A Denotational Semantics for Low-Level Probabilistic Programs with Nondeterminism

Di Wang ${ }^{1}$ Jan Hoffmann ${ }^{1}$ Thomas Reps ${ }^{2,3}$
${ }^{1}$ Carnegie Mellon University
${ }^{2}$ University of Wisconsin
${ }^{3}$ GrammaTech, Inc.

Probabilistic Programs

Draw random data from distributions

Condition control-flow at random

Low-Level Probabilistic Programs

High-Level Features:

- Functional (Borgström et al. 2016)
- Higher-order (Ehrhard, Pagani, and Tasson 2018)
- Recursive types (Vákár, Kammar, and Staton 2019)

Formal semantics has been well studied.

Low-Level Features:

- Imperative
- Unstructured control-flow

Operational semantics:
(Ferrer Fioriti and Hermanns
2015)

Denotational semantics:
This work

Low-Level Probabilistic Programs

High-Level Features:

- Functional (Borgström et al. 2016)
- Higher-order (Ehrhard, Pagani, and Tasson 2018)
- Recursive types (Vákár, Kammar, and Staton 2019)

Formal semantics has been well studied.

Low-Level Features:

- Imperative
- Unstructured control-flow

Operational semantics:
(Ferrer Fioriti and Hermanns
2015)

Denotational semantics:
This work

Benefits of A Denotational Semantics

- Abstraction from details about program executions
- Compositionality

Low-Level Probabilistic Programs

Example

The following code implements a variant of geometric distributions.

$$
\begin{aligned}
& n:=0 ; \\
& \text { while prob(} 0.9 \text {) do } \\
& \quad n:=n+1 ; \\
& \quad \text { if } n \geq 10 \text { then break } \\
& \text { else continue } \\
& \text { od }
\end{aligned}
$$

There are multiple possible executions of the program, e.g., n could end up with 0,3 , or 10 .

Principle
Probabilistic programs establish input/output-distribution relations. A probabilistic program can be modeled as a function in $X \rightarrow \mathcal{D}(X)$, where X is consists of probability distributions over X.

Low-Level Probabilistic Programs

Example

The following code implements a variant of geometric distributions.

$$
\begin{aligned}
& n:=0 ; \\
& \text { while prob(} 0.9 \text {) do } \\
& \quad n:=n+1 ; \\
& \quad \text { if } n \geq 10 \text { then break } \\
& \text { else continue } \\
& \text { od }
\end{aligned}
$$

There are multiple possible executions of the program, e.g., n could end up with 0,3 , or 10 .

Principle
Probabilistic programs establish input/output-distribution relations. A probabilistic program can be modeled as a function in $X \rightarrow \mathcal{D}(X)$, where X is a program state space and $\mathcal{D}(X)$ consists of probability distributions over X.

Low-Level Probabilistic Programs

Example

The following code implements a variant of geometric distributions.

$$
\begin{aligned}
& n:=0 ; \\
& \text { while prob(} 0.9 \text {) do } \\
& \quad n:=n+1 ; \\
& \quad \text { if } n \geq 10 \text { then break } \\
& \text { else continue } \\
& \text { od }
\end{aligned}
$$

There are multiple possible executions of the program, e.g., n could end up with 0,3 , or 10 .

Principle

Probabilistic programs establish input/output-distribution relations. A probabilistic program can be modeled as a function in $X \rightarrow \mathcal{D}(X)$, where X is a program state space and $\mathcal{D}(X)$ consists of probability distributions over X.

Nondeterminism

Sources

- Agents for Markov decisions processes (MDPs)
- Abstraction and refinement on programs

A Common Resolution
A nondeterministic function from X to Y is a set-valued function that maps an input to a collection of outputs, i.e.,

$$
f \in X \rightarrow \wp(Y) .
$$

Nondeterminism in Probabilistic Programming

A nondeterministic function f from X to $\mathcal{D}(X)$ should have the signature

$$
f \in X \rightarrow \wp(\mathcal{D}(X)),
$$

where $\mathcal{D}(X)$ consists of probability distributions over X.

Nondeterminism

Sources

- Agents for Markov decisions processes (MDPs)
- Abstraction and refinement on programs

A Common Resolution

A nondeterministic function f from X to Y is a set-valued function that maps an input to a collection of outputs, i.e.,

$$
f \in X \rightarrow \wp(Y)
$$

Nondeterminism in Probabilistic Programming
A nondeterministic function f from X to $\mathcal{D}(X)$ should have the signature

$$
f \in X \rightarrow \wp(\mathcal{D}(X)),
$$

where $\mathcal{D}(X)$ consists of probability distributions over X.

Nondeterminism

Sources

- Agents for Markov decisions processes (MDPs)
- Abstraction and refinement on programs

A Common Resolution

A nondeterministic function f from X to Y is a set-valued function that maps an input to a collection of outputs, i.e.,

$$
f \in X \rightarrow \wp(Y)
$$

Nondeterminism in Probabilistic Programming
A nondeterministic function f from X to $\mathcal{D}(X)$ should have the signature

$$
f \in X \rightarrow \wp(\mathcal{D}(X))
$$

where $\mathcal{D}(X)$ consists of probability distributions over X.

When to Resolve Nondeterminism?

X is a program state space. $\mathcal{D}(X)$ consists of probability distributions over X.

The Common Resolution: Input Prior to Nondeterminism

$$
f \in X \rightarrow \wp(\mathcal{D}(X))
$$

What about: Nondeterminism Prior to Input?

$$
f \in \rho(X \rightarrow \mathcal{D}(X))
$$

Intuition: A nondeterministic program is a specification that models a collection of deterministic refinements.

When to Resolve Nondeterminism?

X is a program state space. $\mathcal{D}(X)$ consists of probability distributions over X.

The Common Resolution: Input Prior to Nondeterminism

$$
f \in X \rightarrow \wp(\mathcal{D}(X))
$$

What about: Nondeterminism Prior to Input?

$$
f \in \wp(X \rightarrow \mathcal{D}(X))
$$

Intuition: A nondeterministic program is a specification that models a collection of deterministic refinements.

When to Resolve Nondeterminism?

X is a program state space. $\mathcal{D}(X)$ consists of probability distributions over X.

The Common Resolution: Input Prior to Nondeterminism

$$
f \in X \rightarrow \wp(\mathcal{D}(X))
$$

What about: Nondeterminism Prior to Input?

$$
f \in \wp(X \rightarrow \mathcal{D}(X))
$$

Intuition: A nondeterministic program is a specification that models a collection of deterministic refinements.

Nondeterminism-First: Nondeterminism Prior to Input

Example

Consider the following program P where \star represents nondeterminism. if $\operatorname{prob}(\star)$ then $t:=t+1$ else $t:=t-1$ fi

The Common Resolution

\star resolved after t is given

* resolved as 0.5

Nondeterminism-First: Nondeterminism Prior to Input

Example

Consider the following program P where \star represents nondeterminism. if $\operatorname{prob}(\star)$ then $t:=t+1$ else $t:=t-1 \mathrm{fi}$

The Common Resolution

$t^{\prime}=2$	w.p. 0.5		
$t^{\prime}=0$	w.p. 0.5		$t^{\prime}=2$ w.p. 0.8
:---			
$t^{\prime}=0$			

\star resolved after t is given

\star resolved as 0.5
\star resolved before t is given

Nondeterminism-First: Nondeterminism Prior to Input

Example

Consider the following program P where \star represents nondeterminism. if $\operatorname{prob}(\star)$ then $t:=t+1$ else $t:=t-1$ fi

The Common Resolution

\star resolved after t is given

Nondeterminism-First

$$
\begin{gathered}
t=1 \\
\downarrow \\
t^{\prime}=2
\end{gathered}
$$

\star resolved as 0.5

$$
\begin{gathered}
t=1 \\
\downarrow \\
\hline t^{\prime}=2 \text { w.p. } 0.8 \\
t^{\prime}=0 \quad \text { w.p. } 0.2 \\
\star \text { resolved as } 0.8
\end{gathered}
$$

\star resolved before t is given

Nondeterminism-First: What's the Benefit?

Example

Consider the following program P where \star represents nondeterminism.

$$
\text { if } \operatorname{prob}(\star) \text { then } t:=t+1 \text { else } t:=t-1 \mathrm{fi}
$$

Relational Reasoning about Refinements of a Program

Nondeterminism-First: What's the Benefit?

Example

Consider the following program P where \star represents nondeterminism.

$$
\text { if } \operatorname{prob}(\star) \text { then } t:=t+1 \text { else } t:=t-1 \mathrm{fi}
$$

Relational Reasoning about Refinements of a Program

- For all refinements P^{\prime} of P, for all t_{1}, t_{2}, can we prove that $\mathbb{E}_{t_{1}^{\prime} \sim P^{\prime}\left(t_{1}\right), t_{2}^{\prime} \sim P^{\prime}\left(t_{2}\right)}\left[t_{1}^{\prime}-t_{2}^{\prime}\right]=t_{1}-t_{2}$?

Nondeterminism-First: What's the Benefit?

Example

Consider the following program P where \star represents nondeterminism.

$$
\text { if } \operatorname{prob}(\star) \text { then } t:=t+1 \text { else } t:=t-1 \mathrm{fi}
$$

Relational Reasoning about Refinements of a Program

- For all refinements P^{\prime} of P, for all t_{1}, t_{2}, can we prove that
- For all refinements P^{\prime} of P, for all t_{1}, t_{2}, does P^{\prime} exhibit similar execution time on t_{1} and t_{2} ?

Contributions

- We develop a denotational semantics for low-level probabilistic programs with unstructured control-flow, general recursion, and nondeterminism.
- We study different resolutions for nondeterminism and propose a new model that involves nondeterminacy among state transformers.
- We devise an algebraic framework for denotational semantics, which can be instantiated with different resolutions for nondeterminism.

Outline

Motivation

Control-Flow Hyper-Graphs

Algebraic Denotational Semantics

Nondeterminism-First

Representation of Low-Level Probabilistic Programs

A standard CFG and an execution path

Representation of Low-Level Probabilistic Programs

A standard CFG and an execution path

A tree-like hyper-path

Representation of Low-Level Probabilistic Programs

A standard CFG and an execution path

A tree-like hyper-path

Principle

For probabilistic programs, execution paths are not independent. A formal semantics should reason about distributions over paths.

Paths vs. Hyper-Paths

Example

> if \star then $\operatorname{if} \operatorname{prob}(0.5)$ then $t:=0$ else $t:=1 \mathrm{fi}$ else if $\operatorname{prob}(0.8)$ then $t:=0$ else $t:=1 \mathrm{fi} \quad \mathrm{fi}$

Paths Annotated with Probabilities

Hyper-Paths, each of which stands for a distribution

Paths vs. Hyper-Paths

Example

> if \star then $\operatorname{if} \operatorname{prob}(0.5)$ then $t:=0$ else $t:=1 \mathrm{fi}$ else if $\operatorname{prob}(0.8)$ then $t:=0$ else $t:=1 \mathrm{fi}$ fi

Paths Annotated with Probabilities

$$
\begin{array}{rrrr}
\bullet & \bullet & \bullet & \bullet \\
\downarrow_{0.5} & \downarrow_{0.5} & \downarrow 0.8 & \stackrel{\downarrow}{ } 0.2 \\
t^{\prime}=0 & t^{\prime}=1 & t^{\prime}=0 & t^{\prime}=1
\end{array}
$$

Paths vs. Hyper-Paths

Example

> if \star then if $\operatorname{prob}(0.5)$ then $t:=0$ else $t:=1 \mathrm{fi}$
> else if $\operatorname{prob}(0.8)$ then $t:=0$ else $t:=1 \mathrm{fi} \quad \mathrm{fi}$

Paths Annotated with Probabilities

$$
\begin{array}{rrrr}
\bullet & \bullet & \bullet & \bullet \\
\downarrow 0.5 & \downarrow 0.5 & \downarrow 0.8 & \stackrel{\downarrow}{ } 0.2 \\
t^{\prime}=0 & t^{\prime}=1 & t^{\prime}=0 & t^{\prime}=1
\end{array}
$$

Hyper-Paths, each of which stands for a distribution

Control-Flow Hyper-Graphs

- Hyper-graphs are directed graphs with hyper-edges that could have multiple destinations. Hyper-paths are made up of hyper-egdes.
- The following hyper-graph
false
represents the control-flow of the example program
$n:=0$;
while $\operatorname{prob}(0.9)$ do
$n:=n+1$;
if $n \geq 10$ then break
else continue

Control-Flow Hyper-Graphs

- Hyper-graphs are directed graphs with hyper-edges that could have multiple destinations. Hyper-paths are made up of hyper-egdes.
- The following hyper-graph

represents the control-flow of the example program

$$
\begin{aligned}
& n:=0 \\
& \text { while prob }(0.9) \text { do } \\
& \quad n:=n+1 \text {; } \\
& \quad \text { if } n \geq 10 \text { then break } \\
& \text { else continue } \\
& \text { od }
\end{aligned}
$$

Outline

Motivation

Control-Flow Hyper-Graphs

Algebraic Denotational Semantics

Nondeterminism-First

An Algebraic Denotational Semantics

Goal
Develop a denotational semantics that can be instantiated with different resolutions of nondeterminism.

An Algebraic Approach

- Perform reasoning in some abstract space of program states and state transformers.
- The state transformers should obey some algebraic laws.
- For example the command skin should be internreted as an element for sequencing in the algebra of transformers.

An Algebraic Denotational Semantics

Goal

Develop a denotational semantics that can be instantiated with different resolutions of nondeterminism.

An Algebraic Approach

- Perform reasoning in some abstract space of program states and state transformers.
- The state transformers should obey some algebraic laws.
- For example, the command skip should be interpreted as an identity element for sequencing in the algebra of transformers.

An Algebraic Denotational Semantics

Goal

Develop a denotational semantics that can be instantiated with different resolutions of nondeterminism.

An Algebraic Approach

- Perform reasoning in some abstract space of program states and state transformers.
- The state transformers should obey some algebraic laws.
- For example, the command skip should be interpreted as an identity element for sequencing in the algebra of transformers.

Outcome

The semantics is a good fit for developing static analyses (Wang, Hoffmann, and Reps 2018).

The Algebra

$\begin{gathered} \text { Actions } \\ \text { skip } \\ x:=x+5 \\ k \sim \operatorname{Binomial}(10,0.5) \end{gathered}$	$\xrightarrow{\text { Semantic Function }}$	State Transformers equipped with sequencing \otimes conditional-choice nondeterministic-choice

The Algebra

\(\left.\begin{array}{|c|c|}\hline Actions

skip

x:=x+5

k \sim \operatorname{Binomial}(10,0.5)

···\end{array}\right) \stackrel{\)| State Transformers M |
| :---: |
| equipped with |
| sequencing \otimes |$}{\stackrel{\text { Semantic Function }}{ }}$| |
| :---: |
| conditional-choice ${ }_{\varphi} \diamond$
 nondeterministic-choice |

$$
\langle M, \check{\Sigma}, \otimes,, \diamond, \forall, \perp, 1\rangle
$$

- $\langle\mathcal{M}, \sqsubseteq\rangle$ forms a directed complete partial order (dcpo) with \perp as its least
- $\langle M, \otimes, 1\rangle$ forms a monoid.
- Nondeterministic-choice \forall is a semilattice operation.

The Algebra

Actions skip $x:=x+5$ $k \sim$ Binomial $(10,0.5)$ \ldots $\langle M, \sqsubseteq, \otimes, \diamond, \forall, \perp, 1\rangle$

- $\langle\mathcal{M}, \sqsubseteq\rangle$ forms a directed complete partial order (dcpo) with \perp as its least element.
- $\langle M, \otimes, 1\rangle$ forms a monoid.
- Nondeterministic-choice \forall is a semilattice operation.

The Algebra

\(\left.\begin{array}{|c|c|}\hline Actions

skip

x:=x+5

k \sim \operatorname{Binomial}(10,0.5)

···\end{array}\right) \stackrel{\)| State Transformers M |
| :---: |
| equipped with |
| sequencing \otimes |$}{\stackrel{\text { Semantic Function }}{ }}$| |
| :---: |
| conditional-choice ${ }_{\varphi} \diamond$
 nondeterministic-choice |

$$
\langle M, \sqsubseteq, \otimes, \oplus \diamond, \forall, \perp, 1\rangle
$$

- $\langle\mathcal{M}, \sqsubseteq\rangle$ forms a directed complete partial order (dcpo) with \perp as its least
- $\langle M, \otimes, 1\rangle$ forms a monoid.
- Nondeterministic-choice \forall is a semilattice operation.

The Algebra

\(\left.\begin{array}{|c|c|}\hline Actions

skip

x:=x+5

k \sim \operatorname{Binomial}(10,0.5)

···\end{array}\right) \stackrel{\)| State Transformers M |
| :---: |
| equipped with |
| sequencing \otimes |$}{\stackrel{\text { Semantic Function }}{ }}$| |
| :---: |
| conditional-choice ${ }_{\varphi} \diamond$
 nondeterministic-choice |

$$
\langle M, \sqsubseteq, \otimes, \varphi \diamond, \forall, \perp, 1\rangle
$$

- $\langle\mathcal{M}, \sqsubseteq\rangle$ forms a directed complete partial order (dcpo) with \perp as its least
- $\langle M, \otimes, 1\rangle$ forms a monoid.
- Nondeterministic-choice \forall is a semilattice operation.

Fixpoint Semantics for Hyper-Graphs

Principle
The semantics of a node in the control-flow hyper-graph is a summary of computation that continues from that node.

Recall the control-flow hyper-graph below.

Semantics is defined as the lleast solution to the following equation system
$\mathcal{S}\left(v_{0}\right)=$
$\mathcal{S}\left(v_{2}\right)=\operatorname{seq}[n:=n+1]\left(\tilde{S}\left(v_{3}\right)\right)$
$\mathcal{S}\left(v_{4}\right)=1$
$S(v)=n+0 b[0.9]\left(S\left(v_{2}\right), S\left(v_{4}\right)\right) \quad S\left(v_{3}\right)=\operatorname{cond}[n \geq 10]\left(S\left(v_{4}\right), S\left(v_{1}\right)\right)$

Fixpoint Semantics for Hyper-Graphs

Principle
The semantics of a node in the control-flow hyper-graph is a summary of computation that continues from that node.

Recall the control-flow hyper-graph below.

```
\(n:=0 ;\)
while \(\operatorname{prob}(0.9)\) do
```


Fixpoint Semantics for Hyper-Graphs

Principle

The semantics of a node in the control-flow hyper-graph is a summary of computation that continues from that node.

Recall the control-flow hyper-graph below.

```
n := 0;
while prob(0.9) do
    n:= n+1;
    if n\geq10 then break
    else continue
od
```


Semantics is defined as the least solution to the following equation system

$$
\begin{array}{lll}
\mathcal{S}\left(v_{0}\right)=\operatorname{seq}[n:=0]\left(\mathcal{S}\left(v_{1}\right)\right) & \mathcal{S}\left(v_{2}\right)=\operatorname{seq}[n:=n+1]\left(\mathcal{S}\left(v_{3}\right)\right) & \mathcal{S}\left(v_{4}\right)=1 \\
\mathcal{S}\left(v_{1}\right)=\operatorname{prob}[0.9]\left(\mathcal{S}\left(v_{2}\right), \mathcal{S}\left(v_{4}\right)\right) & \mathcal{S}\left(v_{3}\right)=\operatorname{cond}[n \geq 10]\left(\mathcal{S}\left(v_{4}\right), \mathcal{S}\left(v_{1}\right)\right) &
\end{array}
$$

Fixpoint Semantics for Hyper-Graphs

Semantics is defined as the least solution to the following equation system

$$
\begin{array}{lll}
\mathcal{S}\left(v_{0}\right)=\operatorname{seq}[n:=0]\left(\mathcal{S}\left(v_{1}\right)\right) & \mathcal{S}\left(v_{2}\right)=\operatorname{seq}[n:=n+1]\left(\mathcal{S}\left(v_{3}\right)\right) & \mathcal{S}\left(v_{4}\right)=1 \\
\mathcal{S}\left(v_{1}\right)=\operatorname{prob}[0.9]\left(\mathcal{S}\left(v_{2}\right), \mathcal{S}\left(v_{4}\right)\right) & \mathcal{S}\left(v_{3}\right)=\operatorname{cond}[n \geq 10]\left(\mathcal{S}\left(v_{4}\right), \mathcal{S}\left(v_{1}\right)\right) &
\end{array}
$$

Use the algebra to reinterpret the equation system

where $\llbracket \cdot \rrbracket$ maps actions into state transformers in M.

Fixpoint Semantics for Hyper-Graphs

Semantics is defined as the least solution to the following equation system

$$
\begin{array}{lll}
\mathcal{S}\left(v_{0}\right)=\operatorname{seq}[n:=0]\left(\mathcal{S}\left(v_{1}\right)\right) & \mathcal{S}\left(v_{2}\right)=\operatorname{seq}[n:=n+1]\left(\mathcal{S}\left(v_{3}\right)\right) & \mathcal{S}\left(v_{4}\right)=1 \\
\mathcal{S}\left(v_{1}\right)=\operatorname{prob}[0.9]\left(\mathcal{S}\left(v_{2}\right), \mathcal{S}\left(v_{4}\right)\right) & \mathcal{S}\left(v_{3}\right)=\operatorname{cond}[n \geq 10]\left(\mathcal{S}\left(v_{4}\right), \mathcal{S}\left(v_{1}\right)\right) &
\end{array}
$$

Use the algebra to reinterpret the equation system

$$
\begin{array}{lll}
\mathcal{S}\left(v_{0}\right)=\llbracket n:=0 \rrbracket \otimes \mathcal{S}\left(v_{1}\right) & \mathcal{S}\left(v_{2}\right)=\llbracket n:=n+1 \rrbracket \otimes \mathcal{S}\left(v_{3}\right) & \mathcal{S}\left(v_{4}\right)=1 \\
\mathcal{S}\left(v_{1}\right)=\mathcal{S}\left(v_{2}\right)_{\operatorname{prob}(0.9)} \diamond \mathcal{S}\left(v_{4}\right) & \mathcal{S}\left(v_{3}\right)=\mathcal{S}\left(v_{4}\right)_{n \geq 10} \diamond \mathcal{S}\left(v_{1}\right) &
\end{array}
$$

where $\llbracket \rrbracket$ maps actions into state transformers in \mathcal{M}.

A Denotational Semantics without Nondeterminism

- $X \stackrel{\text { def }}{=} \operatorname{Var} \rightharpoonup_{\text {fin }} \mathbb{Q}$ and $M \stackrel{\text { def }}{=} X \rightarrow \underline{\mathcal{D}}(X)$.
- $\underline{\mathcal{D}}(X)$ stands for sub-probability distributions on X, i.e., $\Delta \in \underline{\mathcal{O}}(X)$ iff $\Delta: X \rightarrow[0,1]$ and $\sum_{x \in X} \Delta(x) \leq 1$.
- For actions act, we have $[$ act $\rrbracket \in M$.
- For conditions φ, we have $\llbracket \varphi \rrbracket: X \rightarrow[0,1]$, e.g., $\llbracket \operatorname{prob}(p) \rrbracket \stackrel{\text { def }}{=} \lambda_{-} . p$.
- $f \sqsubseteq g \stackrel{\text { def }}{=} \forall x \in X: \forall x^{\prime} \in X: f(x)\left(x^{\prime}\right) \leq g(x)\left(x^{\prime}\right)$

- $1 \stackrel{\text { def }}{=} \lambda x . \delta(x)$ where the point distribution $\delta(x) \stackrel{\text { def }}{=} \lambda x^{\prime} .\left[x=x^{\prime}\right]$.

A Denotational Semantics without Nondeterminism

- $X \stackrel{\text { def }}{=} \operatorname{Var} \rightharpoonup_{\text {fin }} \mathbb{Q}$ and $M \stackrel{\text { def }}{=} X \rightarrow \underline{D}(X)$.
- $\mathcal{D}(X)$ stands for sub-mrohability dictributions on X, i.e., $\Delta \in \mathcal{D}(X)$ iff $\Delta: X \rightarrow[0,1]$ and $\sum_{x \in X} \Delta(x) \leq 1$.
- For actions act, we have \llbracket act $\rrbracket \in \mathcal{M}$.
- For conditions φ, we have $\llbracket \varphi \rrbracket: X \rightarrow[0,1]$, e.g., $\llbracket \operatorname{prob}(p) \rrbracket \stackrel{\text { def }}{=} \lambda_{-} . p$.
- $f \sqsubseteq g \stackrel{\text { def }}{=} \forall x \in X: \forall x^{\prime} \in X: f(x)\left(x^{\prime}\right) \leq g(x)\left(x^{\prime}\right)$.

- $1 \stackrel{\text { def }}{=} \lambda x \cdot \delta(x)$ where the point distribution $\delta(x) \stackrel{\text { def }}{=} \lambda x^{\prime} .\left[x=x^{\prime}\right]$.

A Denotational Semantics without Nondeterminism

- $X \stackrel{\text { def }}{=} \operatorname{Var} \rightharpoonup_{\text {fin }} \mathbb{Q}$ and $M \stackrel{\text { def }}{=} X \rightarrow \underline{D}(X)$.
- $\mathcal{O}(X)$ stands for sub-nrolbahility dictributions on X, i.e., $\Delta \in \mathcal{D}(X)$ iff $\Delta: X \rightarrow[0,1]$ and $\sum_{x \in X} \Delta(x) \leq 1$.
- For actions act, we have \llbracket act $\rrbracket \in M$.
- For conditions φ, we have $\llbracket \varphi \pi: X \rightarrow[0,1]$, e.g., $\llbracket p r o b(p) \rrbracket \stackrel{\text { det }}{=} \lambda_{\text {_ }} \cdot p$.
- $f \sqsubseteq g \stackrel{\text { def }}{=} \forall x \in X: \forall x^{\prime} \in X: f(x)\left(x^{\prime}\right) \leq g(x)\left(x^{\prime}\right)$.

A Denotational Semantics without Nondeterminism

- $X \stackrel{\text { def }}{=} \operatorname{Var} \rightharpoonup_{\text {fin }} \mathbb{Q}$ and $M \stackrel{\text { def }}{=} X \rightarrow \underline{D}(X)$.
- $\mathcal{D}(X)$ stands for sulb-mrohahility dictributions on X, i.e., $\Delta \in \mathcal{D}(X)$ iff $\Delta: X \rightarrow[0,1]$ and $\sum_{x \in X} \Delta(x) \leq 1$.
- For actions act, we have \llbracket act $\rrbracket \in M$.
- For conditions φ, we have $\llbracket \varphi \pi: X \rightarrow[0,1]$, e.g., $\llbracket p r o b(p) \rrbracket \stackrel{\text { def }}{=} \lambda_{\text {_ }} \cdot p$.
- $f \sqsubseteq g^{\text {def }}=\forall x \in X: \forall x^{\prime} \in X: f(x)\left(x^{\prime}\right) \leq g(x)\left(x^{\prime}\right)$.
- $f \otimes g \stackrel{\text { def }}{=} \lambda x \cdot \lambda x^{\prime \prime} . \sum_{x^{\prime} \in X} f\left(x, x^{\prime}\right) \cdot g\left(x^{\prime}, x^{\prime \prime}\right)$.
- $f_{\varphi} \diamond g^{\prime} \stackrel{\text { def }}{=} \lambda x \cdot \lambda x^{\prime} \cdot \llbracket \varphi \rrbracket(x) \cdot f(x)\left(x^{\prime}\right)+(1-\llbracket \varphi \rrbracket(x)) \cdot g(x)\left(x^{\prime}\right)$.
- $\perp \stackrel{\text { def }}{=} \lambda_{-} . \lambda_{-} .0$.
- $1 \stackrel{\text { def }}{=} \lambda \times \cdot \delta(x)$ where the point distribution $\delta(x) \stackrel{\text { def }}{=} \lambda x^{\prime} \cdot\left[x=x^{\prime}\right]$.

A Denotational Semantics without Nondeterminism

- $X \stackrel{\text { def }}{=} \operatorname{Var} \rightharpoonup_{\text {fin }} \mathbb{Q}$ and $M \stackrel{\text { def }}{=} X \rightarrow \underline{\mathcal{D}}(X)$.
- $\mathcal{P}(X)$ stands for sulh-nrolbahility distributions on X, i.e., $\Delta \in \mathcal{D}(X)$ iff $\Delta: X \rightarrow[0,1]$ and $\sum_{x \in X} \Delta(x) \leq 1$.
- For actions act, we have \llbracket act $\rrbracket \in M$.
- For conditions φ, we have $\llbracket \varphi \pi: X \rightarrow[0,1]$, e.g., $\llbracket p r o b(p) \rrbracket \stackrel{\text { def }}{=} \lambda_{\text {_ }} \cdot p$.

- $f \otimes g^{\prime} \stackrel{\text { def }}{=} \lambda x \cdot \lambda x^{\prime \prime} \cdot \sum_{x^{\prime} \in x} f\left(x, x^{\prime}\right) \cdot g^{\prime}\left(x^{\prime}, x^{\prime \prime}\right)$.
- $f_{\varphi} \diamond g \stackrel{\text { def }}{=} \lambda x \cdot \lambda x^{\prime} \cdot \llbracket \varphi \rrbracket(x) \cdot f(x)\left(x^{\prime}\right)+(1-\llbracket \varphi \rrbracket(x)) \cdot g(x)\left(x^{\prime}\right)$.
$\bullet \perp \stackrel{\text { def }}{=} \lambda_{-} . \lambda_{-} .0$.
- $1 \stackrel{\text { def }}{=} \lambda x \cdot \delta(x)$ where the point distribution $\delta(x) \stackrel{\text { def }}{=} \lambda x^{\prime} \cdot\left[x=x^{\prime}\right]$.

A Denotational Semantics without Nondeterminism

- $X \stackrel{\text { def }}{=} \operatorname{Var} \rightharpoonup_{\text {fin }} \mathbb{Q}$ and $M \stackrel{\text { def }}{=} X \rightarrow \underline{D}(X)$.
- $\mathcal{D}(X)$ stands for sulb-mrobahility dictributions on X, i.e., $\Delta \in \mathcal{D}(X)$ iff $\Delta: X \rightarrow[0,1]$ and $\sum_{x \in X} \Delta(x) \leq 1$.
- For actions act, we have \llbracket act $\rrbracket \in M$.
- For conditions φ, we have $\llbracket \varphi \pi: X \rightarrow\{0,1]$, e.g., $\llbracket p r o b(p) \rrbracket \stackrel{\text { def }}{=} \lambda_{\text {_ }} \cdot p$.
- $f \sqsubseteq g \stackrel{\text { def }}{=} \forall x \in X: \forall x^{\prime} \in X: f(x)\left(x^{\prime}\right) \leq g(x)\left(x^{\prime}\right)$.
- $f \otimes g^{\prime} \stackrel{\text { def }}{=} \lambda x \cdot \lambda x^{\prime \prime} \cdot \sum_{x^{\prime} \in x} f\left(x, x^{\prime}\right) \cdot g^{\prime}\left(x^{\prime}, x^{\prime \prime}\right)$.
- $f_{\varphi} \diamond g^{\prime} \stackrel{\text { def }}{=} \lambda x \cdot \lambda x^{\prime} \cdot \llbracket \varphi \rrbracket(x) \cdot f(x)\left(x^{\prime}\right)+(1-\llbracket \varphi \rrbracket(x)) \cdot g(x)\left(x^{\prime}\right)$.
- $\perp \stackrel{\text { def }}{=} \lambda_{-} \cdot \lambda_{-} .0$.
- $1 \stackrel{\text { def }}{=} \lambda x . \delta(x)$ where the point distribution $\delta(x) \stackrel{\text { def }}{=} \lambda x^{\prime} .\left[x=x^{\prime}\right]$.

A Denotational Semantics without Nondeterminism

```
\(n:=0\);
while \(\operatorname{prob}(0.9)\) do
    \(n:=n+1\);
    if \(n \geq 10\) then break
    else continue
od
```


Because $\operatorname{Var}=\{n\}$ is a singleton, we present the semantics as if $X \stackrel{\text { def }}{=} \mathbb{Z}$.

$\delta\left(n_{0}\right)$ represents a point distribution at n_{0}.

A Denotational Semantics without Nondeterminism

```
n := 0;
while prob(0.9) do
    n := n+1;
    if }n\geq10\mathrm{ then break
    else continue
od
```


Because Var $=\{n\}$ is a singleton, we present the semantics as if $X \stackrel{\text { def }}{=} \mathbb{Z}$.

$\delta\left(n_{0}\right)$ represents a point distribution at n_{0}.

A Denotational Semantics without Nondeterminism

```
n := 0;
while prob(0.9) do
    n:= n+1;
    if }n\geq10\mathrm{ then break
    else continue
od
```


Because Var $=\{n\}$ is a singleton, we present the semantics as if $X \stackrel{\text { def }}{=} \mathbb{Z}$.

$$
\mathcal{S}\left(v_{0}\right)=\lambda_{-} \cdot \sum_{k=0}^{9}\left(0.1 \times 0.9^{k}\right) \cdot \delta(k)+0.3486784401 \cdot \delta(10)
$$

$\delta\left(n_{0}\right)$ represents a point distribution at n_{0}.

A Denotational Semantics without Nondeterminism

```
n := 0;
while prob(0.9) do
    n:= n+1;
    if }n\geq10\mathrm{ then break
    else continue
od
```


Recall the equation

$$
\mathcal{S}\left(v_{0}\right)=\llbracket n:=0 \rrbracket \otimes \mathcal{S}\left(v_{1}\right)
$$

Obtain $\mathcal{S}\left(v_{0}\right)$ from $\mathcal{S}\left(v_{1}\right)$

$$
\begin{aligned}
S\left(v_{0}\right)= & \lambda_{-} \cdot \sum_{k=0}^{0}\left(0.1 \times 0.9^{k}\right) \cdot \delta(k)+0.3486784401 \cdot \delta(10) \\
{[n:=0]=} & \lambda_{-} \cdot \delta(0) \\
S\left(v_{1}\right)= & \lambda_{n}[n \geq 9] \cdot(0.1 \cdot \delta(n)+0.9 \cdot \delta(n+1))+ \\
& {[n<9] \cdot\left(\sum_{k=n}^{\infty}\left(0.1 \times 0.9^{k-n}\right) \cdot \delta(\min \{k, 10\})\right) }
\end{aligned}
$$

A Denotational Semantics without Nondeterminism

```
n := 0;
while prob(0.9) do
    n:= n+1;
    if }n\geq10\mathrm{ then break
    else continue
od
```


Recall the equation

$$
\mathcal{S}\left(v_{0}\right)=\llbracket n:=0 \rrbracket \otimes \mathcal{S}\left(v_{1}\right)
$$

Obtain $\mathcal{S}\left(v_{0}\right)$ from $\mathcal{S}\left(v_{1}\right)$

A Denotational Semantics without Nondeterminism

```
n := 0;
while prob(0.9) do
    n:= n+1;
    if n\geq10 then break
    else continue
od
```


Recall the equation

$$
\mathcal{S}\left(v_{0}\right)=\llbracket n:=0 \rrbracket \otimes \mathcal{S}\left(v_{1}\right)
$$

Obtain $\mathcal{S}\left(v_{0}\right)$ from $\mathcal{S}\left(v_{1}\right)$

$$
\begin{aligned}
\mathcal{S}\left(v_{0}\right)= & \lambda_{-} \cdot \sum_{k=0}^{9}\left(0.1 \times 0.9^{k}\right) \cdot \delta(k)+0.3486784401 \cdot \delta(10) \\
\llbracket n:=0 \rrbracket= & \lambda_{-} . \delta(0) \\
\mathcal{S}\left(v_{1}\right)= & \lambda_{n} \cdot[n \geq 9] \cdot(0.1 \cdot \delta(n)+0.9 \cdot \delta(n+1))+ \\
& \quad[n<9] \cdot\left(\sum_{k=n}^{\infty}\left(0.1 \times 0.9^{k-n}\right) \cdot \delta(\min \{k, 10\})\right)
\end{aligned}
$$

Outline

Motivation

Control-Flow Hyper-Graphs

Algebraic Denotational Semantics

Nondeterminism-First

Sub-Probability Kernels

Definition

A function $\kappa: X \rightarrow \underline{\mathcal{D}}(X)$ is called a sub-probability kernel. The set of kernels is denoted by $\underline{\mathcal{K}}(X)$.

Goal
The common resolution for nondeterminism admits the following signature

$$
X \rightarrow \wp(\underline{\mathcal{D}}(X)),
$$

while our nondeterminism-first model should have the following signature

$$
\oint(X \rightarrow \underline{n}(X))=\rho(\underline{\mathcal{K}}(X)) .
$$

Sub-Probability Kernels

Definition

A function $\kappa: X \rightarrow \underline{\mathcal{D}}(X)$ is called a sub-probability kernel. The set of kernels is denoted by $\underline{\mathcal{K}}(X)$.

Goal

The common resolution for nondeterminism admits the following signature

$$
X \rightarrow \wp(\underline{\mathcal{D}}(X)),
$$

while our nondeterminism-first model should have the following signature

$$
\wp(X \rightarrow \underline{\mathcal{D}}(X)) \equiv \wp(\underline{\mathcal{K}}(X)) .
$$

Reasoning with Nondeterminism-First

Example

Recall the following nondeterministic program P

$$
\text { if } \operatorname{prob}(\star) \text { then } t:=t+1 \text { else } t:=t-1 \mathbf{f i}
$$

Then the common resolution for nondeterminism derives

$$
\lambda t .\{r \cdot \delta(t+1)+(1-r) \cdot \delta(t-1) \mid r \in[0,1]\},
$$

but the nondeterminism-first model leads to

$$
\{\lambda t \cdot r \cdot \delta(t+1)+(1-r) \cdot \delta(t-1) \mid r \in[0,1]\} .
$$

With the new model, we can prove that for every refinement P^{\prime} with \star resolved as $r \in[0,1]$, for all t_{1}, t_{2}, we have
$\nabla_{t_{1}-P^{\prime}\left(t_{1}\right), t_{2}-P^{\prime}\left(t_{2}\right)\left[t_{1}^{\prime}-t_{2}^{\prime \prime}=\Xi_{t_{1}-P^{\prime}\left(t_{1}\right)}\left[t_{1}^{\prime \prime}-\Xi_{t_{2}-P^{\prime}\left(t_{2}\right)}\left[t_{2}^{\prime}\right]\right.\right.}$

Reasoning with Nondeterminism-First

Example

Recall the following nondeterministic program P

$$
\text { if } \operatorname{prob}(\star) \text { then } t:=t+1 \text { else } t:=t-1 \mathrm{fi}
$$

Then the common resolution for nondeterminism derives

$$
\lambda t .\{r \cdot \delta(t+1)+(1-r) \cdot \delta(t-1) \mid r \in[0,1]\},
$$

but the nondeterminism-first model leads to

$$
\{\lambda t \cdot r \cdot \delta(t+1)+(1-r) \cdot \delta(t-1) \mid r \in[0,1]\}
$$

With the new model, we can prove that for every refinement P^{\prime} with \star resolved as $r \in[0,1]$, for all t_{1}, t_{2}, we have

$$
\begin{aligned}
\mathbb{E}_{t_{1}^{\prime} \sim P^{\prime}\left(t_{1}\right), t_{2}^{\prime} \sim P^{\prime}\left(t_{2}\right)}\left[t_{1}^{\prime}-t_{2}^{\prime}\right] & =\mathbb{E}_{t_{1}^{\prime} \sim P^{\prime}\left(t_{1}\right)}\left[t_{1}^{\prime}\right]-\mathbb{E}_{t_{2}^{\prime} \sim P^{\prime}\left(t_{2}\right)}\left[t_{2}^{\prime}\right] \\
& =\left(r\left(t_{1}+1\right)+(1-r)\left(t_{1}-1\right)\right)-\left(r\left(t_{2}+1\right)+(1-r)\left(t_{2}-1\right)\right) \\
& =t_{1}-t_{2}
\end{aligned}
$$

A Powerdomain for Nondeterminism-First

Necessary Conditions

We need to identify a subset \mathcal{A} of $\wp(\underline{\mathcal{K}}(X))$ as the collection of admissible semantic objects.

- \mathcal{A} admits a semilattice operation \forall (used as
\square
- \mathcal{A} is eauinned with a conditional-choice oneration \diamond where $\phi: X \rightarrow[0,1]$ represents a Boolean-valued random variable.
 $\kappa_{1} \diamond \kappa_{2}$ should be in $A_{1} \forall A_{2}$.

A Convexity-Like Condition
For all $A \in \mathcal{A}$ we have $A \sqcup A=A$, therefore we should also have $\forall \phi \in X \rightarrow[0,1]: \forall \kappa_{1}, \kappa_{2} \in A: \kappa_{1} \diamond \kappa_{2} \in A$.

A Powerdomain for Nondeterminism-First

Necessary Conditions

We need to identify a subset \mathcal{A} of $\wp(\underline{\mathcal{K}}(X))$ as the collection of admissible semantic objects.

- \mathcal{A} admits a semilattice operation \forall (used as nondeterministic-choice), s.t. for all $A \in \mathcal{A}, A \uplus A=A$.
- \mathcal{F} is equipped with a conditional-choice operation ${ }_{\phi} \diamond$ where $\phi: X \rightarrow[0,1]$ represents a Boolean-valued random variable. $K_{1}{ }_{\phi} \diamond K_{2}$ should be in $A_{1} \uplus A_{2}$.

A Convexity-Like Condition
For all $A \in \mathcal{A}$, we have $A \cup A=A$, therefore we should also have $\forall \phi \in X \rightarrow[0,1]: \forall \kappa_{1}, \kappa_{2} \in A: \kappa_{1}{ }_{\phi} \diamond \kappa_{2} \in A$.

A Powerdomain for Nondeterminism-First

Necessary Conditions

We need to identify a subset \mathcal{A} of $\wp(\underline{\mathcal{K}}(X))$ as the collection of admissible semantic objects.

- \mathcal{A} admits a semilattice operation \forall (used as nondeterministic-choice), s.t. for all $A \in \mathcal{A}, A \cup A=A$.
- \mathcal{A} is equipped with a conditional-choice operation ${ }_{\phi} \diamond$ where $\phi: X \rightarrow[0,1]$ represents a Boolean-valued random variable.

A Convexity-Like Condition
For all $A \in \mathcal{A}$, we have $A \sqcup A=A$, therefore we should also have $\forall \phi \in X \rightarrow[0,1]: \forall \kappa_{1}, \kappa_{2} \in A: \kappa_{1}{ }_{\phi} \diamond \kappa_{2} \in A$.

A Powerdomain for Nondeterminism-First

Necessary Conditions

We need to identify a subset \mathcal{A} of $\wp(\underline{\mathcal{K}}(X))$ as the collection of admissible semantic objects.

- \mathcal{A} admits a semilattice operation \forall (used as nondeterministic-choice), s.t. for all $A \in \mathcal{A}, A \forall A=A$.
- \mathcal{A} is equipped with a conditional-choice operation ${ }_{\phi} \diamond$ where $\phi: X \rightarrow[0,1]$ represents a Boolean-valued random variable.
- For all $A_{1}, A_{2} \in \mathcal{A}$ and $\phi: X \rightarrow[0,1]$, if $\kappa_{1} \in A_{1}$ and $\kappa_{2} \in A_{2}$, then $\kappa_{1}{ }_{\phi} \diamond \kappa_{2}$ should be in $A_{1} \forall A_{2}$.

A Convexity-Like Condition
For all $A \in \mathcal{A}$ we have $A \forall A=A$, therefore we should also have

A Powerdomain for Nondeterminism-First

Necessary Conditions

We need to identify a subset \mathcal{A} of $\wp(\underline{\mathcal{K}}(X))$ as the collection of admissible semantic objects.

- \mathcal{A} admits a semilattice operation \forall (used as nondeterministic-choice), s.t. for all $A \in \mathcal{A}, A \forall A=A$.
- \mathcal{A} is equipped with a conditional-choice operation ${ }_{\phi} \diamond$ where $\phi: X \rightarrow[0,1]$ represents a Boolean-valued random variable.
- For all $A_{1}, A_{2} \in \mathcal{A}$ and $\phi: X \rightarrow[0,1]$, if $\kappa_{1} \in A_{1}$ and $\kappa_{2} \in A_{2}$, then $\kappa_{1}{ }_{\phi} \diamond \kappa_{2}$ should be in $A_{1} \forall A_{2}$.

A Convexity-Like Condition

For all $A \in \mathcal{A}$, we have $A \forall A=A$, therefore we should also have $\forall \phi \in X \rightarrow[0,1]: \forall \kappa_{1}, \kappa_{2} \in A: \kappa_{1}{ }_{\phi} \diamond \kappa_{2} \in A$.

Generalized Convexity

Let $\phi \cdot \kappa \stackrel{\text { def }}{=} \lambda x \cdot \lambda x^{\prime} \cdot \phi(x) \cdot \kappa(x)\left(x^{\prime}\right)$ and $\kappa_{1}+\kappa_{2} \stackrel{\text { def }}{=} \lambda x \cdot \lambda x \cdot \kappa_{1}(x)\left(x^{\prime}\right)+\kappa_{2}(x)\left(x^{\prime}\right)$. Then $\kappa_{1}{ }_{\phi} \diamond \kappa_{2}$ can be represented as $\phi \cdot \kappa_{1}+(\dot{1}-\phi) \cdot \kappa_{2}$.

Definition

A subset A of $\mathcal{K}(X)$ is said to be g-convex, if for all sequences $\left\{k_{i}\right\}_{i \in i v} \subseteq A$ and $\left\{\phi_{i}\right\}_{i \in \mathbb{N}} \subseteq X \rightarrow[0,1]$ such that $\sum_{i=1}^{\infty} \phi_{i}=1$, then $\sum_{i=1}^{\infty} \phi_{i} \cdot \kappa_{i} \in A$.

Clearly g-convexity of a set A implies that for all $\phi: X \rightarrow[0,1]$ and $\kappa_{1}, \kappa_{2} \in A$, we have $\kappa_{1}{ }_{\phi} \diamond \kappa_{2} \in A$.

Generalized Convexity

Let $\phi \cdot \kappa \stackrel{\text { def }}{=} \lambda x \cdot \lambda x^{\prime} \cdot \phi(x) \cdot \kappa(x)\left(x^{\prime}\right)$ and $\kappa_{1}+\kappa_{2} \stackrel{\text { def }}{=} \lambda x . \lambda x \cdot \kappa_{1}(x)\left(x^{\prime}\right)+\kappa_{2}(x)\left(x^{\prime}\right)$. Then $\kappa_{1}{ }_{\phi} \diamond \kappa_{2}$ can be represented as $\phi \cdot \kappa_{1}+(\mathfrak{1}-\phi) \cdot \kappa_{2}$.

Definition

A subset A of $\underline{\mathcal{K}}(X)$ is said to be g-convex, if for all sequences $\left\{\kappa_{i}\right\}_{i \in \mathbb{N}} \subseteq A$ and $\left\{\phi_{i}\right\}_{i \in \mathbb{N}} \subseteq X \rightarrow[0,1]$ such that $\sum_{i=1}^{\infty} \phi_{i}=\dot{1}$, then $\sum_{i=1}^{\infty} \phi_{i} \cdot \kappa_{i} \in A$.

Generalized Convexity

Let $\phi \cdot \kappa \stackrel{\text { def }}{=} \lambda x \cdot \lambda x^{\prime} \cdot \phi(x) \cdot \kappa(x)\left(x^{\prime}\right)$ and $\kappa_{1}+\kappa_{2} \stackrel{\text { def }}{=} \lambda x \cdot \lambda x \cdot \kappa_{1}(x)\left(x^{\prime}\right)+\kappa_{2}(x)\left(x^{\prime}\right)$. Then $\kappa_{1}{ }_{\phi} \diamond \kappa_{2}$ can be represented as $\phi \cdot \kappa_{1}+(\dot{1}-\phi) \cdot \kappa_{2}$.

Definition

A subset A of $\underline{\mathcal{K}}(X)$ is said to be g-convex, if for all sequences $\left\{\kappa_{i}\right\}_{i \in \mathbb{N}} \subseteq A$ and $\left\{\phi_{i}\right\}_{i \in \mathbb{N}} \subseteq X \rightarrow[0,1]$ such that $\sum_{i=1}^{\infty} \phi_{i}=\dot{1}$, then $\sum_{i=1}^{\infty} \phi_{i} \cdot \kappa_{i} \in A$.

Clearly g-convexity of a set A implies that for all $\phi: X \rightarrow[0,1]$ and $\kappa_{1}, \kappa_{2} \in A$, we have $\kappa_{1}{ }_{\phi} \diamond \kappa_{2} \in A$.

A G-Convex Powerdomain for Nondeterminism-First

Idea
Construct a Plotkin-style powerdomain on $\underline{\mathcal{K}}(X)$, except that g-convexity replaces standard convexity in the development.

Example
Consider the following nondeterministic program P

$$
\text { if } \star \text { then } t:=t+1 \text { else } t:=t-1 \mathrm{fi}
$$

Let the state space $X \stackrel{\text { def }}{=} \mathbb{Z}$ represent the value of t. The common resolution for nondeterminism gives the following semantics

$$
\lambda t .\{r \cdot \delta(t+1)+(1-r) \cdot \delta(t-1) \mid r \in[0,1]\},
$$

while the nondeterminism-first resolution derives
\square

A G-Convex Powerdomain for Nondeterminism-First

Idea

Construct a Plotkin-style powerdomain on $\underline{\mathcal{K}}(X)$, except that g-convexity replaces standard convexity in the development.

Example

Consider the following nondeterministic program P

$$
\text { if } \star \text { then } t:=t+1 \text { else } t:=t-1 \text { fi }
$$

Let the state space $X \stackrel{\text { def }}{=} \mathbb{Z}$ represent the value of t. The common resolution for nondeterminism gives the following semantics

$$
\lambda t .\{r \cdot \delta(t+1)+(1-r) \cdot \delta(t-1) \mid r \in[0,1]\},
$$

while the nondeterminism-first resolution derives

$$
\{\lambda t . \phi(t) \cdot \delta(t+1)+(1-\phi(t)) \cdot \delta(t-1) \mid \phi \in \mathbb{Z} \rightarrow[0,1]\}
$$

Summary

This Work
We have developed an algebraic framework for denotational semantics of low-level probabilistic programs, which can be instantiated with different models of nondeterminism, including the common resolution for nondeterminism and the new nondeterminism-first.

Limitations and Future Work

- The framework does not support for continuous distributions yet.
- We are looking for interesting applications of nondeterminism-first, especially for relational reasoning.

Summary

This Work

We have developed an algebraic framework for denotational semantics of low-level probabilistic programs, which can be instantiated with different models of nondeterminism, including the common resolution for nondeterminism and the new nondeterminism-first.

Limitations and Future Work

- The framework does not support for continuous distributions yet.
- We are looking for interesting applications of nondeterminism-first, especially for relational reasoning.

