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Probabilistic Programs

Draw random from distributions Condition at random
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Benefits of A Denotational Semantics

Low-Level Features:
® |mperative

® Unstructured
control-flow

Operational semantics:
(Ferrer Fioriti and Hermanns
2015)

Denotational semantics:
This work

® Abstraction from details about program executions

® Compositionality
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else continue
od
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Low-Level Probabilistic Programs
Example

The following code implements a variant of geometric distributions.
n:=0;
while prob(0.9) do
n=n+1;
if n > 10 then break

else continue
od

There are multiple possible executions of the program, e.g., n could end up
with 0, 3, or 10.
Principle

Probabilistic programs establish input/output-distribution relations. A
probabilistic program can be modeled as a function in X — D(X), where X is
a program state space and 9D (X) consists of probability distributions over X.



Nondeterminism

Sources

® Agents for Markov decisions processes (MDPs)

® Abstraction and refinement on programs
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A Common Resolution

A nondeterministic function f from X to Y is a set-valued function that maps
an input to a collection of outputs, i.e.,

feX—pY).

Nondeterminism in Probabilistic Programming

A nondeterministic function f from X to D(X) should have the signature
f e X — o(D(X)),

where D(X) consists of probability distributions over X.
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When to Resolve Nondeterminism?

X is a program state space. D(X) consists of probability distributions over X.

The Common Resolution: Input Prior to Nondeterminism

feX—p(DX)

What about: Nondeterminism Prior to Input?

f € p(X = D(X))

Intuition: A nondeterministic program is a specification that models a
collection of deterministic refinements.
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Nondeterminism-First: Nondeterminism Prior to Input

Example

Consider the following program P where x represents nondeterminism.

if prob(x) thent:=t+1elset:=t—1fi

The Common Resolution

t=1

/N

Nondeterminism-First

/=2 wp.0.5
' =0 w.p.0.5

t'=2 wp.0.8
' =0 w.p.0.2

t=1 t=1

T T
' =2 w.p.0.5 ' =2 w.p.0.8
=0 wp.0.5]| [/ =0 wp.0.2

* resolved after t is given

* resolved as 0.5

* resolved as 0.8

* resolved before t is given
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Nondeterminism-First: What’s the Benefit?

Example

Consider the following program P where % represents nondeterminism.

if prob(x) thent:=t+1elset:=t—1fi

Relational Reasoning about Refinements of a Program

® For all refinements P’ of P, for all t;, t,, does P’ exhibit similar execution
time on t; and t,?



Contributions

® We develop a denotational semantics for low-level probabilistic
programs with unstructured control-flow, general recursion, and
nondeterminism.

® We study different resolutions for nondeterminism and propose a new
model that involves nondeterminacy among state transformers.

® We devise an framework for denotational semantics, which
can be instantiated with different resolutions for nondeterminism.
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Representation of Low-Level Probabilistic Programs

Y L) vs Y

[n#1] [n#1]
Y [nmod 2#0] v
Vi Vg V1
i=i+1 [n mod 2=0] [n mod 2=0]
~ ~
V2 V2
ni=n/2 n:=3xn+1 ni=n/2
NG ~
V3 V3

A standard CFG and an execution path

Principle

Yo

[n#1]
Vi V2
J/n::nﬂ prob(0.5)
V3

prob(0.5)

Vg Vs

Ve v7

A tree-like hyper-path

For probabilistic programs, execution paths are not independent. A formal
semantics should reason about distributions over paths.



Paths vs. Hyper-Paths

Example

1fi
1fi fi

if x then if prob(0.5)thent:=0elset:
else if prob(0.8) thent:=0elset:
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Paths vs. Hyper-Paths

Example
if x then ifprob(0.5)thent:=0elset:=1fi
else if prob(0.8) thent:=0elset:=1fi
Paths Annotated with Probabilities
[ ] [} [ ] [}
Jo.s Jos Jo.8 Jo.2
=0 =1 =0 =1

Hyper-Paths, each of which stands for a distribution

fi
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Control-Flow Hyper-Graphs

® Hyper-graphs are directed graphs with hyper-edges that could have
multiple destinations. Hyper-paths are made up of hyper-egdes.

® The following hyper-graph

false

—
prob(0.0) _/true (ryn=ntl o nz o
n .=
OO O
‘\\\\“‘~\-__‘7 false

represents the control-flow of the example program

n:==20;

while prob(0.9) do
n=n+1;
if n > 10 then break
else continue

od



Outline

Algebraic Denotational Semantics



An Algebraic Denotational Semantics

Goal

Develop a denotational semantics that can be instantiated with different
resolutions of nondeterminism.



An Algebraic Denotational Semantics

Goal

Develop a denotational semantics that can be instantiated with different
resolutions of nondeterminism.

An Algebraic Approach

® Perform reasoning in some space of program states and state
transformers.

® The state transformers should obey some algebraic

® For example, the command skip should be interpreted as an
element for sequencing in the algebra of transformers.



An Algebraic Denotational Semantics

Goal

Develop a denotational semantics that can be instantiated with different
resolutions of nondeterminism.

An Algebraic Approach

® Perform reasoning in some space of program states and state
transformers.

® The state transformers should obey some algebraic

® For example, the command skip should be interpreted as an
element for sequencing in the algebra of transformers.

Outcome

The semantics is a good fit for developing static analyses (Wang, Hoffmann,
and Reps 2018).
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Actions
skip
X=x+5
k ~ Binomial(10, 0.5)

SEMANTIC FUNCTION

element.

State Transformers
equipped with
sequencing
conditional-choice
nondeterministic-choice

< ’E’ bl b ’J_?1>

® (M,C) forms a directed complete partial order (dcpo) with L as its least
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The Algebra

Actions
skip
X=x+5
k ~ Binomial(10, 0.5)

SEMANTIC FUNCTION

State Transformers
equipped with
sequencing
conditional-choice
nondeterministic-choice

® Nondeterministic-choice U is a semilattice operation.
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Fixpoint Semantics for Hyper-Graphs

Principle

The semantics of a node in the control-flow hyper-graph is a summary of
computation that that node.

Recall the control-flow hyper-graph below.

n:=0;

while prob(0.9) do - false
ni=n+1; i o
if n > 10 then break 0 pr°bm‘”'f———/""@’@&1’® =l ”/”e'

= n:= - —

else continue . .‘\ false

od

Semantics is defined as the solution to the following equation system

S(v) = seqln = 0](8(wv1)) S(vp) = seqln = n+1](S8(v3)) S(vg) =1
S(v) = [0.9](S(v2), S(vs)) S(v3) = [n > 10](S(v4), S(v1))
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Fixpoint Semantics for Hyper-Graphs

Semantics is defined as the solution to the following equation system

S(w) = seqln=0S(w)  S(w) = seqln=n+11Sw)  S(w) =1
S(n) = prob[0.9)(8(v2), S(va)) - S(vs) = cond[n 2 10](S(va), S(v4))
Use the algebra to reinterpret the equation system

S(v) = [n=0] @ S(wny) S(vy) =[n=n+1] @ 8(v3) S(v) =1
S(v1) = S(w) S(va)  S(v3) = S(va) S(w)

where [-] maps actions into state transformers in M.



A Denotational Semantics without Nondeterminism

def

° XE Var =g, Qand M E X — D(X).
® D(X) stands for on X, i.e, A € D(X) iff
A:X—>[0,1]and X, cx A(x) < 1.



A Denotational Semantics without Nondeterminism

® For actions act, we have [act] € M.

* For conditions ¢, we have [¢] : X — [0, 1], e.g., [prob(p)] < A_.p.



A Denotational Semantics without Nondeterminism

def

® fLg=VxeX:Vx' € X: f(x)(x") < g(x)(x").



A Denotational Semantics without Nondeterminism

° fRg EAxAx". SwexS(x, x) - g(x’, x").



A Denotational Semantics without Nondeterminism

* f 085 AxAx Jo] () - FOX) + (1= [g] (x) - g)X).



A Denotational Semantics without Nondeterminism

def

e | =1 4.0

def def

® 1 = Ax.6(x) where the d(x) = AxX'.[x = x'].
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n:=0;
while prob(0.9) do - false .
ni=n+1; o
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else continue . .‘\ false
od

Because Var = {n} is a singleton, we present the semantics as if X A
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S(vy) = A_. 2(0.1 X 0.9%) - §(k) + 0.3486784401 - 5(10)
k=0
d(ng) represents a point distribution at ny.
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while prob(0.9) do false
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else continue . .‘\ false
od

Recall the equation
S(vp) = [n:=0] ® S(v1)



A Denotational Semantics without Nondeterminism

n:=0;
while prob(0.9) do - false
n=n+1; i o
if n > 10 then break 0 prob(0.9) /true M@ el y
> e
else continue . .‘\ false
od

Recall the equation
S(vp) = [n:=0] ® S(v1)
Obtain S(vy) from S(vy)

9
S(v) =A_. 2(0.1 x 0.9%) - 8(k) + 0.3486784401 - 5(10)
k=0
[n:=0] =2_5(0)
S(v;) =An[n=9]-(0.1-8(n) +0.9-6(n+ 1))+

(o)

[n<9]- 2(0.1 x 0.95°7) . §(min{k, 10})

k=n
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Sub-Probability Kernels

Definition
A function k : X — D(X) is called a sub-probability kernel. The set of
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Sub-Probability Kernels

Definition
A function k : X — D(X) is called a sub-probability kernel. The set of
kernels is denoted by K(X).

Goal

The common resolution for nondeterminism admits the following signature
X — p(D(X)),
while our nondeterminism-first model should have the following signature

P(X = D(X)) = p(K(X)).



Reasoning with Nondeterminism-First

Example
Recall the following nondeterministic program P
if prob(x)thent :=t+1elset:=t—-1fi
Then the common resolution for nondeterminism derives
AAr-8(t+1)+(—r)-6(t—1)| relo0,1]},
but the nondeterminism-first model leads to

Atr-8(t+1)+(1—=r)-8(t=1) | re[o,1]}.



Reasoning with Nondeterminism-First

Example
Recall the following nondeterministic program P
if prob(x)thent :=t+1elset:=t—-1fi
Then the common resolution for nondeterminism derives
AAr-8(t+1)+(—r)-6(t—1)| relo0,1]},
but the nondeterminism-first model leads to
{Atr-6(t+1)+(1=r)-8(t=1)| re[o,1]}.

With the new model, we can prove that for every refinement P’ with x
resolved as r € [0, 1], for all 1, t,, we have

Evp(t).e~P()lt] = ] = Beopep[t]] = Bygprny (5]

=+ D+ =0t =)= (e + )+ (0=t = 1))
= t1 - tz
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A Powerdomain for Nondeterminism-First

Necessary Conditions
We need to identify a subset A of p(K (X)) as the collection of admissible
semantic objects.
® A admits a semilattice operation 9 (used as
nondeterministic-choice), s.t. forall A€ A, AY A = A

® A is equipped with a conditional-choice operation 5 where
¢ : X — [0, 1] represents a Boolean-valued random variable.

® Forall A, Ay e Aand ¢ : X — [0,1], if k1 € Ay and k; € A, then
K1 ¢<> K, should be in A; Y A,.

A Convexity-Like Condition

For all A € A, we have AY A = A, therefore we should also have
Vo e X — [0,1]: Vkq, k2 € At Ky ¢<> Ky € A.
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Generalized Convexity

Let ¢ - x “ AxAx".¢p(x) - k(x)(x") and k7 + K3 « Ax.Ax.x1(x)(x") + K2(x)(x").
Then x; ¢<> ko can be represented as ¢ - k1 + (1 — ¢) - k».

Definition
A subset A of K(X) is said to be g-convex, if for all sequences {x;}icy € A
and {@;}ien € X — [0, 1] such that 3,22, ¢; = 1, then X2, ¢; - k; € A.

Clearly g-convexity of a set A implies that for all ¢ : X — [0, 1] and
K1, K2 € A, we have k; ¢<> Ky € A.
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Construct a Plotkin-style powerdomain on K(X), except that g-convexity
replaces standard convexity in the development.



A G-Convex Powerdomain for Nondeterminism-First

Idea

Construct a Plotkin-style powerdomain on K(X), except that g-convexity
replaces standard convexity in the development.

Example
Consider the following nondeterministic program P
if x thent:=t+1elset:=¢t-1fi

Let the state space X =/ represent the value of t. The common resolution
for nondeterminism gives the following semantics

At{r-6(t+ 1)+ (1=r)-6(t—1)| relo,1]},
while the nondeterminism-first resolution derives

{At.gp(t) - 5(t+ 1)+ (1—¢(t)-6(t—1)| ¢ € Z — [0, 1]}.
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This Work

We have developed an framework for denotational semantics of

low-level probabilistic programs, which can be instantiated with different
models of nondeterminism, including the common resolution for
nondeterminism and the new nondeterminism-first.



Summary

This Work

We have developed an framework for denotational semantics of

low-level probabilistic programs, which can be instantiated with different
models of nondeterminism, including the common resolution for
nondeterminism and the new nondeterminism-first.

Limitations and Future Work

® The framework does not support for continuous distributions yet.

® We are looking for interesting applications of nondeterminism-first,
especially for relational reasoning.
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