Composable Effect Hanadling tor
Programming LLM-Integrated Scripts

D1 Wang
Programming Languages Lab, Peking University

2025/10/15

What are the Differences

for humans writing code, since the LLM era”

What are the Differences

for humans writing code, since the LLM era”

- A new kind of software: agents!

What are the Differences

for humans writing code, since the LLM era”

¢ A new ‘(Iﬂd Of SOftWC‘ [e: Clgentsl Open Interpreter F* Maige gﬁSW€epA|

workGPT & 0S Vanna. Al DemoGPT

§ Aide Smol Developer bloop. Automata

55 Continue GPT Migrate GPT Engineer CodeFuse

@ Stackwise * Sourcegraph Cody Al - cody

GPT Pilot English Compiler AutoPR

Source: https://github.com/e2b-dev/awesome-ai-agents

https://github.com/e2b-dev/awesome-ai-agents

What are the.

]

erences

for humans writing code, since the LLM era”

- A new kind of software: agents!

Source: https://github.com/e2b-dev/awesome-ai-agents

workGPT &

O
0
O
o}
S
-
ol
©
A
Q
-
0

O

Open Interpreter

Promptly

BabyAGi

evo.ninja

XAgent

F* Maige @ Sweep Al

08 Vanna. Al

;"SILS]EO BeeBot
Multiagent Debate

K MiniAGI

= Web3 GPT

DemoGPT

ﬁ ChatArena
GPTDiscord

MultiGPT

Suspicion Agent

https://github.com/e2b-dev/awesome-ai-agents

What are the Differences

for humans writing code, since the LLM era”

¢ A new ‘(Iﬂd Of SOftWO [e: Clgentsl Open Interpreter F* Maige 98weepA|

workGPT & 0S8 Vanna. Al DemoGPT

Promptly :’IQ\I%P BeeBot ﬁ ChatArena

BabyAGi Multiagent Debate GPTDiscord

O
0
O
o}
S
-
ol
©
A
Q
-
0

O

g' Superagent ‘ e = BondAl
L. A=k

Flowiseal @Adala $SELLIMStack @ AgentPilot

—

@ AgentGPT & MetaGPT Agents |X =AutoGen

-
S
O
:
p
O
>
m

‘L/’ FastAgency [0 pezzo AgentVerse

AgentForge OpenAgents <#>SuperAGl N ¢ LangChain

Source: https://github.com/e2b-dev/awesome-ai-agents

https://github.com/e2b-dev/awesome-ai-agents

What are the.

]

erences

for humans writing code, since the LLM era”

- A new kind of software: agents!

- or: LLM-integrated software

Source: https://github.com/e2b-dev/awesome-ai-agents

Open Interpreter F* Maige @ Sweep Al

workGPT & 0S Vanna. Al DemoGPT

Promptly :’IQ\I%P BeeBot ﬁ ChatArena

BabyAGi Multiagent Debate GPTDiscord

O
0
O
o}
S
-
ol
©
A
Q
-
0

O

n Superagent l ﬂﬂ’ﬂm;ﬁ' o BondAl

Flowiseal @Adala $SELLIMStack @ AgentPilot

—

@ AgentGPT & MetaGPT Agents |X =AutoGen

-
S
O
3
>
O
>
a8

‘17 FastAgency [[1 Pezzo AgentVerse

AgentForge OpenAgents <#>SuperAGl N ¢ LangChain

https://github.com/e2b-dev/awesome-ai-agents

What are the.

]

erences

for humans writing code, since the LLM era”

- A new kind of software: agents!

- or: LLM-integrated software

- Many of them are programmed by humans

Source: https://github.com/e2b-dev/awesome-ai-agents

Open Interpreter F* Maige @ Sweep Al

workGPT & 0S Vanna. Al DemoGPT

Promptly :’IQ\I%P BeeBot ﬁ ChatArena

BabyAGi Multiagent Debate GPTDiscord

O
0
O
o}
S
-
ol
©
A
Q
-
0

O

BondAl

Flowiseal @Adala $SELLIMStack @ AgentPilot

—

@ AgentGPT & MetaGPT Agents |X =AutoGen

-
S
O
3
>
O
>
a8

‘% FastAgency [0 pezzo AgentVerse

AgentForge OpenAgents <#>SuperAGl N ¢ LangChain

https://github.com/e2b-dev/awesome-ai-agents

What are the.

]

erences

for humans writing code, since the LLM era”

- A new kind of software: agents!

- or: LLM-integrated software

- Many of them are programmed by humans

. Qt least for now ...

Source: https://github.com/e2b-dev/awesome-ai-agents

Open Interpreter F* Maige @ Sweep Al

workGPT & 0S Vanna. Al DemoGPT

Promptly :’IQ\I%P BeeBot ﬁ ChatArena

BabyAGi Multiagent Debate GPTDiscord

O
0
O
o}
S
-
ol
©
A
Q
-
0

O

BondAl

Flowiseal @Adala $SELLIMStack @ AgentPilot

—

@ AgentGPT & MetaGPT Agents |X =AutoGen

-
S
O
3
>
O
>
a8

‘17 FastAgency [[1 Pezzo AgentVerse

AgentForge OpenAgents <#>SuperAGl N ¢ LangChain

https://github.com/e2b-dev/awesome-ai-agents

What are the.

]

erences

for humans writing code, since the LLM era”

- A new kind of software: agents!

- or: LLM-integrated software

- Many of them are programmed by humans

. Qt least for now ...

- What about their
- correctness”’
. efficiency”

- modularity”?

Source: https://github.com/e2b-dev/awesome-ai-agents

Open Interpreter F* Maige dﬁ Sweep Al

workGPT & 02 Vanna. Al DemoGPT

Promptly ;49—1\&0 BeeBot ﬁ ChatArena

BabyAGi Multiagent Debate GPTDiscord

O
N
O
Q.
S
-

ol
©
A
)
-
@)

O

BondAl

Flowiseal @Adala $SELLIMStack @ AgentPilot

—

@ AgentGPT @ MetaGPT ﬁ Agents IX =8 AutoGen

-
S
O
:
p
O
>
a8

‘,, FastAgency [pezzo AgentVerse

AgentForge OpenAgents <#>SuperAGl M ¢ LangChain

https://github.com/e2b-dev/awesome-ai-agents

Correctness’

- Shao et al. 2025. Are LLMs Correctly Integrated into
Software Systems? In ICSE'25.

- "Our study finds that integration defects are
widespread, with 77% of these applications
containing more than 3 types of defects ...

ncluding unexpected fail-stops, incorrect software

oehaviors, slow execution, unfriendly Ul, increased
token cost, and secure vulnerabilities.”

2407.05138v2 [cs.SE] 8 Feb 2025

arxXiv

Are LLMs Correctly Integrated into
Software Systems?

Yuchen Shao®, Yuheng Huang', Jiawei Shen’, Lei Ma'#, Ting Su®, Chengcheng Wan*3
§ East China Normal University, Shanghai, China t The University of Tokyo, Tokyo, Japan
i University of Alberta, Edmonton, AB, Canada
ycshao @stu.ecnu.edu.cn, yuhenghuang42 @g.ecc.u-tokyo.ac.jp, javishen@stu.ecnu.edu.cn,
ma.lei@acm.org, tsu@sei.ecnu.edu.cn, ccwan@sei.ecnu.edu.cn

Abstract—Large language models (LLMs) provide effective
solutions in various application scenarios, with the support of
retrieval-augmented generation (RAG). However, developers face
challenges in integrating LLM and RAG into software systems,
due to lacking interface specifications, various requirements from
software context, and complicated system management. In this
paper, we have conducted a comprehensive study of 100 open-
source applications that incorporate LLMs with RAG support,
and identified 18 defect patterns. Our study reveals that 77% of
these applications contain more than three types of integration
defects that degrade software functionality, efficiency, and secu-
rity. Guided by our study, we propose systematic guidelines for
resolving these defects in software life cycle. We also construct
an open-source defect library HYDRANGEA [1].

Index Terms—LLM, defects, empirical software engineering

I. INTRODUCTION
A. Motivation

Large language models (LLMs) offer effective solu-
tions for a spectrum of language-processing tasks. Retrieval-
augmented generation (RAG) techniques further enhance their
capabilities by providing relevant information from external
data sources. Together, LLM and RAG serve as efficient and
cost-effective proxies of artificial general intelligence (AGI).
Consequently, an increasing number of software systems are
integrating LLMs with RAG support to realize intelligence
features, which this paper refers to as LLM-enabled software.
Indeed, more than 36,000 open-source LLM-enabled software
projects have been created on GitHub in the past six months,
to solve a variety of real-world problems.

Various frameworks [2]-[8] offer LLM and RAG solu-
tions as third-party APIs, significantly reducing developers’
burden of incorporating them. However, challenges still re-
main in building correct, efficient, and reliable LLM-enabled
software. In fact, developers may overlook integration failures,
due to insufficient testing and the lack of LLM and RAG
knowledge. Thus, understanding the defects and their root
causes in LLM-enabled software has become urgent.

Challenge-1: Lacking interface specifications. Unlike
Al tasks with categorical outputs, LLM performs generation
tasks and typically lacks detailed specifications of their inter-
faces and behaviors. Given a particular input, LLMs cannot

* Chengcheng Wan is the corresponding author.

Tokenized
Text Chunks 1 é)

Semantic Vector (Storage) .
} [Vector
LLM ® ic Vector (Query) Database il
(Embedding)

Bem
RAG/VectorDB I®Keywords Knowledge ®
. =
(@ Question (®Question I! =
e bt 'S .©
LLM
Answer i J OpenAI
User @ Response(®) (Generation) History Goveta

@ chateim
LLM Agent System

Fig. 1. Components and workflow of LLM-enabled software.

specify whether they could provide a correct answer in a
certain format. Moreover, it is impractical to define the capa-
bility boundary of a certain LLM, especially when enhanced
by RAG. Therefore, LLM-enabled software cannot formally
describe the interface between LLM, RAG, and the remaining
software components. Thus, developers have to tackle the
under-specified interface and resolve potential failures.

Challenge-2: Various requirements from software con-
text. As a generative model, an LLM enhanced by RAG could
provide different responses for the same question. While these
responses may all seem feasible, not all of them will match the
software context and trigger the correct software behavior. For
example, a user expects landscape descriptions from a travel
agent and statistics from a data analyzer, with the question
“how about Ottawa?”’. Furthermore, conventional software
components typically have strict format requirements, whereas
data-driven LLM supports various formats. Thus, developers
have to instruct the general-purpose LLMs to perform specific
tasks within the software context.

Challenge-3: Complicated system management. The
LLM and RAG algorithms are resource-intensive and require
system management to ensure performance. Even adopting
cloud services to reduce computation costs, substantial mem-
ory is required for transferring and processing the intermediate
results. Additionally, LLMs have vulnerabilities and could be-
come security weak links after obtaining system privileges [9]-
[11]. Thus, developers have to carefully manage resources and
protect the security of the entire system.

Prior work studies the integration of AI components
with categorical outputs [12]-[15]. Other work focuses on
improving LLM and RAG algorithms [16]-[19]. However, to

L

ciency”?

- Mell et al. 2025. Opportunistically Parallel Lambda
Calculus. In OOPSLA25.

. "State-of-the-art LLMs are typically provided as
remote services ... their scale is so large ... However,
despite numerous languages and frameworks
oroposed to help developers write these [LLM glue
scripts, none of them focus on automatic
parallelization and streaming’

2405.11361v3 [cs.PL] 13 Jun 2025

arxiv

Opportunistically Parallel Lambda Calculus

STEPHEN MELL, University of Pennsylvania, USA

KONSTANTINOS KALLAS, University of California, Los Angeles, USA
STEVE ZDANCEWIC, University of Pennsylvania, USA

OSBERT BASTANI, University of Pennsylvania, USA

Scripting languages are widely used to compose external calls such as native libraries or network services.
In such scripts, execution time is often dominated by waiting for these external calls, rendering traditional
single-language optimization ineffective. To address this, we propose a novel opportunistic evaluation strategy
for scripting languages based on a core lambda calculus that automatically dispatches independent external
calls in parallel and streams their results. We prove that our approach is confluent, ensuring that it preserves
the programmer’s original intent, and that it eventually executes every external call. We implement this
approach in a scripting language called Epic. We demonstrate the versatility and performance of Epic, focusing
on programs that invoke heavy external computation through the use of large language models (LLMs) and
other APIs. Across five scripts, we show that opportunistic evaluation improves total running time (up to
6.2x) and latency (up to 12.7x) compared to several state-of-the-art baselines, while performing very close
(between 1.3% and 18.5% running time overhead) to hand-tuned manually optimized asynchronous Rust
implementations. For Tree-of-Thoughts, a prominent LLM reasoning approach, we achieve a 6.2x performance
improvement over the authors’ own implementation.

1 INTRODUCTION

A key application of scripting languages such as Python and the shell is to “glue” together external
calls, i.e., algorithms implemented as foreign calls to low-level languages or network calls to
remote APIs, whose implementations are opaque to the interpreter [40]. Unlike other programs,
performance bottlenecks in glue scripts are typically the external calls, rather than script evaluation
itself. While each individual external call is usually heavily optimized by its developers, their
composition is not—in glue scripts there are often opportunities to execute independent external
calls in parallel and stream results between them.

Traditionally, it is up to the script developer to exploit parallelism or streaming across calls, but
doing so may result in complex multi-threaded code, undermining the simplicity and usability
of scripting languages. At the same time, automatically exposing parallelization and streaming
opportunities across external calls is challenging because they are often interweaved with complex
control flow. Traditional parallelizing compilers [6, 25] and evaluation strategies [12, 14] focus on
identifying dependencies in a single language without external calls. Recent work on parallelizing
shell glue scripts with external calls [28, 50] can only expose limited parallelism across control-flow,
focusing instead on parallelizing contiguous pipelines.

We propose a novel, general-purpose, higher-order scripting language designed to automatically
execute external calls in a parallel and streaming way, while remaining consistent with the sequential
evaluation semantics programmers expect.

A key assumption that we make is that external call dependencies can be fully determined by
the call arguments, which holds for many categories of external calls, e.g., API calls and command
utilities. This assumption allows the language to evaluate two calls out of order and in parallel
unless they are connected by an explicit data dependency. Our approach has three components:
(1) a novel core calculus, A° that has external calls as first-class citizens, (2) a novel opportunistic
evaluation strategy that parallelizes independent external calls during the execution of the program,

Authors’ addresses: Stephen Mell, University of Pennsylvania, USA, sm1@cis.upenn.edu; Konstantinos Kallas, University of
California, Los Angeles, USA, kkallas@ucla.edu; Steve Zdancewic, University of Pennsylvania, USA, stevez@cis.upenn.edu;
Osbert Bastani, University of Pennsylvania, USA, obastani@seas.upenn.edu.

Modularity?

% AIOS Foundation

AIOS: LLM Agent Operating System

Kai Meil, Xi Zhul, Wujiang Xul, Mingyu Jinl, Wenyue Hual,
Zelong Lil, Shuyuan Xul, Ruosong Yel, Yingqiang Gel, Yongfeng Zhangl’2

« Mei et al. 2025. AIOS: LLM Agent Operating System.

research@aios.foundation

|_ l\/l ! 2 LLM-based intelligent agents face significant deployment challenges, particularly related to resource man-
n o agement. Allowing unrestricted access to LLM or tool resources can lead to inefficient or even potentially
harmful resource allocation and utilization for agents. Furthermore, the absence of proper scheduling and
resource management mechanisms in current agent designs hinders concurrent processing and limits overall
system efficiency. To address these challenges, this paper proposes the architecture of AIOS (LLM-based Al
Agent Operating System) under the context of managing LLM-based agents. It introduces a novel architecture
for serving LLM-based agents by isolating resources and LLM-specific services from agent applications into
an AIOS kernel. This AIOS kernel provides fundamental services (e.g., scheduling, context management,
memory management, storage management, access control) for runtime agents. To enhance usability, AIOS
also includes an AIOS SDK, a comprehensive suite of APIs designed for utilizing functionalities provided by
the AIOS kernel. Experimental results demonstrate that using AIOS can achieve up to 2.1x faster execution
for serving agents built by various agent frameworks.

€) AIOS Code Repository: https://github.com/agiresearch/AIOS
€) AI0S SDK Code Repository: https://github.com/agiresearch/Cerebrum
22 Live Demo: https://app.aios.foundation

1 . . o O [

. "Current agent frameworks exhibit critical design
o o [(o
limitations by granting agents direct access to
system-level resources ... AIOS divides agent

Geng et al., 2022), reasoning and solving problems (Kojima et al., 2022, Nijkamp et al., 2022, Taylor et al., 2022, Hao
° ° ° ° ° et al., 2023, Kim et al., 2023), and interacting with human users (Ross et al., 2023) as well as external environments
applications and resources into distinct layers ... (s 202 B 12 20 ke o e vt LM sergent 43 sdsons (0 0

task fulfillment abilities in diverse environments, ranging from virtual assistants to more sophisticated reasoning and
problem-solving systems.

L] L] - L] L] L]
T q | S S e O rO | O n O C ‘ | O te S S S t e I I I O t | C re S O J rC e An illustrative example of an LLM-based agent’s real-world task execution is demonstrated in Figure 1, where a
- ~ travel agent processes a trip organization request. The agent methodically decomposes this request into executable
steps—booking flights, reserving accommodations, processing payments, and updating calendars according to user
preferences. Throughout execution, the agent exhibits reasoning and decision-making capabilities derived from its

- ° ° ° ° °
m q m q t '_F | q t | m | Z t | n n f t LLM foundation, distinguishing it from traditional applications constrained by predetermined functions or workflows.
/ / Implementing this travel scenario requires the agent to seamlessly integrate LLM-related services (preference retrieval,
API selection, response generation) with conventional OS services (disk access, software execution).
enhancement.

1. Introduction

In the field of autonomous agents, research efforts (Wooldridge and Jennings, 1995, Jennings et al., 1998, Bresciani
et al., 2004) are made towards agents that can perceive environments, understand instructions, make decisions, take
action and learn from feedbacks. The advent of large language models (LLMs) (Achiam et al., 2023, Touvron et al.,
2023a, Team et al., 2023) has brought new possibilities to the agent development Ge et al. (2023a). Current LLMs
have shown great power in understanding instructions (Ouyang et al., 2022, Chung et al., 2022, Touvron et al., 2023b,

2403.16971v4 [cs.OS] 11 May 2025

arxiv

Current agent frameworks exhibit critical design limitations by granting agents direct access to system-level resources

Corresponding author(s): Yongfeng Zhang, yongfeng.zhang@rutgers.edu, Department of Computer Science, Rutgers University, New Brunswick, NJ 08901.

What are the Features

for LLM-integrated software?

What are the Features

for LLM-integrated software?

- TL;DR: They interact with LLMs, heavily

What are the Features

for LLM-integrated software?

- TL;DR: They interact with LLMs, heavily

. Correctness-related: Uncertain behavior

What are the Features

for LLM-integrated software?

- TL;DR: They interact with LLMs, heavily

May harm robustness; also

affect reproducibility

. Correctness-related: Uncertain behavior

What are the Features

for LLM-integrated software?

- TL;DR: They interact with LLMs, heavily

May harm robustness; also

affect reproducibility

. Correctness-related: Uncertain behavior

. Efficiency-related: Long execution times

What are the Features

for LLM-integrated software?

- TL;DR: They interact with LLMs, heavily

May harm robustness; also
affect reproducibility

. Correctness-related: Uncertain behavior

Require the software to
schedule LLM calls wisely

. Efficiency-related: Long execution times

What are the Features

for LLM-integrated software?

- TL;DR: They interact with LLMs, heavily

May harm robustness; also
affect reproducibility

. Correctness-related: Uncertain behavior

Require the software to
schedule LLM calls wisely

. Efficiency-related: Long execution times

- Modularity-related: Distributed execution

What are the Features

for LLM-integrated software?

- TL;DR: They interact with LLMs, heavily

May harm robustness; also
affect reproducibility

. Correctness-related: Uncertain behavior .
Require the software to

schedule LLM calls wisely

. Efficiency-related: Long execution times

Make it hard to perform
testing and profiling

- Modularity-related: Distributed execution

One |

Iminary "

“houghnt

One Pre

minary

“houghnt

- The logic and workflow of agents are
usually not very complex

One Preliminary Thought

- The logic and workflow of agents are

usually not very complex WorkElows
Orchestrator-Worker
rvestestor A1 gy | Stesne
o« o In —> &5 .l .’:::::\%i & | —> out
PrompFlChalnlng ; el e
el g T
> @ B o ; Evaluator-optimizer
| Generator Evaluator
Parallelization n—> @ @ o
/ : @_l — _/
’ N Routing
| :@%_E o Rgtﬂjgf‘\ i:__:@_ —= Out
In —> :_@_:
\ {’@ —= Out
LLM is embedded in LLM directs control flow

é predefined code paths @ through predefined code paths

__

Source: https://lanachain-ai.qgithub.io/langaraph/tutorials/workflows

https://langchain-ai.github.io/langgraph/tutorials/workflows/

One Preliminary Thought

- The logic and workflow of agents are

usually not very complex Workflows
. . é é Orchestrator-Worker
- The effects make the engineering of agents e 1] o
complex | Prowthalning TR gy T
é > B @ o é Evaluator-optimizer
’ UﬂC@I’tCﬂﬂ behOViOr Parallelization W —> 6;&;9%56 ¢
. . pat inde | AN
- Long execution times e Routin
i_@—‘ —> ow N 'ﬁé‘@'_— L
- Distributed execution "TE
""""" LLM is embedded in = LLM directs control flow

é predefined code paths @ through predefined code paths

__

Source: https://langchain-ai.github.io/langgraph/tutorials/workflows/

https://langchain-ai.github.io/langgraph/tutorials/workflows/

One Preliminary

- The logic anc

workflow of agents are

usually not ve

- The effects make the engineering of agents

complex

- Uncertain

'y complex

behavior

- Long execution times

« Distributed execution

. Effect handler oriented programming?

Source: https://langchain-ai.github.io/langgraph/tutorials/workflows/

Workflows

Prompt Chaining

LLM is embedded in

épredefined code paths

Orchestrator-Worker

LLM directs control flow

5 through predefined code paths

__

https://langchain-ai.github.io/langgraph/tutorials/workflows/

An Example Worktlow

orchestrator-worker

)

An Examp.

e Worktlow

orchestrator-worker

toplcs =

log(to
descri

def research topics():

get_topics("PL techniques for LLM applications')

for topic in topics:

D1C)

ption = get description(topic)

log(description)

)

An Example Worktlow

orchestrator-worker

get_topics is a distributed call; it is uncertain

as it may not return well-structured results

def research topics():
topics = get_topics('"PL techniques for LLM applications')
for topic in topics:
log(topic)
description = get _description(topic)
log(description)

)

An Example Worktlow

orchestrator-worker

get_topics is a distributed call; it is uncertain

as it may not return well-structured results

def research topics():
topics = get_topics('"PL techniques for LLM applications')
for topic in topics:

log(topic)
description = get _description(topic)
log(description)

get_description is a distributed call; it may take long

execution time; seqguential execution is inefficient

)

An Example Worktlow

orchestrator-worker

get_topics is a distributed call; it is uncertain

as it may not return well-structured results

deft research _topics():
topics = get_topics('"PL techniques for LLM applications')
IR NeRoeelN- it -i® for topic in topics:

operation (I/O) log(topic)
description = get _description(topic)
log(description)

get_description is a distributed call; it may take long

execution time; seqguential execution is inefficient

)

An Examp.

e Worktlow

orchestrator-worker

get_topics is a distributed call; it is uncertain

toplcs =

IR NeRoeelN- it -i® for topic in topics:

operation (1/O) log(to
descri

def research topics():

as it may not return well-structured results

get_topics("PL techniques for LLM applications')

D1C)

log(description)

ption = get description(topic)

get_description is a distributed call; it may take long

execution time; seqguential execution is inefficient

- The logic and workflow of agents are usually not very complex

)

An Example Worktlow

orchestrator-worker

get_topics is a distributed call; it is uncertain

as it may not return well-structured results

def research topics():
topics = get_topics('"PL techniques for LLM applications')
IR NeRoeelN- it -i® for topic in topics:

operation (I/O) log(topic)
description = get _description(topic)
log(description)

get_description is a distributed call; it may take long

execution time; seqguential execution is inefficient

- The logic and workflow of agents are usually not very complex

- |dea: Separate the logic and workflow from the implementation of these effects

)

An Example Worktlow

orchestrator-worker

with (
handler for LLM-call operations
LLMHandlexr (#*1lm_kwargs),

handler for application-specific operations
ResearchTopicsHandler(),

):

research_topics()

)

An Example Worktlow

orchestrator-worker

Synchronous version:

with (suitable for development

handler for LLM-call operations
LLMHandlexr (#*1lm_kwargs),

handler for application-specific operations
ResearchTopicsHandler(),

) :

research_topics()

)

An Example Worktlow

orchestrator-worker

Synchronous version:

with (suitable for development

handler for LLM-call operations
LLMHandlexr (**11lm_kwargs), with (
handler for application-specific operations handler for asvnc oberations
ResearchTopicsHandler(), ¢ handier g ’
. AsyncHandler(),
).research topics() # handler for LLM-call operations

AsyncLLMHandler (**11lm_kwargs),
handler for rendering async side effects sequentially
AsyncSeqHandler (),
handler for application-specific operations
AsyncResearchTopicsHandler (),

):

research_topics()

)

An Example Worktlow

orchestrator-worker

Synchronous version:

. Asynchronous version:
with (suitable for development y

suitable for deployment

handler for LLM-call operations
LLMHandlexr (**11lm_kwargs), with (
handler for application-specific operations handler for asvnc oberations
ResearchTopicsHandler(), 7 andier g ’
. AsyncHandlexr (),
).research topics() # handler for LLM-call operations

AsyncLLMHandler (**11lm_kwargs),
handler for rendering async side effects sequentially
AsyncSeqHandler (),
handler for application-specific operations
AsyncResearchTopicsHandler (),

):

research_topics()

An Example Wor

orchestrator-worker

Synchronous version:

with (

handler for LLM-call operations

LLMHandlexr (#*1lm_kwargs),

handler for application-specific operations
ResearchTopicsHandler(),

) :

research_topics()

)

-

OW

with (
AsyncHandler(),
handler for mocking LLM-call operations
AsyncReplayLLMHandlexr(trace),
AsyncSeqgHandlex (),
AsyncResearchTopicsHandlexr(),

research_topics()

suitable for development

Asynchronous version:

suitable for deployment

with (
handler for async operations
AsyncHandlexr (),
handler for LLM-call operations
AsyncLLMHandler (**11lm_kwargs),
handler for rendering async side effects sequentially
AsyncSeqHandler (),
handler for application-specific operations
AsyncResearchTopicsHandler (),

) :

research_topics()

)

An Example Work

OW

orchestrator-worker

Synchronous version:

with (

) :

handler for LLM-call operations

LLMHandlexr (#*1lm_kwargs),

handler for application-specific operations
ResearchTopicsHandler(),

research_topics()

Mocking version:

with (suitable for testing & profiling

AsyncHandler(),

handler for mocking LLM-call operations
AsyncReplayLLMHandlexr(trace),
AsyncSeqgHandlex (),
AsyncResearchTopicsHandlexr(),

research_topics()

suitable for development

Asynchronous version:

suitable for deployment

with (
handler for async operations
AsyncHandlexr (),
handler for LLM-call operations
AsyncLLMHandler (**11lm_kwargs),
handler for rendering async side effects sequentially
AsyncSeqHandler (),
handler for application-specific operations
AsyncResearchTopicsHandler (),

) :

research_topics()

)

An Example Worktlow

orchestrator-worker

Synchronous version:

Asynchronous version:

with (suitable for development suitable for deployment
handler for LLM-call operations
LLMHandlexr (**11lm_kwargs), with (
handler for application-specific operations handler for asvnc oberations
ResearchTopicsHandler(), ¢ nandter g ’
. AsyncHandler(),

).research topics() # handler for LLM-call operations

AsyncLLMHandler (**11lm_kwargs),
handler for rendering async side effects sequentially

Mocking version: AsyncSeqHandler(),
with (suitable for testing & profiling ## handler for application-specific operations
AsyncHandler () AsyncResearchTopicsHandler(),
?
handler for mocking LLM-call operations) .
AsyncReplayLLMHandlexr(trace), research_topics()
AsyncSeqgHandlex (),
A R hTopicsHandl . .
)s syncResearchTopicsHandler(), The workflow logic itself keeps the same!
research_topics() 7

Operations & H

andal

Cls

Operations & Hanalers

an operation 1s a callable object
get_topics = Operation()
get_description = Operation()

log = Operation()

10

Operations & Hanalers

Operations provides only syntax

an operation 1s a callable object
get_topics = Operation()
get_description = Operation()

log = Operation()

10

Operations & Hanalers

Operations provides only syntax

an operation 1s a callable object # a handler 1s a manager for a set of operations
get_topics = Operation() class LogHandler(Handler):

get_description = Operation() def 1init_ (self):

log = Operation() super()._ _init_ ()

this handler discharges the "log operation
self.register(log, self.log)

deft log(self, msg):
print (£f"[INFO] {msg}")

10

Operations & Hanalers

Operations provides only syntax Handlers determine the semantics
an operation 1s a callable object # a handler is a manager for a set of operations
get_topics = Operation() class LogHandler(Handler):
get_description = Operation() def 1init_ (self):
log = Operation() super()._ _init_ ()

this handler discharges the "log operation
self.register(log, self.log)

deft log(self, msg):
print (£f"[INFO] {msg}")

10

Operations & Hanalers

Operations provides only syntax Handlers determine the semantics
an operation 1s a callable object # a handler is a manager for a set of operations
get_topics = Operation() class LogHandler(Handler):
get_description = Operation() def 1init_ (self):
log = Operation() super()._ _init_ ()

this handler discharges the "log operation
self.register(log, self.log)

class LogDateHandler(Handler): .
def __init__(self): det }og(self, msg) :
print (£f"[INFO] {msg}")

super()._ _init__ ()
self.register(log, self.log)

def log(self, msg):
print (f'"[DATE] {datetime.now()}")
this handler invokes the "log operation

log(msg)

10

Operations & Hanalers

Operations provides only syntax Handlers determine the semantics
an operation 1s a callable object # a handler is a manager for a set of operations
get_topics = Operation() class LogHandler(Handler):
get_description = Operation() def 1init_ (self):
log = Operation() super()._ _init_ ()

this handler discharges the "log operation
self.register(log, self.log)

class LogDateHandler(Handler): .
def __init__(self): det }og(self, msg) :
print (£f"[INFO] {msg}")

super()._ _init__ ()
self.register(log, self.log)

def log(self, msg):
print (f'"[DATE] {datetime.now()}")
this handler invokes the "log operation

log(msg)

"Forward" the log operation .

to other handlers

Operations & Hanalers

Operations provides only syntax Handlers determine the semantics
an operation 1s a callable object # a handler is a manager for a set of operations
get_topics = Operation() class LogHandler(Handler):
get_description = Operation() def 1init_ (self):
log = Operation() super()._ _init_ ()

this handler discharges the "log operation
self.register(log, self.log)

class LogDateHandler(Handler): .
def __init__(self): det }og(self, msg) :
print (£f"[INFO] {msg}")

super()._ _init__ ()
self.register(log, self.log)

def log(self, msg):

print (£"[DATE] {datetime.now()}") with LogHandler(), LogDateHandler():

this handler invokes the ‘log' operation og("Hello World!")

log (msg) # [DATE] 2025-06-29 20:25:17.102486
"Forward" the log operation # [INFO] Hello World!

10

to other handlers

Operations & Hanalers

Operations provides only syntax Handlers determine the semantics
an operation 1s a callable object # a handler is a manager for a set of operations
get_topics = Operation() class LogHandler(Handler):
get_description = Operation() def 1init_ (self):
log = Operation() super()._ _init_ ()

this handler discharges the "log operation
self.register(log, self.log)

class LogDateHandler(Handler): .
def __init__(self): det }og(self, msg) :
print (£f"[INFO] {msg}")

super()._ _init__ ()
self.register(log, self.log)

Compose handlers seamlessly

def log(self, msg):

print (£"[DATE] {datetime.now()}") with LogHandler(), LogDateHandler():

this handler invokes the ‘log' operation og("Hello World!")

log (msg) # [DATE] 2025-06-29 20:25:17.102486
"Forward" the log operation # [INFO] Hello World!

10

to other handlers

Composing Operations

Composing Operations

- Consider using 3 operations:

. async_(coro, post_fn): schedule o
coroutine coro with post_fn as a callback
on the result

11

Composing Operations

- Consider using 3 operations:

. async_(coro, post_fn): schedule o
coroutine coro with post_fn as a callback
on the result

- awailt_ (fut): wait for the completion of fut,
created by an async_ call

11

Composing Operations

- Consider using 3 operations:

. async_(coro, post_fn): schedule o
coroutine coro with post_fn as a callback
on the result

- awailt_ (fut): wait for the completion of fut,
created by an async_ call

« complete(prompt): request an LLM to
generate text from prompt

11

Composing Operations

- Consider using 3 operations:

. async_(coro, post_fn): schedule o
coroutine coro with post_fn as a callback
on the result

- awailt_ (fut): wait for the completion of fut,
created by an async_ call

« complete(prompt): request an LLM to
generate text from prompt

- to implement:

class AsyncResearchTopicsHandler(Handler):
def init_ (self):
super().__init__ ()
self.register(get topics, self.get topics)
self.register(get_description, self.get description) »
self.register(log, self.log)

Composing Operations

- Consider using 3 operations:

deft get topics(area):

- async_(coro, post_fn):scheduled content = awalt_{
ync_ » P — ' complete(f"Give a JSON list of topics in the

coroutine coro with post_fn as a callback research area {area}t.")
on the result)

#f try to parse content with error handling

- awailt_ (fut): wait for the completion of fut,
created by an async_ call

« complete(prompt): request an LLM to
generate text from prompt

- to implement:

class AsyncResearchTopicsHandler(Handler):
def init_ (self):
super().__init__ ()
self.register(get topics, self.get topics)
self.register(get_description, self.get description) »
self.register(log, self.log)

Composing Operations

- Consider using 3 operations:

. async_(coro, post_fn): schedule o

coroutine coro with post_fn as a callback

on the result

- awailt_ (fut): wait for the completion of fut,

created by an async_ call

« complete(prompt): request an LLM to
generate text from prompt

- to implement:

deft get topics(area):
content = await_(
complete(£"Give a JSON list of topics in the
research area {area}t.'")

)

#f try to parse content with error handling

def get description(topic):
return complete(£f"Give a short description about
the topic {topic}t.")

class AsyncResearchTopicsHandler(Handler):
def init_ (self):
super().__init__ ()
self.register(get topics, self.get topics)

self.register(get_description, self.get description)

self.register(log, self.log)

11

Composing Operations

- Consider using 3 operations:

. async_(coro, post_fn): schedule o
coroutine coro with post_fn as a callback
on the result

- awailt_ (fut): wait for the completion of fut,
created by an async_ call

« complete(prompt): request an LLM to
generate text from prompt

- to implement:

deft get topics(area):
content = await_(
complete(£"Give a JSON list of topics in the
research area {area}t.'")

)

#f try to parse content with error handling

def get description(topic):
return complete(£f"Give a short description about
the topic {topic}t.")

class AsyncResearchTopicsHandler(Handler):
def init_ (self):
super().__init__ ()
self.register(get topics, self.get topics)
self.register(get_description, self.get description)
self.register(log, self.log)

det log(msg):
async def aux():
return await msg i1f isinstance(msg, Awaitable)
else msg

use ‘print as a callback
return async_(aux(), print)

11

L
]

Reusing E

f-

r

cCl

to achieve modularity

andal

Cls

Reusing Effect Hand

to achieve modularity

Asynchronous
version:

suitable for
deployment

with (

AsyncHandler(),

AsyncLLMF

AsyncSeqgh

AsyncResearchTopicsHandlex(),

research_

andler(*x1lm_kwargs),
andler(),

topics()

ers

12

Reusing E

Hana

ect

to achieve modularity

Asynchronous
version:

suitable for
deployment

with (
AsyncHandler(),

AsyncLLMHandler (**1lm_kwargs),

AsyncSegHandlex (),

AsyncResearchTopicsHandlex(),

research_topics()

ers

with (
AsyncHandlexr (),
AsyncReplayLLMHandler(trace),
AsyncSegHandlex (),
AsyncResearchTopicsHandler (),

research_topics()

Mocking version:

suitable for
testing & profiling

12

Reusing Effect Handlers

to achieve modularity

with (with (
Asynchronous AsyncHandler (), AsyncHandlexr (), . .
. AsyncLLMHandler (**11lm_kwargs), AsyncReplayLLMHandler(trace), Mocking version:
Verslion: :
able f AsyncSeqgHandlexr(), AsyncSeqgHandlexr(), suitable for
SHILARICHO! AsyncResearchTopicsHandlex(), AsyncResearchTopicsHandler (), testing & profiling
deployment):):
research_topics() research_topics()

def research topics():
topics = get _topics("PL techniques for LLM applications')
for topic in topics:
log(topic)
description = get _description(topic)
log(description)

12

Reusing Effect Handlers

to achieve modularity

with (with (
Asynchronous AsyncHandler (), AsyncHandlexr (), . .
. AsyncLLMHandler (**11lm_kwargs), AsyncReplayLLMHandler(trace), Mocking version:
Verslion: :
able f AsyncSeqgHandlexr(), AsyncSeqgHandlexr(), suitable for
SHILARICHO! AsyncResearchTopicsHandlex(), AsyncResearchTopicsHandler (), testing & profiling
deployment):):
research_topics() research_topics()

def research topics():
topics = get topics('"PL techniques for LLM applications')
for topic in topics:

log(topic)
description = get _description(topic)
log(description)

- The workflow looks sequential, but the handlers exploit LLM service's parallelization

12

Reusing Effect Handlers

to achieve modularity

with (with (
Asynchronous AsyncHandler (), AsyncHandlexr (), . .
. AsyncLLMHandler (**11lm_kwargs), AsyncReplayLLMHandler(trace), Mocking version:
Verslion: :
able f AsyncSeqgHandlexr(), AsyncSeqgHandlexr(), suitable for
SHILARICHO! AsyncResearchTopicsHandlex(), AsyncResearchTopicsHandler (), testing & profiling
deployment):):
research_topics() research_topics()

def research topics():
topics = get topics('"PL techniques for LLM applications')
for topic in topics:

log(topic)
description = get _description(topic)
log(description)

- The workflow looks sequential, but the handlers exploit LLM service's parallelization

o Separating effects from workflow allows "modular” thinking of correctness & efficiency

Case Study: Tree-of-Thoughts (ToT)

Shunyu et al. 2023. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. In NeurlPS'23

13

Case Study: Tree-of-Thoughts (ToT)

Shunyu et al. 2023. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. In NeurlPS'23

Y ¥ ajority vote
Output Output

(a) Input-Output (c) Chain of Thought (c) Self Consistency
Prompting (I0) Prompting (CoT) with CoT (CoT-SC)

(d) Tree of Thoughts (ToT)

T — B ———

13

Case Study: Tree-of-Thoughts (ToT)

Shunyu et al. 2023. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. In NeurlPS'23

v Y ajority vote
Output Output

(a) Input-Output (c) Chain of Thought (c) Self Consistency

Prompting (1O) Prompting (CoT) with CoT (CoT-SC) (d) Tree of Thoughts (ToT)

T ———————W

Treat reasoning as graph searching:

Use an LLM to generate thoughts (nodes)
and evaluate their fitness (weights)

13

Case Study:

AN :
ee-

Thoughts (ToT)

Shunyu et al. 2023. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. In NeurlPS'23

J
Y Majority vote

N
Output Output @

(a) Input-Output (c) Chain of Thought (c) Self Consistency
Prompting (I0) Prompting (CoT) with CoT (CoT-SC)

-
-
-
-

— e o e S e M e e S SEm S e M M S e S S

T — s

(d) Tree of Thoughts (ToT)

Treat reasoning as graph searching:

Use an LLM to generate thoughts (nodes)
and evaluate their fitness (weights)

init, expand, score = Operation(), Operation(), Operation()

deft tree of thoughts(n_steps, n_select, n_eval):
frontier = [init()]
for _ in range(n_steps):
expanded = [expand(state) for state in frontier]
candidates = chain(*expanded) # flatten the list
scored = [score(cand, n_eval) for cand in candidates]
frontier = top_k(scored, n_select) # select greedily

print(frontier)

13

Case Stuay: Tree-o

Thoughts (ToT)

Shunyu et al. 2023. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. In NeurlPS'23

J
Y Majority vote

N
Output Output @

(a) Input-Output (c) Chain of Thought (c) Self Consistency
Prompting (I0) Prompting (CoT) with CoT (CoT-SC)

(d) Tree of Thoughts (ToT)

T — B ———

Treat reasoning as graph searching:

Use an LLM to generate thoughts (nodes)
and evaluate their fitness (weights)

init, expand, score = Operation(), Operation(), Operation()

deft tree of thoughts(n_steps, n_select, n_eval):
frontier = [init()]
for _ in range(n_steps):
expanded = [expand(state) for state in frontier]
candidates = chain(*expanded) # flatten the list
scored = [score(cand, n_eval) for cand in candidates]
frontier = top_k(scored, n_select) # select greedily

print(frontier)

Again: The logic and workflow of agents are
usually not very complex

13

Case Study: Tree-of-Thoughts (ToT)

Shunyu et al. 2023. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. In NeurlPS'23

14

Case Study: Tree-of-Thoughts (ToT)

Shunyu et al. 2023. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. In NeurlPS'23

- Create effect handlers for the ToT operations to solve the Game of 24

14

UNIPp

(<}

s \¢
e -
= ~
& ~

189‘6

Case Study: Tree-of-Thoughts (ToT)

Shunyu et al. 2023. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. In NeurlPS'23

- Create effect handlers for the ToT operations to solve the Game of 24
with (

LLMHandlexr (**1lm_kwargs),
Game24Handler(),

):

tree_of thoughts(n_steps=4, n_select=5, n_eval=3)

14

UNIPp

(<}

s \¢
e -
= ~
< ~

189‘6

Case Study: Tree-of-Thoughts (ToT)

Shunyu et al. 2023. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. In NeurlPS'23

- Create effect handlers for the ToT operations to solve the Game of 24

with (with (
LLMHandlexr (**1lm_kwargs), AsyncHandler(), AsyncLLMHandler(*x1lm_kwargs),
Game24Handlex (), q AsyncGame24Handler (),

):):
tree_of thoughts(n_steps=4, n_select=5, n_eval=3) tree_of thoughts(n_steps=4, n_select=5, n_eval=3)

14

Case study: Tree-of-Thoughts (ToT)

189‘6

Shunyu et al. 2023. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. In NeurlPS'23

- Create effect handlers for the ToT operations to solve the Game of 24

with (with (
LLMHandlexr (**1lm_kwargs), AsyncHandler(), AsyncLLMHandler(*x1lm_kwargs),
Game24Handlex (), q AsyncGame24Handler (),

):):
tree_of thoughts(n_steps=4, n_select=5, n_eval=3) tree_of thoughts(n_steps=4, n_select=5, n_eval=3)

Achieve ~10x speedup without

changing the workflow logic

14

UNIPp

(<}

s \¢
e -
= ~
S ~

189‘6

Case Study: Tree-of-Thoughts (ToT)

Shunyu et al. 2023. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. In NeurlPS'23

- Create effect handlers for the ToT operations to solve the Game of 24

with (with (
LLMHandlexr (**1lm_kwargs), AsyncHandler(), AsyncLLMHandler(*x1lm_kwargs),
Game24Handlex (), q AsyncGame24Handler (),

):):
tree_of thoughts(n_steps=4, n_select=5, n_eval=3) tree_of thoughts(n_steps=4, n_select=5, n_eval=3)

Achieve ~10x speedup without

changing the workflow logic

- The official implementation did not exploit parallelization

14

Case Study: Tree-of-T'houghts (To"

— r——1>
Shunyu et al. 2023. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. In NeurIPS'23

- Create effect handlers for the ToT operations to solve the Game of 24

UNIPp

(<}

s \¢
e -
= ~
< ~

with (with (
LLMHandlexr (**1lm_kwargs), AsyncHandler(), AsyncLLMHandler(*x1lm_kwargs),
Game24Handler(), q AsyncGame24Handler (),

):):
tree_of thoughts(n_steps=4, n_select=5, n_eval=3)

tree_of thoughts(n_steps=4, n_select=5, n_eval=3)

Achieve ~10x speedup without

changing the workflow logic

- The official implementation did not exploit parallelization

- Manual optimization would break the code structure of the workflow

14

Takeaway: One Prel

about PL for humans writing code

Workflows

Orchestrator-Worker

rkers

. The logic and workflow of agents are o . T olel e
ronr:l Chaining — el
USUQHY ﬂOt Vel’y COmp‘eX ns @ @ Evaluiitgr—cl[oltimizer
Parallelization | — (@ |— @ J—
. . LT et
- The effects make the engineering of agents Nt i Routing
complex ' TG
¢ UﬂCel’tOIﬂ behOVIOI’ prLeLdMeFiisneedmbceoddd:dpaj;cnhs th;t[qlggi:xzz\‘?n)zzrgbdglggths
- Long execution times
. Distributed execution with (
AsyncHandler(),
| | | AsyncReplayLLMHandlexr(trace),
- Effect handler oriented programming might AsyncSeqHandler (),
be suitable for implementing agents) AsyncResearchTopicsHandler(),
research_topics() .

Source: https://langchain-ai.github.io/langgraph/tutorials/workflows/

https://langchain-ai.github.io/langgraph/tutorials/workflows/

