motivation

Large language models (LLMs) offer effective solu-
tions for a spectrum of language-processing tasks. Retrieval-
augmented generation (RAG) techniques further enhance their
capabilities by providing relevant information from external
data sources. Together, LLM and RAG serve as efficient and
cost-effective proxies of artificial general intelligence (AGI).
Consequently, an increasing number of software systems are
integrating LLMs with RAG support to realize intelligence
features, which this paper refers to as LLM-enabled software.
Indeed, more than 36,000 open-source LLM-enabled software
projects have been created on GitHub in the past six months,
to solve a variety of real-world problems.

Various frameworks [2]–[8] offer LLM and RAG solu-
tions as third-party APIs, significantly reducing developers’
burden of incorporating them. However, challenges still re-
main in building correct, efficient, and reliable LLM-enabled
software. In fact, developers may overlook integration failures,
due to insufficient testing and the lack of LLM and RAG
knowledge. Thus, understanding the defects and their root
causes in LLM-enabled software has become urgent.

Challenge-1: Lacking interface specifications. Unlike
AI tasks with categorical outputs, LLM performs generation
tasks and typically lacks detailed specifications of their inter-
faces and behaviors. Given a particular input, LLMs cannot

* Chengcheng Wan is the corresponding author.
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Fig. 1. Components and workflow of LLM-enabled software.

specify whether they could provide a correct answer in a
certain format. Moreover, it is impractical to define the capa-
bility boundary of a certain LLM, especially when enhanced
by RAG. Therefore, LLM-enabled software cannot formally
describe the interface between LLM, RAG, and the remaining
software components. Thus, developers have to tackle the
under-specified interface and resolve potential failures.

Challenge-2: Various requirements from software con-
text. As a generative model, an LLM enhanced by RAG could
provide different responses for the same question. While these
responses may all seem feasible, not all of them will match the
software context and trigger the correct software behavior. For
example, a user expects landscape descriptions from a travel
agent and statistics from a data analyzer, with the question
“how about Ottawa?”. Furthermore, conventional software
components typically have strict format requirements, whereas
data-driven LLM supports various formats. Thus, developers
have to instruct the general-purpose LLMs to perform specific
tasks within the software context.

Challenge-3: Complicated system management. The
LLM and RAG algorithms are resource-intensive and require
system management to ensure performance. Even adopting
cloud services to reduce computation costs, substantial mem-
ory is required for transferring and processing the intermediate
results. Additionally, LLMs have vulnerabilities and could be-
come security weak links after obtaining system privileges [9]–
[11]. Thus, developers have to carefully manage resources and
protect the security of the entire system.

Prior work studies the integration of AI components
with categorical outputs [12]–[15]. Other work focuses on
improving LLM and RAG algorithms [16]–[19]. However, to
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Efficiency?

• Mell et al. 2025. Opportunistically Parallel Lambda 
Calculus. In OOPSLA'25. 

• "State-of-the-art LLMs are typically provided as 
remote services ... their scale is so large ... However, 
despite numerous languages and frameworks 
proposed to help developers write these [LLM glue] 
scripts, none of them focus on automatic 
parallelization and streaming."
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Opportunistically Parallel Lambda Calculus
STEPHEN MELL, University of Pennsylvania, USA
KONSTANTINOS KALLAS, University of California, Los Angeles, USA
STEVE ZDANCEWIC, University of Pennsylvania, USA
OSBERT BASTANI, University of Pennsylvania, USA

Scripting languages are widely used to compose external calls such as native libraries or network services.
In such scripts, execution time is often dominated by waiting for these external calls, rendering traditional
single-language optimization ine!ective. To address this, we propose a novel opportunistic evaluation strategy
for scripting languages based on a core lambda calculus that automatically dispatches independent external
calls in parallel and streams their results. We prove that our approach is con"uent, ensuring that it preserves
the programmer’s original intent, and that it eventually executes every external call. We implement this
approach in a scripting language called E!"#. We demonstrate the versatility and performance of E!"#, focusing
on programs that invoke heavy external computation through the use of large language models (LLMs) and
other APIs. Across #ve scripts, we show that opportunistic evaluation improves total running time (up to
6.2⌐) and latency (up to 12.7⌐) compared to several state-of-the-art baselines, while performing very close
(between 1.3% and 18.5% running time overhead) to hand-tuned manually optimized asynchronous Rust
implementations. For Tree-of-Thoughts, a prominent LLM reasoning approach, we achieve a 6.2⌐ performance
improvement over the authors’ own implementation.

1 INTRODUCTION
A key application of scripting languages such as Python and the shell is to “glue” together external
calls, i.e., algorithms implemented as foreign calls to low-level languages or network calls to
remote APIs, whose implementations are opaque to the interpreter [40]. Unlike other programs,
performance bottlenecks in glue scripts are typically the external calls, rather than script evaluation
itself. While each individual external call is usually heavily optimized by its developers, their
composition is not—in glue scripts there are often opportunities to execute independent external
calls in parallel and stream results between them.

Traditionally, it is up to the script developer to exploit parallelism or streaming across calls, but
doing so may result in complex multi-threaded code, undermining the simplicity and usability
of scripting languages. At the same time, automatically exposing parallelization and streaming
opportunities across external calls is challenging because they are often interweaved with complex
control "ow. Traditional parallelizing compilers [6, 25] and evaluation strategies [12, 14] focus on
identifying dependencies in a single language without external calls. Recent work on parallelizing
shell glue scripts with external calls [28, 50] can only expose limited parallelism across control-"ow,
focusing instead on parallelizing contiguous pipelines.

We propose a novel, general-purpose, higher-order scripting language designed to automatically
execute external calls in a parallel and streamingway, while remaining consistent with the sequential
evaluation semantics programmers expect.
A key assumption that we make is that external call dependencies can be fully determined by

the call arguments, which holds for many categories of external calls, e.g., API calls and command
utilities. This assumption allows the language to evaluate two calls out of order and in parallel
unless they are connected by an explicit data dependency. Our approach has three components:
(1) a novel core calculus, 𝐿𝐿 that has external calls as #rst-class citizens, (2) a novel opportunistic
evaluation strategy that parallelizes independent external calls during the execution of the program,

Authors’ addresses: Stephen Mell, University of Pennsylvania, USA, sm1@cis.upenn.edu; Konstantinos Kallas, University of
California, Los Angeles, USA, kkallas@ucla.edu; Steve Zdancewic, University of Pennsylvania, USA, stevez@cis.upenn.edu;
Osbert Bastani, University of Pennsylvania, USA, obastani@seas.upenn.edu.



Modularity?

• Mei et al. 2025. AIOS: LLM Agent Operating System. 
In COLM'25. 

• "Current agent frameworks exhibit critical design 
limitations by granting agents direct access to 
system-level resources ... AIOS divides agent 
applications and resources into distinct layers ... 
This separation facilitates systematic resource 
management, efficiency optimization, and safety 
enhancement."
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AIOS: LLM Agent Operating System
Kai Mei1, Xi Zhu1, Wujiang Xu1, Mingyu Jin1, Wenyue Hua1,

Zelong Li1, Shuyuan Xu1, Ruosong Ye1, Yingqiang Ge1, Yongfeng Zhang1,2

1Rutgers University, 2AIOS Foundation

research@aios.foundation

LLM-based intelligent agents face significant deployment challenges, particularly related to resource man-
agement. Allowing unrestricted access to LLM or tool resources can lead to ine!cient or even potentially
harmful resource allocation and utilization for agents. Furthermore, the absence of proper scheduling and
resource management mechanisms in current agent designs hinders concurrent processing and limits overall
system e!ciency. To address these challenges, this paper proposes the architecture of AIOS (LLM-based AI
Agent Operating System) under the context of managing LLM-based agents. It introduces a novel architecture
for serving LLM-based agents by isolating resources and LLM-specific services from agent applications into
an AIOS kernel. This AIOS kernel provides fundamental services (e.g., scheduling, context management,
memory management, storage management, access control) for runtime agents. To enhance usability, AIOS
also includes an AIOS SDK, a comprehensive suite of APIs designed for utilizing functionalities provided by
the AIOS kernel. Experimental results demonstrate that using AIOS can achieve up to 2.1⌐ faster execution
for serving agents built by various agent frameworks.

AIOS Code Repository: https://github.com/agiresearch/AIOS
AIOS SDK Code Repository: https://github.com/agiresearch/Cerebrum
Live Demo: https://app.aios.foundation

1. Introduction

In the field of autonomous agents, research e"orts (Wooldridge and Jennings, 1995, Jennings et al., 1998, Bresciani
et al., 2004) are made towards agents that can perceive environments, understand instructions, make decisions, take
action and learn from feedbacks. The advent of large language models (LLMs) (Achiam et al., 2023, Touvron et al.,
2023a, Team et al., 2023) has brought new possibilities to the agent development Ge et al. (2023a). Current LLMs
have shown great power in understanding instructions (Ouyang et al., 2022, Chung et al., 2022, Touvron et al., 2023b,
Geng et al., 2022), reasoning and solving problems (Kojima et al., 2022, Nijkamp et al., 2022, Taylor et al., 2022, Hao
et al., 2023, Kim et al., 2023), and interacting with human users (Ross et al., 2023) as well as external environments
(Driess et al., 2023, Brohan et al., 2023). Built upon these powerful LLMs, emergent LLM-based agents (Ge et al.,
2023a, Yao et al., 2023, Shinn et al., 2023, Deng et al., 2023, Packer et al., 2023, Wu et al., 2024) can present strong
task fulfillment abilities in diverse environments, ranging from virtual assistants to more sophisticated reasoning and
problem-solving systems.

An illustrative example of an LLM-based agent’s real-world task execution is demonstrated in Figure 1, where a
travel agent processes a trip organization request. The agent methodically decomposes this request into executable
steps—booking flights, reserving accommodations, processing payments, and updating calendars according to user
preferences. Throughout execution, the agent exhibits reasoning and decision-making capabilities derived from its
LLM foundation, distinguishing it from traditional applications constrained by predetermined functions or workflows.
Implementing this travel scenario requires the agent to seamlessly integrate LLM-related services (preference retrieval,
API selection, response generation) with conventional OS services (disk access, software execution).

Current agent frameworks exhibit critical design limitations by granting agents direct access to system-level resources

Corresponding author(s): Yongfeng Zhang, yongfeng.zhang@rutgers.edu, Department of Computer Science, Rutgers University, New Brunswick, NJ 08901.

AIOS Foundation
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• Correctness-related: Uncertain behavior

• Efficiency-related: Long execution times

• Modularity-related: Distributed execution
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May harm robustness; also 
affect reproducibility

Require the software to 
schedule LLM calls wisely

Make it hard to perform 
testing and profiling
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One Preliminary Thought

• The logic and workflow of agents are 
usually not very complex

• The effects make the engineering of agents 
complex

• Uncertain behavior

• Long execution times

• Distributed execution

• Effect handler oriented programming?

7
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with ( 
  # handler for LLM-call operations 
  LLMHandler(**llm_kwargs), 
  # handler for application-specific operations 
  ResearchTopicsHandler(), 
): 
  research_topics()

with ( 
  # handler for async operations 
  AsyncHandler(), 
  # handler for LLM-call operations 
  AsyncLLMHandler(**llm_kwargs), 
  # handler for rendering async side effects sequentially 
  AsyncSeqHandler(), 
  # handler for application-specific operations 
  AsyncResearchTopicsHandler(), 
): 
  research_topics()

with ( 
  AsyncHandler(), 
  # handler for mocking LLM-call operations 
  AsyncReplayLLMHandler(trace), 
  AsyncSeqHandler(), 
  AsyncResearchTopicsHandler(), 
): 
  research_topics()

Synchronous version: 
suitable for development Asynchronous version: 

suitable for deployment

Mocking version: 
suitable for testing & profiling

The workflow logic itself keeps the same!
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# an operation is a callable object 
get_topics = Operation() 
get_description = Operation() 
log = Operation()

Operations provides only syntax

# a handler is a manager for a set of operations 
class LogHandler(Handler): 
  def __init__(self): 
    super().__init__() 
    # this handler discharges the `log` operation 
    self.register(log, self.log) 

  def log(self, msg): 
    print(f"[INFO] {msg}")

Handlers determine the semantics

class LogDateHandler(Handler): 
  def __init__(self): 
    super().__init__() 
    self.register(log, self.log) 

  def log(self, msg): 
    print(f"[DATE] {datetime.now()}") 
    # this handler invokes the `log` operation 
    log(msg)

"Forward" the log operation 
to other handlers

with LogHandler(), LogDateHandler(): 
  log("Hello World!") 
# [DATE] 2025-06-29 20:25:17.102486 
# [INFO] Hello World!
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# an operation is a callable object 
get_topics = Operation() 
get_description = Operation() 
log = Operation()

Operations provides only syntax

# a handler is a manager for a set of operations 
class LogHandler(Handler): 
  def __init__(self): 
    super().__init__() 
    # this handler discharges the `log` operation 
    self.register(log, self.log) 

  def log(self, msg): 
    print(f"[INFO] {msg}")

Handlers determine the semantics

class LogDateHandler(Handler): 
  def __init__(self): 
    super().__init__() 
    self.register(log, self.log) 

  def log(self, msg): 
    print(f"[DATE] {datetime.now()}") 
    # this handler invokes the `log` operation 
    log(msg)

"Forward" the log operation 
to other handlers

with LogHandler(), LogDateHandler(): 
  log("Hello World!") 
# [DATE] 2025-06-29 20:25:17.102486 
# [INFO] Hello World!

Compose handlers seamlessly
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on the result

• await_(fut): wait for the completion of fut, 
created by an async_ call
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• to implement:
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class AsyncResearchTopicsHandler(Handler): 
  def __init__(self): 
    super().__init__() 
    self.register(get_topics, self.get_topics) 
    self.register(get_description, self.get_description) 
    self.register(log, self.log)

def get_topics(area): 
  content = await_( 
    complete(f"Give a JSON list of topics in the 
research area {area}.") 
  ) 
  .  # try to parse `content` with error handling

def get_description(topic): 
  return complete(f"Give a short description about 
the topic {topic}.")

def log(msg): 
  async def aux(): 
    return await msg if isinstance(msg, Awaitable) 
else msg 

  # use `print` as a callback 
  return async_(aux(), print)  
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with ( 
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): 
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Asynchronous 
version: 
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def research_topics(): 
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    log(description)
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to achieve modularity

Reusing Effect Handlers

• The workflow looks sequential, but the handlers exploit LLM service's parallelization

• Separating effects from workflow allows "modular" thinking of correctness & efficiency 12

with ( 
  AsyncHandler(), 
  AsyncLLMHandler(**llm_kwargs), 
  AsyncSeqHandler(), 
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with ( 
  AsyncHandler(), 
  AsyncReplayLLMHandler(trace), 
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): 
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version: 
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Treat reasoning as graph searching: 
Use an LLM to generate thoughts (nodes) 

and evaluate their fitness (weights)

init, expand, score = Operation(), Operation(), Operation() 

def tree_of_thoughts(n_steps, n_select, n_eval): 
  frontier = [init()] 
  for _ in range(n_steps): 
    expanded = [expand(state) for state in frontier] 
    candidates = chain(*expanded)  # flatten the list 
    scored = [score(cand, n_eval) for cand in candidates] 
    frontier = top_k(scored, n_select)  # select greedily 
  print(frontier)

Again: The logic and workflow of agents are 
usually not very complex
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Case Study: Tree-of-Thoughts (ToT)

• Create effect handlers for the ToT operations to solve the Game of 24

• The official implementation did not exploit parallelization

• Manual optimization would break the code structure of the workflow

with ( 
  LLMHandler(**llm_kwargs), 
  Game24Handler(), 
): 
  tree_of_thoughts(n_steps=4, n_select=5, n_eval=3)

with ( 
  AsyncHandler(), AsyncLLMHandler(**llm_kwargs), 
  AsyncGame24Handler(), 
): 
  tree_of_thoughts(n_steps=4, n_select=5, n_eval=3)

Achieve ~10x speedup without 
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Takeaway: One Preliminary Thought

• The logic and workflow of agents are 
usually not very complex 

• The effects make the engineering of agents 
complex 

• Uncertain behavior 

• Long execution times 

• Distributed execution 

• Effect handler oriented programming might 
be suitable for implementing agents

15

Source: https://langchain-ai.github.io/langgraph/tutorials/workflows/

with ( 
  AsyncHandler(), 
  AsyncReplayLLMHandler(trace), 
  AsyncSeqHandler(), 
  AsyncResearchTopicsHandler(), 
): 
  research_topics()

about PL for humans writing code

https://langchain-ai.github.io/langgraph/tutorials/workflows/

