# A Denotational Semantics for Low-Level Probabilistic Programs with Nondeterminism

**Di Wang**<sup>1</sup> Jan Hoffmann<sup>1</sup> Thomas Reps<sup>2,3</sup>

<sup>1</sup>Carnegie Mellon University

<sup>2</sup>University of Wisconsin

<sup>3</sup>GrammaTech, Inc.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

# Probabilistic Programs



Draw random data from distributions



Condition control-flow at random

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

### **High-Level Features:**

- Functional (Borgström et al. 2016)
- Higher-order (Ehrhard, Pagani, and Tasson 2018)
- Recursive types (Vákár, Kammar, and Staton 2019)

# Formal semantics has been well studied.

### Low-Level Features:

- Imperative
- Unstructured control-flow

# **Operational semantics**:

(Ferrer Fioriti and Hermanns 2015)

#### Denotational semantics: This work

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Benefits of A Denotational Semantics

- Abstraction from details about program executions
- Compositionality

COMPILER

### **High-Level Features:**

- Functional (Borgström et al. 2016)
- Higher-order (Ehrhard, Pagani, and Tasson 2018)
- Recursive types (Vákár, Kammar, and Staton 2019)

# Formal semantics has been well studied.

### Low-Level Features:

- Imperative
- Unstructured control-flow

# **Operational semantics**:

(Ferrer Fioriti and Hermanns 2015)

#### Denotational semantics: This work

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Benefits of A Denotational Semantics

- Abstraction from details about program executions
- Compositionality

COMPILER

### Example

The following code implements a variant of geometric distributions.

```
n := 0;
while prob(0.9) do
n := n + 1;
if n \ge 10 then break
else continue
od
```

There are multiple possible executions of the program, e.g., *n* could end up with 0, 3, or 10.

### Principle

Probabilistic programs establish input/**output-distribution** relations. A probabilistic program can be modeled as a function in  $X \to \mathcal{D}(X)$ , where X is a program state space and  $\mathcal{D}(X)$  consists of probability distributions over X.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### Example

The following code implements a variant of geometric distributions.

```
n := 0;
while prob(0.9) do
n := n + 1;
if n \ge 10 then break
else continue
od
```

There are multiple possible executions of the program, e.g., *n* could end up with 0, 3, or 10.

### Principle

Probabilistic programs establish input/**output-distribution** relations. A probabilistic program can be modeled as a function in  $X \to \mathcal{D}(X)$ , where X is a program state space and  $\mathcal{D}(X)$  consists of probability distributions over X.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### Example

The following code implements a variant of geometric distributions.

```
n := 0;
while prob(0.9) do
n := n + 1;
if n \ge 10 then break
else continue
od
```

There are multiple possible executions of the program, e.g., *n* could end up with 0, 3, or 10.

### Principle

Probabilistic programs establish input/**output-distribution** relations. A probabilistic program can be modeled as a function in  $X \to \mathcal{D}(X)$ , where X is a program state space and  $\mathcal{D}(X)$  consists of probability distributions over X.

# Nondeterminism

#### Sources

- Agents for Markov decisions processes (MDPs)
- Abstraction and refinement on programs

### A Common Resolution

A nondeterministic function f from X to Y is a set-valued function that maps an input to a collection of outputs, i.e.,

 $f \in X \to \wp(Y).$ 

### Nondeterminism in Probabilistic Programming

A nondeterministic function f from X to  $\mathcal{D}(X)$  should have the signature

$$f \in X \to \wp(\mathcal{D}(X)),$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

where  $\mathcal{D}(X)$  consists of probability distributions over *X*.

# Nondeterminism

#### Sources

- Agents for Markov decisions processes (MDPs)
- Abstraction and refinement on programs

### A Common Resolution

A nondeterministic function f from X to Y is a set-valued function that maps an input to a collection of outputs, i.e.,

 $f\in X\to \wp(Y).$ 

#### Nondeterminism in Probabilistic Programming

A nondeterministic function f from X to  $\mathcal{D}(X)$  should have the signature

$$f \in X \to \wp(\mathcal{D}(X)),$$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● □ ● ●

where  $\mathcal{D}(X)$  consists of probability distributions over *X*.

# Nondeterminism

#### Sources

- Agents for Markov decisions processes (MDPs)
- Abstraction and refinement on programs

### A Common Resolution

A nondeterministic function f from X to Y is a set-valued function that maps an input to a collection of outputs, i.e.,

 $f\in X\to \wp(Y).$ 

#### Nondeterminism in Probabilistic Programming

A nondeterministic function f from X to  $\mathcal{D}(X)$  should have the signature

$$f \in X \to \wp(\mathcal{D}(X)),$$

where  $\mathcal{D}(X)$  consists of probability distributions over *X*.

# When to Resolve Nondeterminism?

X is a program state space.  $\mathcal{D}(X)$  consists of probability distributions over X.

# The Common Resolution: Input Prior to Nondeterminism

 $f\in X\to \wp(\mathcal{D}(X))$ 

#### What about: Nondeterminism Prior to Input?

$$f \in \wp(X \to \mathcal{D}(X))$$

Intuition: A nondeterministic program is a specification that models a **collection** of deterministic refinements.

# When to Resolve Nondeterminism?

X is a program state space.  $\mathcal{D}(X)$  consists of probability distributions over X.

### The Common Resolution: Input Prior to Nondeterminism

 $f\in X\to \wp(\mathcal{D}(X))$ 

#### What about: Nondeterminism Prior to Input?

 $f\in \wp(X\to \mathcal{D}(X))$ 

- コン・4回シュービン・4回シューレー

Intuition: A nondeterministic program is a specification that models a **collection** of deterministic refinements.

# When to Resolve Nondeterminism?

X is a program state space.  $\mathcal{D}(X)$  consists of probability distributions over X.

The Common Resolution: Input Prior to Nondeterminism

 $f\in X\to \wp(\mathcal{D}(X))$ 

What about: Nondeterminism Prior to Input?

 $f\in \wp(X\to \mathcal{D}(X))$ 

- コン・4回シュービン・4回シューレー

Intuition: A nondeterministic program is a specification that models a **collection** of deterministic refinements.

# Nondeterminism-First: Nondeterminism Prior to Input

#### Example

Consider the following program P where  $\star$  represents nondeterminism.

if  $prob(\star)$  then  $t \coloneqq t + 1$  else  $t \coloneqq t - 1$  fi



# Nondeterminism-First: Nondeterminism Prior to Input

#### Example

Consider the following program P where  $\star$  represents nondeterminism.

if  $prob(\star)$  then  $t \coloneqq t + 1$  else  $t \coloneqq t - 1$  fi



 $\star$  resolved **after** *t* is given



▲□▶▲□▶▲□▶▲□▶ □ のQで

**\*** resolved **before** *t* is given

# Nondeterminism-First: Nondeterminism Prior to Input

#### Example

Consider the following program P where  $\star$  represents nondeterminism.

if  $prob(\star)$  then  $t \coloneqq t + 1$  else  $t \coloneqq t - 1$  fi



# Nondeterminism-First: What's the Benefit?

#### Example

Consider the following program *P* where  $\star$  represents nondeterminism.

if  $prob(\star)$  then  $t \coloneqq t + 1$  else  $t \coloneqq t - 1$  fi

#### Relational Reasoning about Refinements of a Program

- For all refinements *P'* of *P*, for all  $t_1, t_2$ , can we prove that  $\mathbb{E}_{t'_1 \sim P'(t_1), t'_2 \sim P'(t_2)}[t'_1 t'_2] = t_1 t_2$ ?
- For all refinements P' of P, for all t<sub>1</sub>, t<sub>2</sub>, does P' exhibit similar execution time on t<sub>1</sub> and t<sub>2</sub>?

# Nondeterminism-First: What's the Benefit?

#### Example

Consider the following program *P* where  $\star$  represents nondeterminism.

```
if prob(\star) then t \coloneqq t + 1 else t \coloneqq t - 1 fi
```

#### Relational Reasoning about Refinements of a Program

- For all refinements *P'* of *P*, for all  $t_1, t_2$ , can we prove that  $\mathbb{E}_{t'_1 \sim P'(t_1), t'_2 \sim P'(t_2)}[t'_1 t'_2] = t_1 t_2$ ?
- For all refinements *P*′ of *P*, for all *t*<sub>1</sub>, *t*<sub>2</sub>, does *P*′ exhibit similar execution time on *t*<sub>1</sub> and *t*<sub>2</sub>?

# Nondeterminism-First: What's the Benefit?

#### Example

Consider the following program *P* where  $\star$  represents nondeterminism.

if  $prob(\star)$  then  $t \coloneqq t + 1$  else  $t \coloneqq t - 1$  fi

#### Relational Reasoning about Refinements of a Program

- For all refinements *P'* of *P*, for all  $t_1, t_2$ , can we prove that  $\mathbb{E}_{t'_1 \sim P'(t_1), t'_2 \sim P'(t_2)}[t'_1 t'_2] = t_1 t_2$ ?
- For all refinements *P*′ of *P*, for all *t*<sub>1</sub>, *t*<sub>2</sub>, does *P*′ exhibit similar execution time on *t*<sub>1</sub> and *t*<sub>2</sub>?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Contributions

- We develop a denotational semantics for **low-level** probabilistic programs with unstructured control-flow, general recursion, and nondeterminism.
- We study different resolutions for nondeterminism and propose a new model that involves nondeterminacy among state transformers.
- We devise an **algebraic** framework for denotational semantics, which can be instantiated with different resolutions for nondeterminism.

# Outline

Motivation

#### Control-Flow Hyper-Graphs

Algebraic Denotational Semantics

Nondeterminism-First



# Representation of Low-Level Probabilistic Programs



#### Principle

For probabilistic programs, execution paths are *not* independent. A formal semantics should reason about **distributions** over paths.

э

# Representation of Low-Level Probabilistic Programs



#### Principle

For probabilistic programs, execution paths are *not* independent. A formal semantics should reason about **distributions** over paths.

イロト 不得 とくほ とくほとう

3

# Representation of Low-Level Probabilistic Programs



#### Principle

For probabilistic programs, execution paths are *not* independent. A formal semantics should reason about distributions over paths.

イロト 不得 とうほう イヨン

3

# Paths vs. Hyper-Paths

### Example

| if★ | then | if $prob(0.5)$ then $t \coloneqq 0$ else $t \coloneqq 1$ fi |    |
|-----|------|-------------------------------------------------------------|----|
|     | else | if $prob(0.8)$ then $t \coloneqq 0$ else $t \coloneqq 1$ fi | fi |

# Paths Annotated with Probabilities

| 10.5   | 10.5   | 40.8   | ↓0.2   |
|--------|--------|--------|--------|
| t' = 0 | t' = 1 | t' = 0 | t' = 1 |

#### Hyper-Paths, each of which stands for a distribution



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへ⊙

# Paths vs. Hyper-Paths

#### Example

| if* | then | if $prob(0.5)$ then $t \coloneqq 0$ else $t \coloneqq 1$ fi |    |
|-----|------|-------------------------------------------------------------|----|
|     | else | if $prob(0.8)$ then $t \coloneqq 0$ else $t \coloneqq 1$ fi | fi |



Hyper-Paths, each of which stands for a distribution



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

# Paths vs. Hyper-Paths

#### Example

| if* | then | if $prob(0.5)$ then $t \coloneqq 0$ else $t \coloneqq 1$ fi |    |
|-----|------|-------------------------------------------------------------|----|
|     | else | if $prob(0.8)$ then $t \coloneqq 0$ else $t \coloneqq 1$ fi | fi |



Hyper-Paths, each of which stands for a distribution

$$\begin{array}{c} \bullet \\ \bullet \\ t' = 0 \end{array} \begin{array}{c} \bullet \\ t' = 1 \end{array} \qquad \begin{array}{c} \bullet \\ t' = 0 \end{array} \begin{array}{c} \bullet \\ t' = 1 \end{array} \\ t' = 0 \end{array} \begin{array}{c} \bullet \\ t' = 1 \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で

# Control-Flow Hyper-Graphs

- Hyper-graphs are directed graphs with hyper-edges that could have multiple destinations. Hyper-paths are made up of hyper-egdes.
- The following hyper-graph



represents the control-flow of the example program

```
n := 0;
while prob(0.9) do
n := n + 1;
if n \ge 10 then break
else continue
od
```

# Control-Flow Hyper-Graphs

- Hyper-graphs are directed graphs with hyper-edges that could have multiple destinations. Hyper-paths are made up of hyper-egdes.
- The following hyper-graph



represents the control-flow of the example program

```
n := 0;
while prob(0.9) do
n := n + 1;
if n \ge 10 then break
else continue
od
```

# Outline

Motivation

Control-Flow Hyper-Graphs

Algebraic Denotational Semantics

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Nondeterminism-First

# An Algebraic Denotational Semantics

### Goal

Develop a denotational semantics that can be instantiated with different resolutions of nondeterminism.

### An Algebraic Approach

- Perform reasoning in some **abstract** space of program states and state transformers.
- The state transformers should obey some algebraic laws.
- For example, the command **skip** should be interpreted as an **identity** element for sequencing in the algebra of transformers.

#### Outcome

The semantics is a good fit for developing static analyses (Wang, Hoffmann, and Reps 2018).

# An Algebraic Denotational Semantics

### Goal

Develop a denotational semantics that can be instantiated with different resolutions of nondeterminism.

### An Algebraic Approach

- Perform reasoning in some **abstract** space of program states and state transformers.
- The state transformers should obey some algebraic laws.
- For example, the command **skip** should be interpreted as an **identity** element for sequencing in the algebra of transformers.

#### Outcome

The semantics is a good fit for developing static analyses (Wang, Hoffmann, and Reps 2018).

# An Algebraic Denotational Semantics

### Goal

Develop a denotational semantics that can be instantiated with different resolutions of nondeterminism.

### An Algebraic Approach

- Perform reasoning in some **abstract** space of program states and state transformers.
- The state transformers should obey some algebraic laws.
- For example, the command **skip** should be interpreted as an **identity** element for sequencing in the algebra of transformers.

#### Outcome

The semantics is a good fit for developing static analyses (Wang, Hoffmann, and Reps 2018).

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# The Algebra



$$\left\langle \mathcal{M},\sqsubseteq,\otimes,{}_{\varphi}\diamondsuit, {}_{\forall},{}_{\bot},1 \right\rangle$$

 (M, ⊑) forms a directed complete partial order (dcpo) with ⊥ as its least element.

- $\langle M, \otimes, 1 \rangle$  forms a monoid.
- Nondeterministic-choice 
   → is a semilattice operation.

# The Algebra



$$\left\langle \mathcal{M}, \sqsubseteq, \otimes, {}_{\varphi} \diamondsuit, \forall, \bot, 1 \right\rangle$$

 ⟨M, ⊑⟩ forms a directed complete partial order (dcpo) with ⊥ as its least element.

- $\langle M, \otimes, 1 \rangle$  forms a monoid.
- Nondeterministic-choice 
  → is a semilattice operation.

# The Algebra



$$\left\langle \mathsf{M},\sqsubseteq,\otimes,{}_{\varphi}\diamondsuit,\forall,\bot,1\right\rangle$$

•  $\langle M, \sqsubseteq \rangle$  forms a directed complete partial order (dcpo) with  $\perp$  as its least element.

- $\langle M, \otimes, 1 \rangle$  forms a monoid.
- Nondeterministic-choice 
  → is a semilattice operation.

## The Algebra



$$\left\langle \mathcal{M}, \sqsubseteq, \otimes, {}_{\varphi} \diamondsuit, \lor, \bot, 1 \right\rangle$$

 ⟨M, ⊑⟩ forms a directed complete partial order (dcpo) with ⊥ as its least element.

▲□▶▲□▶▲□▶▲□▶ □ のQで

- $\langle M, \otimes, 1 \rangle$  forms a monoid.
- Nondeterministic-choice 
  → is a semilattice operation.

## The Algebra



$$\left\langle \mathsf{M},\sqsubseteq,\otimes,{}_{\varphi}\diamondsuit, \forall,\bot,1\right\rangle$$

- ⟨M, ⊑⟩ forms a directed complete partial order (dcpo) with ⊥ as its least element.
- $\langle M, \otimes, 1 \rangle$  forms a monoid.

## Principle

# The semantics of a node in the control-flow hyper-graph is a summary of computation that **continues from** that node.

Recall the control-flow hyper-graph below.



Semantics is defined as the least solution to the following equation system

$$S(v_0) = seq[n := 0](S(v_1)) \qquad S(v_2) = seq[n := n+1](S(v_3)) \qquad S(v_4) = 1$$
  
$$S(v_1) = prob[0.9](S(v_2), S(v_4)) \qquad S(v_3) = cond[n \ge 10](S(v_4), S(v_1))$$

#### ▲□▶▲□▶▲□▶▲□▶ ■ のへ⊙

## Principle

The semantics of a node in the control-flow hyper-graph is a summary of computation that **continues from** that node.

Recall the control-flow hyper-graph below.



Semantics is defined as the **least** solution to the following equation system

$$S(v_0) = seq[n := 0](S(v_1)) \qquad S(v_2) = seq[n := n+1](S(v_3)) \qquad S(v_4) = 1$$
  
$$S(v_1) = prob[0.9](S(v_2), S(v_4)) \qquad S(v_3) = cond[n \ge 10](S(v_4), S(v_1))$$

#### ▲□▶▲□▶▲□▶▲□▶ ■ のへの

## Principle

The semantics of a node in the control-flow hyper-graph is a summary of computation that **continues from** that node.

Recall the control-flow hyper-graph below.



Semantics is defined as the least solution to the following equation system

$$\begin{aligned} \mathcal{S}(v_0) &= seq[n \coloneqq 0](\mathcal{S}(v_1)) & \mathcal{S}(v_2) = seq[n \coloneqq n+1](\mathcal{S}(v_3)) & \mathcal{S}(v_4) = 1 \\ \mathcal{S}(v_1) &= prob[0.9](\mathcal{S}(v_2), \mathcal{S}(v_4)) & \mathcal{S}(v_3) = cond[n \ge 10](\mathcal{S}(v_4), \mathcal{S}(v_1)) \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Semantics is defined as the least solution to the following equation system

$$\begin{aligned} \mathcal{S}(v_0) &= seq[n \coloneqq 0](\mathcal{S}(v_1)) & \mathcal{S}(v_2) = seq[n \coloneqq n+1](\mathcal{S}(v_3)) & \mathcal{S}(v_4) = 1 \\ \mathcal{S}(v_1) &= prob[0.9](\mathcal{S}(v_2), \mathcal{S}(v_4)) & \mathcal{S}(v_3) = cond[n \ge 10](\mathcal{S}(v_4), \mathcal{S}(v_1)) \end{aligned}$$

Use the algebra to reinterpret the equation system

$$\begin{split} \mathcal{S}(v_0) &= \llbracket n \coloneqq 0 \rrbracket \otimes \mathcal{S}(v_1) & \mathcal{S}(v_2) = \llbracket n \coloneqq n+1 \rrbracket \otimes \mathcal{S}(v_3) & \mathcal{S}(v_4) = 1 \\ \mathcal{S}(v_1) &= \mathcal{S}(v_2)_{\mathsf{prob}(0,9)} \otimes \mathcal{S}(v_4) & \mathcal{S}(v_3) = \mathcal{S}(v_4)_{n \ge 10} \otimes \mathcal{S}(v_1) \end{split}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

where  $\llbracket \cdot \rrbracket$  maps actions into state transformers in M

Semantics is defined as the least solution to the following equation system

$$\begin{aligned} \mathcal{S}(v_0) &= seq[n \coloneqq 0](\mathcal{S}(v_1)) & \mathcal{S}(v_2) = seq[n \coloneqq n+1](\mathcal{S}(v_3)) & \mathcal{S}(v_4) = 1 \\ \mathcal{S}(v_1) &= prob[0.9](\mathcal{S}(v_2), \mathcal{S}(v_4)) & \mathcal{S}(v_3) = cond[n \ge 10](\mathcal{S}(v_4), \mathcal{S}(v_1)) \end{aligned}$$

Use the algebra to reinterpret the equation system

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

where  $\llbracket \cdot \rrbracket$  maps actions into state transformers in *M*.

- $X \stackrel{\text{def}}{=} \operatorname{Var} \rightharpoonup_{\operatorname{fin}} \mathbb{Q} \text{ and } M \stackrel{\text{def}}{=} X \to \underline{\mathcal{D}}(X).$
- $\underline{\mathcal{D}}(X)$  stands for **sub-probability distributions** on *X*, i.e.,  $\Delta \in \underline{\mathcal{D}}(X)$  iff  $\Delta : X \to [0, 1]$  and  $\sum_{x \in X} \Delta(x) \le 1$ .
- For actions act, we have  $[act] \in M$ .
- For conditions  $\varphi$ , we have  $\llbracket \varphi \rrbracket : X \to [0, 1]$ , e.g.,  $\llbracket \operatorname{prob}(p) \rrbracket \stackrel{\text{def}}{=} \lambda_{-} p$ .
- $f \sqsubseteq g \stackrel{\text{def}}{=} \forall x \in X : \forall x' \in X : f(x)(x') \le g(x)(x').$
- $f \otimes g \stackrel{\text{def}}{=} \lambda x . \lambda x'' . \sum_{x' \in X} f(x, x') \cdot g(x', x'').$
- $f_{\varphi} \diamond g \stackrel{\text{def}}{=} \lambda x \cdot \lambda x' \cdot \llbracket \varphi \rrbracket (x) \cdot f(x)(x') + (1 \llbracket \varphi \rrbracket (x)) \cdot g(x)(x').$
- $\perp \stackrel{\text{def}}{=} \lambda_{.}\lambda_{.}0.$
- $1 \stackrel{\text{def}}{=} \lambda x.\delta(x)$  where the **point distribution**  $\delta(x) \stackrel{\text{def}}{=} \lambda x'.[x = x']$ .

- $X \stackrel{\text{\tiny def}}{=} \operatorname{Var} \rightharpoonup_{\operatorname{fin}} \mathbb{Q} \text{ and } M \stackrel{\text{\tiny def}}{=} X \to \underline{\mathcal{D}}(X).$
- $\underline{\mathcal{D}}(X)$  stands for **sub-probability distributions** on *X*, i.e.,  $\Delta \in \underline{\mathcal{D}}(X)$  iff  $\Delta : X \to [0, 1]$  and  $\sum_{x \in X} \Delta(x) \le 1$ .
- For actions act, we have  $\llbracket act \rrbracket \in M$ .
- For conditions  $\varphi$ , we have  $\llbracket \varphi \rrbracket : X \to [0, 1]$ , e.g.,  $\llbracket \operatorname{prob}(p) \rrbracket \stackrel{\text{def}}{=} \lambda_{-} p$ .
- $f \sqsubseteq g \stackrel{\text{def}}{=} \forall x \in X \colon \forall x' \in X \colon f(x)(x') \le g(x)(x').$
- $f \otimes g \stackrel{\text{def}}{=} \lambda x . \lambda x'' . \sum_{x' \in X} f(x, x') \cdot g(x', x'').$
- $f_{\varphi} \diamond g \stackrel{\text{def}}{=} \lambda x \cdot \lambda x' \cdot \llbracket \varphi \rrbracket (x) \cdot f(x)(x') + (1 \llbracket \varphi \rrbracket (x)) \cdot g(x)(x').$
- $\perp \stackrel{\text{def}}{=} \lambda_{.}\lambda_{.}0.$
- $1 \stackrel{\text{def}}{=} \lambda x.\delta(x)$  where the **point distribution**  $\delta(x) \stackrel{\text{def}}{=} \lambda x'.[x = x']$ .

• 
$$X \stackrel{\text{\tiny def}}{=} \operatorname{Var} \rightarrow_{\operatorname{fin}} \mathbb{Q} \text{ and } M \stackrel{\text{\tiny def}}{=} X \rightarrow \underline{\mathcal{D}}(X).$$

- $\underline{\mathcal{D}}(X)$  stands for **sub-probability distributions** on *X*, i.e.,  $\Delta \in \underline{\mathcal{D}}(X)$  iff  $\Delta : X \to [0, 1]$  and  $\sum_{x \in X} \Delta(x) \le 1$ .
- For actions act, we have  $[act] \in M$ .
- For conditions  $\varphi$ , we have  $\llbracket \varphi \rrbracket : X \to [0, 1]$ , e.g.,  $\llbracket \operatorname{prob}(p) \rrbracket \stackrel{\text{def}}{=} \lambda_{-} p$ .
- $f \sqsubseteq g \stackrel{\text{def}}{=} \forall x \in X : \forall x' \in X : f(x)(x') \le g(x)(x').$
- $f \otimes g \stackrel{\text{def}}{=} \lambda x . \lambda x'' . \sum_{x' \in X} f(x, x') \cdot g(x', x'').$
- $f_{\varphi} \diamond g \stackrel{\text{def}}{=} \lambda x \cdot \lambda x' \cdot \llbracket \varphi \rrbracket (x) \cdot f(x)(x') + (1 \llbracket \varphi \rrbracket (x)) \cdot g(x)(x').$
- $\perp \stackrel{\text{def}}{=} \lambda_{-}.\lambda_{-}.0.$
- $1 \stackrel{\text{def}}{=} \lambda x.\delta(x)$  where the **point distribution**  $\delta(x) \stackrel{\text{def}}{=} \lambda x'.[x = x']$ .

• 
$$X \stackrel{\text{\tiny def}}{=} \operatorname{Var} \rightarrow_{\operatorname{fin}} \mathbb{Q} \text{ and } M \stackrel{\text{\tiny def}}{=} X \rightarrow \underline{\mathcal{D}}(X).$$

- $\underline{\mathcal{D}}(X)$  stands for **sub-probability distributions** on *X*, i.e.,  $\Delta \in \underline{\mathcal{D}}(X)$  iff  $\Delta : X \to [0, 1]$  and  $\sum_{x \in X} \Delta(x) \le 1$ .
- For actions act, we have  $[act] \in M$ .
- For conditions  $\varphi$ , we have  $\llbracket \varphi \rrbracket : X \to [0, 1]$ , e.g.,  $\llbracket \operatorname{prob}(p) \rrbracket \stackrel{\text{def}}{=} \lambda_{-}p$ .
- $f \sqsubseteq g \stackrel{\text{def}}{=} \forall x \in X \colon \forall x' \in X \colon f(x)(x') \le g(x)(x').$
- $f \otimes g \stackrel{\text{def}}{=} \lambda x . \lambda x'' . \sum_{x' \in X} f(x, x') \cdot g(x', x'').$
- $f_{\varphi} \diamond g \stackrel{\text{def}}{=} \lambda x \cdot \lambda x' \cdot \llbracket \varphi \rrbracket (x) \cdot f(x)(x') + (1 \llbracket \varphi \rrbracket (x)) \cdot g(x)(x').$
- $\perp \stackrel{\text{def}}{=} \lambda_{-}.\lambda_{-}.0.$
- $1 \stackrel{\text{def}}{=} \lambda x.\delta(x)$  where the **point distribution**  $\delta(x) \stackrel{\text{def}}{=} \lambda x'.[x = x']$ .

• 
$$X \stackrel{\text{\tiny def}}{=} \operatorname{Var} \rightarrow_{\operatorname{fin}} \mathbb{Q} \text{ and } M \stackrel{\text{\tiny def}}{=} X \rightarrow \underline{\mathcal{D}}(X).$$

- $\underline{\mathcal{D}}(X)$  stands for **sub-probability distributions** on *X*, i.e.,  $\Delta \in \underline{\mathcal{D}}(X)$  iff  $\Delta : X \to [0, 1]$  and  $\sum_{x \in X} \Delta(x) \leq 1$ .
- For actions act, we have  $[act] \in M$ .
- For conditions  $\varphi$ , we have  $\llbracket \varphi \rrbracket : X \to [0, 1]$ , e.g.,  $\llbracket \operatorname{prob}(p) \rrbracket \stackrel{\text{def}}{=} \lambda_{-}p$ .
- $f \sqsubseteq g \stackrel{\text{def}}{=} \forall x \in X \colon \forall x' \in X \colon f(x)(x') \le g(x)(x').$
- $f \otimes g \stackrel{\text{def}}{=} \lambda x . \lambda x'' . \sum_{x' \in X} f(x, x') \cdot g(x', x'').$
- $f_{\varphi} \diamond g \stackrel{\text{def}}{=} \lambda x \cdot \lambda x' \cdot \llbracket \varphi \rrbracket (x) \cdot f(x)(x') + (1 \llbracket \varphi \rrbracket (x)) \cdot g(x)(x').$
- $\perp \stackrel{\text{def}}{=} \lambda_{..}\lambda_{..}0.$
- $1 \stackrel{\text{def}}{=} \lambda x.\delta(x)$  where the **point distribution**  $\delta(x) \stackrel{\text{def}}{=} \lambda x'.[x = x']$ .

• 
$$X \stackrel{\text{\tiny def}}{=} \operatorname{Var} \rightarrow_{\operatorname{fin}} \mathbb{Q} \text{ and } M \stackrel{\text{\tiny def}}{=} X \rightarrow \underline{\mathcal{D}}(X).$$

- $\underline{\mathcal{D}}(X)$  stands for **sub-probability distributions** on *X*, i.e.,  $\Delta \in \underline{\mathcal{D}}(X)$  iff  $\Delta : X \to [0, 1]$  and  $\sum_{x \in X} \Delta(x) \le 1$ .
- For actions act, we have  $[act] \in M$ .
- For conditions  $\varphi$ , we have  $\llbracket \varphi \rrbracket : X \to [0, 1]$ , e.g.,  $\llbracket \operatorname{prob}(p) \rrbracket \stackrel{\text{def}}{=} \lambda_{-}p$ .
- $f \sqsubseteq g \stackrel{\text{def}}{=} \forall x \in X : \forall x' \in X : f(x)(x') \le g(x)(x').$
- $f \otimes g \stackrel{\text{def}}{=} \lambda x . \lambda x'' . \sum_{x' \in X} f(x, x') \cdot g(x', x'').$
- $f_{\varphi} \diamondsuit g \stackrel{\text{def}}{=} \lambda x \cdot \lambda x' \cdot \llbracket \varphi \rrbracket (x) \cdot f(x)(x') + (1 \llbracket \varphi \rrbracket (x)) \cdot g(x)(x').$
- $\perp \stackrel{\text{def}}{=} \lambda_{.}\lambda_{.}0.$
- $1 \stackrel{\text{def}}{=} \lambda x.\delta(x)$  where the point distribution  $\delta(x) \stackrel{\text{def}}{=} \lambda x'.[x = x']$ .



Because Var =  $\{n\}$  is a singleton, we present the semantics as if  $X \stackrel{\text{def}}{=} \mathbb{Z}$ .

$$S(v_0) = \lambda_{-} \cdot \sum_{k=0}^{9} (0.1 \times 0.9^k) \cdot \delta(k) + 0.3486784401 \cdot \delta(10)$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

 $\delta(n_0)$  represents a point distribution at  $n_0$ .



Because Var = {*n*} is a singleton, we present the semantics as if  $X \stackrel{\text{def}}{=} \mathbb{Z}$ .

$$S(v_0) = \lambda_{-} \cdot \sum_{k=0}^{9} (0.1 \times 0.9^k) \cdot \delta(k) + 0.3486784401 \cdot \delta(10)$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

 $\delta(n_0)$  represents a point distribution at  $n_0$ .



Because Var = {*n*} is a singleton, we present the semantics as if  $X \stackrel{\text{def}}{=} \mathbb{Z}$ .

$$S(v_0) = \lambda_{-} \sum_{k=0}^{9} (0.1 \times 0.9^k) \cdot \delta(k) + 0.3486784401 \cdot \delta(10)$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

 $\delta(n_0)$  represents a point distribution at  $n_0$ .



Recall the equation

$$S(v_0) = \llbracket n \coloneqq 0 \rrbracket \otimes S(v_1)$$

Obtain  $S(v_0)$  from  $S(v_1)$ 

$$S(v_0) = \lambda_{-} \cdot \sum_{k=0}^{9} (0.1 \times 0.9^k) \cdot \delta(k) + 0.3486784401 \cdot \delta(10)$$
  

$$[[n \coloneqq 0]] = \lambda_{-} \cdot \delta(0)$$
  

$$S(v_1) = \lambda n \cdot [n \ge 9] \cdot (0.1 \cdot \delta(n) + 0.9 \cdot \delta(n+1)) +$$
  

$$[n < 9] \cdot \left( \sum_{k=n}^{\infty} (0.1 \times 0.9^{k-n}) \cdot \delta(\min\{k, 10\}) \right)$$



#### Recall the equation

$$\mathcal{S}(\mathbf{v}_0) = \llbracket n \coloneqq 0 \rrbracket \otimes \mathcal{S}(\mathbf{v}_1)$$

Obtain  $\mathcal{S}(v_0)$  from  $\mathcal{S}(v_1)$ 

$$S(v_0) = \lambda_{-} \cdot \sum_{k=0}^{9} (0.1 \times 0.9^k) \cdot \delta(k) + 0.3486784401 \cdot \delta(10)$$
  

$$[[n := 0]] = \lambda_{-} \cdot \delta(0)$$
  

$$S(v_1) = \lambda n \cdot [n \ge 9] \cdot (0.1 \cdot \delta(n) + 0.9 \cdot \delta(n+1)) +$$
  

$$[n < 9] \cdot \left( \sum_{k=n}^{\infty} (0.1 \times 0.9^{k-n}) \cdot \delta(\min\{k, 10\}) \right)$$





▲□▶▲□▶▲□▶▲□▶ □ のQで

Recall the equation

$$\mathcal{S}(\mathbf{v}_0) = \llbracket n \coloneqq 0 \rrbracket \otimes \mathcal{S}(\mathbf{v}_1)$$

Obtain  $\mathcal{S}(v_0)$  from  $\mathcal{S}(v_1)$ 

$$S(v_0) = \lambda_{-} \cdot \sum_{k=0}^{9} (0.1 \times 0.9^k) \cdot \delta(k) + 0.3486784401 \cdot \delta(10)$$
  

$$[[n \coloneqq 0]] = \lambda_{-} \cdot \delta(0)$$
  

$$S(v_1) = \lambda n \cdot [n \ge 9] \cdot (0.1 \cdot \delta(n) + 0.9 \cdot \delta(n+1)) +$$
  

$$[n < 9] \cdot \left( \sum_{k=n}^{\infty} (0.1 \times 0.9^{k-n}) \cdot \delta(\min\{k, 10\}) \right)$$

## Outline

Motivation

Control-Flow Hyper-Graphs

Algebraic Denotational Semantics

Nondeterminism-First



## Sub-Probability Kernels

#### Definition

A function  $\kappa : X \to \underline{\mathcal{D}}(X)$  is called a **sub-probability kernel**. The set of kernels is denoted by  $\underline{\mathcal{K}}(X)$ .

#### Goal

The common resolution for nondeterminism admits the following signature

$$X \to \wp(\underline{\mathcal{D}}(X)),$$

while our nondeterminism-first model should have the following signature

$$\wp(X \to \underline{\mathcal{D}}(X)) \equiv \wp(\underline{\mathcal{K}}(X)).$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

## Sub-Probability Kernels

#### Definition

A function  $\kappa : X \to \underline{\mathcal{D}}(X)$  is called a **sub-probability kernel**. The set of kernels is denoted by  $\underline{\mathcal{K}}(X)$ .

#### Goal

The common resolution for nondeterminism admits the following signature

$$X \to \wp(\underline{\mathcal{D}}(X)),$$

while our nondeterminism-first model should have the following signature

$$\wp(X \to \underline{\mathcal{D}}(X)) \equiv \wp(\underline{\mathcal{K}}(X)).$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Reasoning with Nondeterminism-First

#### Example

Recall the following nondeterministic program P

```
if prob(\star) then t \coloneqq t + 1 else t \coloneqq t - 1 fi
```

Then the common resolution for nondeterminism derives

$$\lambda t.\{r \cdot \delta(t+1) + (1-r) \cdot \delta(t-1) \mid r \in [0,1]\},\$$

but the nondeterminism-first model leads to

$$\{\lambda t. r \cdot \delta(t+1) + (1-r) \cdot \delta(t-1) \mid r \in [0,1]\}.$$

With the new model, we can prove that for every refinement P' with  $\star$  resolved as  $r \in [0, 1]$ , for all  $t_1, t_2$ , we have

$$\begin{split} \mathbb{E}_{t_1' \sim P'(t_1), t_2' \sim P'(t_2)}[t_1' - t_2'] &= \mathbb{E}_{t_1' \sim P'(t_1)}[t_1'] - \mathbb{E}_{t_2' \sim P'(t_2)}[t_2'] \\ &= (r(t_1 + 1) + (1 - r)(t_1 - 1)) - (r(t_2 + 1) + (1 - r)(t_2 - 1)) \\ &= t_1 - t_2 \end{split}$$

## Reasoning with Nondeterminism-First

#### Example

Recall the following nondeterministic program P

```
if prob(\star) then t \coloneqq t + 1 else t \coloneqq t - 1 fi
```

Then the common resolution for nondeterminism derives

$$\lambda t.\{r \cdot \delta(t+1) + (1-r) \cdot \delta(t-1) \mid r \in [0,1]\},\$$

but the nondeterminism-first model leads to

$$\{\lambda t. r \cdot \delta(t+1) + (1-r) \cdot \delta(t-1) \mid r \in [0,1]\}.$$

With the new model, we can prove that for every refinement P' with  $\star$  resolved as  $r \in [0, 1]$ , for all  $t_1, t_2$ , we have

$$\begin{split} \mathbb{E}_{t_1' \sim P'(t_1), t_2' \sim P'(t_2)}[t_1' - t_2'] &= \mathbb{E}_{t_1' \sim P'(t_1)}[t_1'] - \mathbb{E}_{t_2' \sim P'(t_2)}[t_2'] \\ &= (r(t_1 + 1) + (1 - r)(t_1 - 1)) - (r(t_2 + 1) + (1 - r)(t_2 - 1)) \\ &= t_1 - t_2 \end{split}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

### **Necessary Conditions**

# We need to identify a subset $\mathcal{A}$ of $\wp(\underline{\mathcal{K}}(X))$ as the collection of admissible semantic objects.

- $\mathcal{A}$  admits a semilattice operation  $\forall$  (used as **nondeterministic-choice**), s.t. for all  $A \in \mathcal{A}$ ,  $A \forall A = A$ .
- $\mathcal{A}$  is equipped with a conditional-choice operation  $_{\phi} \diamond$  where  $\phi : X \rightarrow [0, 1]$  represents a Boolean-valued random variable.
- For all  $A_1, A_2 \in \mathcal{A}$  and  $\phi : X \to [0, 1]$ , if  $\kappa_1 \in A_1$  and  $\kappa_2 \in A_2$ , then  $\kappa_1 {}_{\phi} \diamond \kappa_2$  should be in  $A_1 \sqcup A_2$ .

### A Convexity-Like Condition

#### **Necessary Conditions**

We need to identify a subset  $\mathcal{A}$  of  $\wp(\underline{\mathcal{K}}(X))$  as the collection of admissible semantic objects.

- A admits a semilattice operation 
   ⊎ (used as nondeterministic-choice), s.t. for all A ∈ A, A ⊎ A = A.
- $\mathcal{A}$  is equipped with a conditional-choice operation  $_{\phi} \diamond$  where  $\phi : X \rightarrow [0, 1]$  represents a Boolean-valued random variable.
- For all  $A_1, A_2 \in \mathcal{A}$  and  $\phi : X \to [0, 1]$ , if  $\kappa_1 \in A_1$  and  $\kappa_2 \in A_2$ , then  $\kappa_1 {}_{\phi} \diamond \kappa_2$  should be in  $A_1 \sqcup A_2$ .

#### A Convexity-Like Condition

#### **Necessary Conditions**

We need to identify a subset  $\mathcal{A}$  of  $\wp(\underline{\mathcal{K}}(X))$  as the collection of admissible semantic objects.

- A admits a semilattice operation 
   ∪ (used as nondeterministic-choice), s.t. for all A ∈ A, A ∪ A = A.
- $\mathcal{A}$  is equipped with a conditional-choice operation  $_{\phi}$  where  $\phi: X \to [0, 1]$  represents a Boolean-valued random variable.
- For all  $A_1, A_2 \in \mathcal{A}$  and  $\phi : X \to [0, 1]$ , if  $\kappa_1 \in A_1$  and  $\kappa_2 \in A_2$ , then  $\kappa_1 {}_{\phi} \diamond \kappa_2$  should be in  $A_1 \sqcup A_2$ .

#### A Convexity-Like Condition

#### **Necessary Conditions**

We need to identify a subset  $\mathcal{A}$  of  $\wp(\underline{\mathcal{K}}(X))$  as the collection of admissible semantic objects.

- A admits a semilattice operation 
   ⊎ (used as nondeterministic-choice), s.t. for all A ∈ A, A ⊎ A = A.
- $\mathcal{A}$  is equipped with a conditional-choice operation  $_{\phi}$  where  $\phi: X \to [0, 1]$  represents a Boolean-valued random variable.
- For all  $A_1, A_2 \in \mathcal{A}$  and  $\phi : X \to [0, 1]$ , if  $\kappa_1 \in A_1$  and  $\kappa_2 \in A_2$ , then  $\kappa_1 \circ \kappa_2$  should be in  $A_1 \cup A_2$ .

#### A Convexity-Like Condition

#### **Necessary Conditions**

We need to identify a subset  $\mathcal{A}$  of  $\wp(\underline{\mathcal{K}}(X))$  as the collection of admissible semantic objects.

- A admits a semilattice operation 
   ⊎ (used as nondeterministic-choice), s.t. for all A ∈ A, A ⊎ A = A.
- $\mathcal{A}$  is equipped with a conditional-choice operation  $_{\phi}$  where  $\phi: X \to [0, 1]$  represents a Boolean-valued random variable.
- For all  $A_1, A_2 \in \mathcal{A}$  and  $\phi : X \to [0, 1]$ , if  $\kappa_1 \in A_1$  and  $\kappa_2 \in A_2$ , then  $\kappa_1 \circ \kappa_2$  should be in  $A_1 \cup A_2$ .

#### A Convexity-Like Condition

## Generalized Convexity

Let  $\phi \cdot \kappa \stackrel{\text{def}}{=} \lambda x . \lambda x' . \phi(x) \cdot \kappa(x)(x')$  and  $\kappa_1 + \kappa_2 \stackrel{\text{def}}{=} \lambda x . \lambda x . \kappa_1(x)(x') + \kappa_2(x)(x')$ . Then  $\kappa_1 \phi \approx \kappa_2$  can be represented as  $\phi \cdot \kappa_1 + (1 - \phi) \cdot \kappa_2$ .

#### Definition

A subset *A* of  $\underline{\mathcal{K}}(X)$  is said to be **g-convex**, if for all sequences  $\{\kappa_i\}_{i\in\mathbb{N}} \subseteq A$ and  $\{\phi_i\}_{i\in\mathbb{N}} \subseteq X \to [0, 1]$  such that  $\sum_{i=1}^{\infty} \phi_i = i$ , then  $\sum_{i=1}^{\infty} \phi_i \cdot \kappa_i \in A$ .

Clearly g-convexity of a set *A* implies that for all  $\phi : X \to [0, 1]$  and  $\kappa_1, \kappa_2 \in A$ , we have  $\kappa_1 \ _{\phi} \diamondsuit \ \kappa_2 \in A$ .

## Generalized Convexity

Let  $\phi \cdot \kappa \stackrel{\text{def}}{=} \lambda x . \lambda x' . \phi(x) \cdot \kappa(x)(x')$  and  $\kappa_1 + \kappa_2 \stackrel{\text{def}}{=} \lambda x . \lambda x . \kappa_1(x)(x') + \kappa_2(x)(x')$ . Then  $\kappa_1 \phi \approx \kappa_2$  can be represented as  $\phi \cdot \kappa_1 + (1 - \phi) \cdot \kappa_2$ .

#### Definition

A subset *A* of  $\underline{\mathcal{K}}(X)$  is said to be **g-convex**, if for all sequences  $\{\kappa_i\}_{i\in\mathbb{N}} \subseteq A$ and  $\{\phi_i\}_{i\in\mathbb{N}} \subseteq X \to [0, 1]$  such that  $\sum_{i=1}^{\infty} \phi_i = 1$ , then  $\sum_{i=1}^{\infty} \phi_i \cdot \kappa_i \in A$ .

Clearly g-convexity of a set *A* implies that for all  $\phi : X \to [0, 1]$  and  $\kappa_1, \kappa_2 \in A$ , we have  $\kappa_1 \ _{\phi} \diamondsuit \ \kappa_2 \in A$ .

## Generalized Convexity

Let  $\phi \cdot \kappa \stackrel{\text{def}}{=} \lambda x . \lambda x' . \phi(x) \cdot \kappa(x)(x')$  and  $\kappa_1 + \kappa_2 \stackrel{\text{def}}{=} \lambda x . \lambda x . \kappa_1(x)(x') + \kappa_2(x)(x')$ . Then  $\kappa_1 \phi \approx \kappa_2$  can be represented as  $\phi \cdot \kappa_1 + (1 - \phi) \cdot \kappa_2$ .

#### Definition

A subset *A* of  $\underline{\mathcal{K}}(X)$  is said to be **g-convex**, if for all sequences  $\{\kappa_i\}_{i\in\mathbb{N}} \subseteq A$ and  $\{\phi_i\}_{i\in\mathbb{N}} \subseteq X \to [0, 1]$  such that  $\sum_{i=1}^{\infty} \phi_i = \dot{1}$ , then  $\sum_{i=1}^{\infty} \phi_i \cdot \kappa_i \in A$ .

Clearly g-convexity of a set *A* implies that for all  $\phi : X \to [0, 1]$  and  $\kappa_1, \kappa_2 \in A$ , we have  $\kappa_1 {}_{\phi} \diamondsuit \kappa_2 \in A$ .

## A G-Convex Powerdomain for Nondeterminism-First

### Idea

Construct a Plotkin-style powerdomain on  $\underline{\mathcal{K}}(X)$ , *except that* g-convexity replaces standard convexity in the development.

#### Example

Consider the following nondeterministic program P

**if** 
$$\star$$
 then  $t \coloneqq t + 1$  else  $t \coloneqq t - 1$  fi

Let the state space  $X \stackrel{\text{def}}{=} \mathbb{Z}$  represent the value of *t*. The common resolution for nondeterminism gives the following semantics

$$\lambda t.\{r \cdot \delta(t+1) + (1-r) \cdot \delta(t-1) \mid r \in [0,1]\}$$

while the nondeterminism-first resolution derives

 $\{\lambda t.\phi(t)\cdot\delta(t+1)+(1-\phi(t))\cdot\delta(t-1)\mid\phi\in\mathbb{Z}\to[0,1]\}.$ 

イロト 不得 トイヨト イヨト 三日

## A G-Convex Powerdomain for Nondeterminism-First

### Idea

Construct a Plotkin-style powerdomain on  $\underline{\mathcal{K}}(X)$ , *except that* g-convexity replaces standard convexity in the development.

#### Example

Consider the following nondeterministic program P

if 
$$\star$$
 then  $t \coloneqq t + 1$  else  $t \coloneqq t - 1$  fi

Let the state space  $X \stackrel{\text{def}}{=} \mathbb{Z}$  represent the value of *t*. The common resolution for nondeterminism gives the following semantics

$$\lambda t.\{r \cdot \delta(t+1) + (1-r) \cdot \delta(t-1) \mid r \in [0,1]\},\$$

while the nondeterminism-first resolution derives

 $\{\lambda t.\phi(t)\cdot \delta(t+1)+(1-\phi(t))\cdot \delta(t-1)\mid \phi\in\mathbb{Z}\rightarrow[0,1]\}.$ 

## Summary

#### This Work

We have developed an **algebraic** framework for denotational semantics of **low-level** probabilistic programs, which can be instantiated with different models of nondeterminism, including the common resolution for nondeterminism and the new **nondeterminism-first**.

#### Limitations and Future Work

- The framework does not support for continuous distributions yet.
- We are looking for interesting applications of nondeterminism-first, especially for relational reasoning.

## Summary

#### This Work

We have developed an **algebraic** framework for denotational semantics of **low-level** probabilistic programs, which can be instantiated with different models of nondeterminism, including the common resolution for nondeterminism and the new **nondeterminism-first**.

#### Limitations and Future Work

- The framework does not support for continuous distributions yet.
- We are looking for interesting applications of nondeterminism-first, especially for relational reasoning.