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Probabilistic Programs

Draw random data from distributions Condition control-flow at random



Low-Level Probabilistic Programs

High-Level Features:
• Functional (Borgström

et al. 2016)

• Higher-order (Ehrhard,

Pagani, and Tasson 2018)

• Recursive types (Vákár,

Kammar, and Staton

2019)

Formal semantics has been
well studied.

Compiler

======⇒

Low-Level Features:
• Imperative

• Unstructured

control-flow

Operational semantics:
(Ferrer Fioriti and Hermanns

2015)

Denotational semantics:
This work

Benefits of A Denotational Semantics

• Abstraction from details about program executions

• Compositionality
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Low-Level Probabilistic Programs

Example

The following code implements a variant of geometric distributions.

n B 0;
while prob(0.9) do

n B n + 1;
if n ≥ 10 then break
else continue

od

There are multiple possible executions of the program, e.g., n could end up

with 0, 3, or 10.

Principle

Probabilistic programs establish input/output-distribution relations. A

probabilistic program can be modeled as a function in X → D(X ), where X is

a program state space and D(X ) consists of probability distributions over X .
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Nondeterminism

Sources

• Agents for Markov decisions processes (MDPs)

• Abstraction and refinement on programs

A Common Resolution

A nondeterministic function f from X to Y is a set-valued function that maps

an input to a collection of outputs, i.e.,

f ∈ X → ℘(Y ).

Nondeterminism in Probabilistic Programming

A nondeterministic function f from X to D(X ) should have the signature

f ∈ X → ℘(D(X )),

where D(X ) consists of probability distributions over X .
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When to Resolve Nondeterminism?

X is a program state space. D(X ) consists of probability distributions over X .

The Common Resolution: Input Prior to Nondeterminism

f ∈ X → ℘(D(X ))

What about: Nondeterminism Prior to Input?

f ∈ ℘(X → D(X ))

Intuition: A nondeterministic program is a specification that models a

collection of deterministic refinements.
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Nondeterminism-First: Nondeterminism Prior to Input

Example

Consider the following program P where ? represents nondeterminism.

if prob(?) then t B t + 1 else t B t − 1 fi

The Common Resolution

t = 1

t ′ = 2 w.p. 0.5

t ′ = 0 w.p. 0.5

t ′ = 2 w.p. 0.8

t ′ = 0 w.p. 0.2

? resolved a�er t is given

Nondeterminism-First

t = 1

t ′ = 2 w.p. 0.5

t ′ = 0 w.p. 0.5

? resolved as 0.5

t = 1

t ′ = 2 w.p. 0.8

t ′ = 0 w.p. 0.2

? resolved as 0.8

? resolved before t is given
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Nondeterminism-First: What’s the Benefit?

Example

Consider the following program P where ? represents nondeterminism.

if prob(?) then t B t + 1 else t B t − 1 fi

Relational Reasoning about Refinements of a Program

• For all refinements P ′ of P , for all t1, t2, can we prove that

Et′
1
∼P′(t1),t′

2
∼P′(t2)[t

′
1
− t ′

2
] = t1 − t2?

• For all refinements P ′ of P , for all t1, t2, does P ′ exhibit similar execution

time on t1 and t2?
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Contributions

• We develop a denotational semantics for low-level probabilistic

programs with unstructured control-flow, general recursion, and

nondeterminism.

• We study di�erent resolutions for nondeterminism and propose a new

model that involves nondeterminacy among state transformers.

• We devise an algebraic framework for denotational semantics, which

can be instantiated with di�erent resolutions for nondeterminism.



Outline

Motivation

Control-Flow Hyper-Graphs

Algebraic Denotational Semantics

Nondeterminism-First



Representation of Low-Level Probabilistic Programs

v0 v5 v0

v1 v4 v1
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v3 v3
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[n mod 2=0]

[n mod 2,0]

nB3×n+1

[n mod 2=0]

nBn/2 nBn/2

iBi+1

A standard CFG and an execution path
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A tree-like hyper-path

Principle

For probabilistic programs, execution paths are not independent. A formal

semantics should reason about distributions over paths.
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Paths vs. Hyper-Paths

Example

if ? then if prob(0.5) then t B 0 else t B 1 fi
else if prob(0.8) then t B 0 else t B 1 fi fi

Paths Annotated with Probabilities

• • • •

t ′ = 0 t ′ = 1 t ′ = 0 t ′ = 1

0.5 0.5 0.8 0.2

Hyper-Paths, each of which stands for a distribution
• •

t ′ = 0 t ′ = 1 t ′ = 0 t ′ = 1

0.5
0.5

0.8
0.2
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Control-Flow Hyper-Graphs

• Hyper-graphs are directed graphs with hyper-edges that could have

multiple destinations. Hyper-paths are made up of hyper-egdes.

• The following hyper-graph
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n ≥ 10true

represents the control-flow of the example program
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An Algebraic Denotational Semantics

Goal

Develop a denotational semantics that can be instantiated with di�erent

resolutions of nondeterminism.

An Algebraic Approach

• Perform reasoning in some abstract space of program states and state

transformers.

• The state transformers should obey some algebraic laws.

• For example, the command skip should be interpreted as an identity
element for sequencing in the algebra of transformers.

Outcome

The semantics is a good fit for developing static analyses (Wang, Ho�mann,

and Reps 2018).



An Algebraic Denotational Semantics

Goal

Develop a denotational semantics that can be instantiated with di�erent

resolutions of nondeterminism.

An Algebraic Approach

• Perform reasoning in some abstract space of program states and state

transformers.

• The state transformers should obey some algebraic laws.

• For example, the command skip should be interpreted as an identity
element for sequencing in the algebra of transformers.

Outcome

The semantics is a good fit for developing static analyses (Wang, Ho�mann,

and Reps 2018).



An Algebraic Denotational Semantics

Goal

Develop a denotational semantics that can be instantiated with di�erent

resolutions of nondeterminism.

An Algebraic Approach

• Perform reasoning in some abstract space of program states and state

transformers.

• The state transformers should obey some algebraic laws.

• For example, the command skip should be interpreted as an identity
element for sequencing in the algebra of transformers.

Outcome

The semantics is a good fit for developing static analyses (Wang, Ho�mann,

and Reps 2018).



The Algebra

Actions
skip

x B x + 5

k ∼ Binomial(10, 0.5)

· · ·

Semantic Function

7−−−−−−−−−−−−−−→

State Transformers M
equipped with

sequencing ⊗
conditional-choice φ^

nondeterministic-choice −∪

〈
M, v, ⊗, φ^,−∪,⊥, 1

〉
• 〈M, v〉 forms a directed complete partial order (dcpo) with ⊥ as its least

element.

• 〈M, ⊗, 1〉 forms a monoid.

• Nondeterministic-choice −∪ is a semila�ice operation.
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Fixpoint Semantics for Hyper-Graphs

Principle

The semantics of a node in the control-flow hyper-graph is a summary of

computation that continues from that node.

Recall the control-flow hyper-graph below.

n B 0;
while prob(0.9) do

n B n + 1;
if n ≥ 10 then break
else continue

od

v4

v0 v1

v2 v3

n B n + 1

n B 0

prob(0.9)

false

false

true
n ≥ 10true

Semantics is defined as the least solution to the following equation system

S(v0) = seq[n B 0](S(v1)) S(v2) = seq[n B n + 1](S(v3)) S(v4) = 1

S(v1) = prob[0.9](S(v2),S(v4)) S(v3) = cond[n ≥ 10](S(v4),S(v1))
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where J·K maps actions into state transformers in M.
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A Denotational Semantics without Nondeterminism

• X
def

= Var⇀fin Q and M
def

= X → D(X ).
• D(X ) stands for sub-probability distributions on X , i.e., ∆ ∈ D(X ) i�

∆ : X → [0, 1] and

∑
x∈X ∆(x) ≤ 1.

• For actions act, we have JactK ∈ M.

• For conditions φ, we have JφK : X → [0, 1], e.g., Jprob(p)K def

= λ_.p.

• f v g
def

= ∀x ∈ X : ∀x ′ ∈ X : f (x)(x ′) ≤ g(x)(x ′).

• f ⊗ g
def

= λx .λx ′′.
∑

x′∈X f (x, x
′) · g(x ′, x ′′).

• f φ^ g
def

= λx .λx ′. JφK (x) · f (x)(x ′) + (1 − JφK (x)) · g(x)(x ′).

• ⊥
def

= λ_.λ_.0.

• 1

def

= λx .δ (x) where the point distribution δ (x)
def

= λx ′.[x = x ′].
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A Denotational Semantics without Nondeterminism

n B 0;
while prob(0.9) do

n B n + 1;
if n ≥ 10 then break
else continue

od

v4

v0 v1

v2 v3

n B n + 1

n B 0

prob(0.9)

false

false

true
n ≥ 10true

Because Var = {n} is a singleton, we present the semantics as if X
def

= Z.

S(v0) = λ_.

9∑
k=0

(0.1 × 0.9k) · δ (k) + 0.3486784401 · δ (10)

δ (n0) represents a point distribution at n0.
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Sub-Probability Kernels

Definition

A function κ : X → D(X ) is called a sub-probability kernel. The set of

kernels is denoted by K(X ).

Goal

The common resolution for nondeterminism admits the following signature

X → ℘(D(X )),

while our nondeterminism-first model should have the following signature

℘(X → D(X )) ≡ ℘(K(X )).



Sub-Probability Kernels

Definition

A function κ : X → D(X ) is called a sub-probability kernel. The set of

kernels is denoted by K(X ).

Goal

The common resolution for nondeterminism admits the following signature

X → ℘(D(X )),

while our nondeterminism-first model should have the following signature

℘(X → D(X )) ≡ ℘(K(X )).



Reasoning with Nondeterminism-First

Example

Recall the following nondeterministic program P

if prob(?) then t B t + 1 else t B t − 1 fi

Then the common resolution for nondeterminism derives

λt .{r · δ (t + 1) + (1 − r) · δ (t − 1) | r ∈ [0, 1]},

but the nondeterminism-first model leads to

{λt .r · δ (t + 1) + (1 − r) · δ (t − 1) | r ∈ [0, 1]}.

With the new model, we can prove that for every refinement P ′ with ?
resolved as r ∈ [0, 1], for all t1, t2, we have

Et′
1
∼P′(t1),t′

2
∼P′(t2)[t

′
1
− t ′

2
] = Et′

1
∼P′(t1)[t

′
1
] − Et′

2
∼P′(t2)[t

′
2
]

= (r(t1 + 1) + (1 − r)(t1 − 1)) − (r(t2 + 1) + (1 − r)(t2 − 1))

= t1 − t2
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A Powerdomain for Nondeterminism-First

Necessary Conditions

We need to identify a subset A of ℘(K(X )) as the collection of admissible

semantic objects.

• A admits a semila�ice operation −∪ (used as

nondeterministic-choice), s.t. for all A ∈ A, A −∪ A = A.

• A is equipped with a conditional-choice operation ϕ^ where

ϕ : X → [0, 1] represents a Boolean-valued random variable.

• For all A1,A2 ∈ A and ϕ : X → [0, 1], if κ1 ∈ A1 and κ2 ∈ A2, then

κ1 ϕ^ κ2 should be in A1 −∪ A2.

A Convexity-Like Condition

For all A ∈ A, we have A −∪ A = A, therefore we should also have

∀ϕ ∈ X → [0, 1] : ∀κ1,κ2 ∈ A : κ1 ϕ^ κ2 ∈ A.
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Generalized Convexity

Let ϕ · κ
def

= λx .λx ′.ϕ(x) · κ(x)(x ′) and κ1 + κ2

def

= λx .λx .κ1(x)(x ′) + κ2(x)(x ′).
Then κ1 ϕ^ κ2 can be represented as ϕ · κ1 + (Û1 − ϕ) · κ2.

Definition

A subset A of K(X ) is said to be g-convex, if for all sequences {κi}i∈N ⊆ A
and {ϕi}i∈N ⊆ X → [0, 1] such that

∑∞
i=1

ϕi = Û1, then

∑∞
i=1

ϕi · κi ∈ A.

Clearly g-convexity of a set A implies that for all ϕ : X → [0, 1] and

κ1,κ2 ∈ A, we have κ1 ϕ^ κ2 ∈ A.
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A G-Convex Powerdomain for Nondeterminism-First

Idea

Construct a Plotkin-style powerdomain on K(X ), except that g-convexity
replaces standard convexity in the development.

Example

Consider the following nondeterministic program P

if ? then t B t + 1 else t B t − 1 fi

Let the state space X
def

= Z represent the value of t . The common resolution

for nondeterminism gives the following semantics

λt .{r · δ (t + 1) + (1 − r) · δ (t − 1) | r ∈ [0, 1]},

while the nondeterminism-first resolution derives

{λt .ϕ(t) · δ (t + 1) + (1 − ϕ(t)) · δ (t − 1) | ϕ ∈ Z→ [0, 1]}.
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Summary

This Work

We have developed an algebraic framework for denotational semantics of

low-level probabilistic programs, which can be instantiated with di�erent

models of nondeterminism, including the common resolution for

nondeterminism and the new nondeterminism-first.

Limitations and Future Work

• The framework does not support for continuous distributions yet.

• We are looking for interesting applications of nondeterminism-first,

especially for relational reasoning.
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