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喵喵花园
洛谷 P8212

๏ 给定有  边的凸多边形 P，构造一个有  边的凸多边形 Q，使得 

๏ Q 的  个顶点都在 P 的边界上 

๏ Q 的  个顶点平均划分 P 的周长 

๏ Q 的面积尽可能小 

๏ 找出 Q 的最小面积 

๏  

N K

K

K

3 ≤ N, K ≤ 1000
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优化问题在 OI 中很常见
在计算机科学和人工智能中也是

x* = arg min
x∈𝒳

f(x)

 是一个可能的解x  是问题的解空间𝒳

 是解的评价函
数，比如值越小则解越优
f : 𝒳 → ℝ 是解空间中使得评

价函数值最小的解
x*
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喵喵花园
作为一个优化问题

๏ 给定有  边的凸多边形 P，构造一个有  边的凸多边形 Q，使得 

๏ Q 的  个顶点都在 P 的边界上 

๏ Q 的  个顶点平均划分 P 的周长 

๏ Q 的面积尽可能小 

๏ 找出 Q 的最小面积 

๏  

N K

K

K

3 ≤ N, K ≤ 1000

确定了一个点的位置就确定了多边形 Q

需要优化多边形 Q 的面积

x* = arg min
x∈𝒳

f(x)
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贪心局部搜索
爬山法

图片来源：https://codeforces.com/blog/entry/94437

初始解 x0

 的邻居中的最优解 x0 x1

 次迭代后收敛到
局部最优解 

m
xm

全局最优解 x*
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贪心局部搜索

๏ 当前解 ：多边形 Q 的一个顶点 

๏ 邻居 ：顺时针或逆时针移动  一段距离 

๏ 步长太小：收敛慢，时间复杂度高 

๏ 步长太大：容易错过局部最优解 

๏ 卡在局部最优了怎么办？

x

x′￼ x

喵喵花园

x
x′￼

x′￼
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阳寿法

๏ 从当前解  出发，随机从邻居中选择下一个
解   

๏ 记录游走过程中遇到过的最优解 

๏ （在一定的假设下）可以证明，随机游走充
分长的时间后，一定能够找到最优解 

๏ 无限猴子定理：给猴子一台打字机和充分长
的时间，那么它一定能打出三体全集

x
x′￼

随机游走

动图来源：https://en.wikipedia.org/wiki/File:Random_Walk_Simulator.gif

二维网格随机游走

7
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模拟退火 = 贪心局部搜索 + 随机游走
Simulated Annealing

๏ 在爬山的每一轮迭代中，随机从邻居中选择下一个解 

๏ 当这个解比当前解更优时，接受它并开始下一轮迭代 

๏ 当这个解比当前解更差时，以一定概率接受它 

๏ 在刚开始迭代时，这个概率可以高一些，以探索解空间 

๏ 在快结束迭代时，这个概率可以低一些，以利用当前解 

๏ 探索（exploration）与利用（exploitation）间的平衡
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模拟退火
贪心局部搜索 + 随机游走

๏  

๏ 迭代  次，其中第  次迭代在  的邻居中选出  

๏  

๏  

๏ 若 ，则令  

๏ 若不然，则以概率  令 ，否则令 

x0 ← 初始解

m i xi−1 xi

T ← temparature(1 − i/m)

x′￼ ← neighbor(xi−1, T)

f(x′￼) < f(xi−1) xi ← x′￼

e( f(xi−1)−f(x′￼))/T xi ← x′￼ xi ← xi−1

温度  随着迭代次数增多而下降T

随机选择一个邻居，通过参数  控制探索-利用T

接受概率与温度正相关，与解变差的程度负相关
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模拟退火
贪心局部搜索 + 随机游走

动图来源：https://en.wikipedia.org/wiki/File:Hill_Climbing_with_Simulated_Annealing.gif 10

x

−f(x)

https://en.wikipedia.org/wiki/File:Hill_Climbing_with_Simulated_Annealing.gif


模拟退火

๏ 解空间 ：多边形 P 上的点 

๏ 评价函数 ：以  为顶点的多边形 Q 的面积 

๏ 温度控制：初始温度为 P 的周长，接下来每次
迭代乘上一个常量（例如 ） 

๏ 邻居选择  

๏ 随机把  顺/逆时针移动不超过  的距离 

๏ 开始时距离大，结束时距离小

𝒳

f(x) x

0.999

neighbor(x, T)

x T

喵喵花园

图片来源：https://bminaiev.github.io/simulated-annealing 11

https://bminaiev.github.io/simulated-annealing


炸弹攻击
洛谷 P5544

๏ 给定二维平面上  个圆形建筑和  个点状敌人 

๏ 画一个半径不超过  的圆 C，使得 

๏ C 不与任何的圆形建筑相交 

๏ C 覆盖尽可能多的点状敌人 

๏ 找出 C 最多能覆盖多少敌人 

๏ ，

N M

R

0 ≤ N ≤ 10 0 < M ≤ 103
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炸弹攻击
作为一个优化问题

๏ 给定二维平面上  个圆形建筑和  个点状敌人 

๏ 画一个半径不超过  的圆 C，使得 

๏ C 不与任何的圆形建筑相交 

๏ C 覆盖尽可能多的点状敌人 

๏ 找出 C 最多能覆盖多少敌人 

๏ ，

N M

R

0 ≤ N ≤ 10 0 < M ≤ 103
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解空间 ：半径不超过  
且与所有建筑不相交的圆

𝒳 R

评价函数 ：圆  不能
覆盖的敌人的数目

f(x) x

能模拟退火吗？



炸弹攻击
模拟退火

๏ 能模拟退火，但我们可以做得更好 

๏ 解空间 ：平面上不在建筑内的点 

๏ 在不碰到建筑的前提下半径越大越好，所以根据点的选择可直接计算半径 

๏ 评价函数 ：圆  不能覆盖的敌人数目 + 最近一个  不能覆盖的敌人的距离 

๏ 在覆盖敌人数目相同的解中，倾向于离不能覆盖的敌人近一些的解 

๏ 让评价函数更加平滑

𝒳

f(x) x x
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方差
洛谷 P7962

๏ 给定数列  

๏ 每次操作任选一个正整数 ，把  变成  

๏ 求若干次操作后，数列方差的最小值是多少 

๏ ，

1 ≤ a1 ≤ a2 ≤ ⋯ ≤ an

1 < i < n ai ai−1 + ai+1 − ai

1 ≤ n ≤ 104 1 ≤ ai ≤ 600
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模拟退火 - 普通版

๏ 解空间 ：多次操作  后可得到的数列 

๏ 评价函数 ：数列  的方差 

๏ 邻居选择 ：随机对数列  进行
一次操作（忽略温度 ） 

๏ 如何提升效果？

𝒳 a

f(x) x

neighbor(x) x
T

方差
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模拟退火 - Pro 版

๏ 一次操作等价于在差分序列上交换相邻项 

๏  

๏  

๏ 解空间 ：数列  的差分序列的所有排列 

๏ 邻居选择 ：随机交换差分序列 
 中的两个元素 

๏ 一次交换等价于多次操作

ai−1, ai, ai+1 ⇒ ai−1, (ai−1+ai+1−ai), ai+1

(ai−ai−1), (ai+1−ai) ⇒ (ai+1−ai), (ai−ai−1)

𝒳 a

neighbor(x)
x

方差
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方差
模拟退火 - Pro Max 版

๏ 推式子（或找规律）可知，存在最优解的差分序列呈现先减后增趋势 

๏ 解空间 ：数列  的差分序列的所有先减后增的排列 

๏ 邻居选择 ：随机将差分序列  一边「斜坡」上的值移动到另一边 

๏ 总结：探索-利用平衡 

๏ 尽可能把每个解利用到极致，比如找出最优解应当满足的必要条件 

๏ 从而有更多资源探索解空间，在时限内有更大概率找到全局最优解

𝒳 a

neighbor(x) x
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模拟退火
还记得那个接受概率公式吗？

19

e− f(x′￼) − f(x)
T

随机产生的
下一个解 当前解

当前温度

这个概率怎么来的？



「退火」

20图片来源：D. Delahaye, S. Chaimatanan, and M. Mongeau. 2019. Simulated Annealing: From Basics to Applications. Handbook of Metaheuristics.

将固体加热以
熔化其结构

「淬火」：短时降温，
未到达最小能量态

「退火」：充分长的降
温，到达最小能量态



模拟「退火」
最初真的是在模拟「退火」

๏ The Metropolis Algorithm 被誉为 20 世纪的 top 10 算法之一 

๏ 固体处于具有能量  的状态 ，改变一个粒子的位置后处于具有能量  的状态  

๏ 若能量差  为正，则设置  为当前状态 

๏ 若不然，则以概率  设置  为当前状态 

๏  为玻尔兹曼常数 

๏ 如果降温足够慢（在每个温度进行多次状态转移），固体会到达平衡态 

๏ 热力学平衡态中，固体的状态服从玻尔兹曼分布

Ei i Ej j

Ei − Ej j

e(Ei−Ej)/(kB⋅T) j

kB

21

pi ∝ e− Ei
kB ⋅ T



算法为什么正确？

๏ 「平衡态」：在温度  上状态转移充分多次，可证明当前状态  服从概率分布 

๏ 当温度  趋近于零时，  对于  的变化愈发敏感 

๏ 即便  只比  大一点，都会有  远小于  

๏ 当温度  趋近于零时，当前状态  的概率分布聚集在最小能量态上 

๏ 在模拟退火算法中，一个解对应一个状态，评价函数对应能量函数 

๏ 寻找到全局最优解对应退火至最小能量态

T X

T −E/(kB ⋅ T) E

Ej Ei ℙ(X = j) ℙ(X = i)

T X
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ℙ(X = i) ∝ e− Ei
kB ⋅ T



到达「平衡态」
等等，这好像是个不得了的能力

๏ 「平衡态」：在温度  上状态转移充分多次，可证明当前状态  服从概率分布 

๏ 即使不知道概率分布  的具体形式，通过迭代算法可以达到对其采样的目的 

๏ The Metropolis-Hastings Algorithm 

๏ 推广转移概率  并得出一般形式，支持各种各样的概率分布 

๏ 不过首先，能对未知概率分布采样有啥用吗？

T X

ℙ

e(Ei−Ej)/(kB⋅T)
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ℙ(X = i) ∝ e− Ei
kB ⋅ T



机制设计
Mechanism Design

24

有 20 个小球初始
时放置于斜坡上

放置若干个跳板，当小球
碰到跳板时发生弹性碰撞 放置跳板，使得尽可能

多的小球进入目标桶

๏ 样本空间：各种放置跳板的方案 
๏ 概率分布：进入目标桶的小球越

多，放置的跳板越少，则概率越高
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文本分类
Text Classification

27
动图来源：https://neptune.ai/blog/pyldavis-topic-modelling-exploration-tool-that-every-nlp-data-scientist-should-know 
图片来源：https://www.ibm.com/think/topics/latent-dirichlet-allocation

有若干个主题，每个
主题都有一个概率

对于每个主题，每个单词
出现的概率可以不同

๏ 样本空间：每个主题中的单词概率 
๏ 概率分布：与给出的若干文本贴合

度越高，则概率越高

文本分类可视化演示

https://neptune.ai/blog/pyldavis-topic-modelling-exploration-tool-that-every-nlp-data-scientist-should-know
https://www.ibm.com/think/topics/latent-dirichlet-allocation


概率定位
Probabilistic Localization

28
动图来源：https://rse-lab.cs.washington.edu/projects/mcl/ 
图片来源：S. Thrun, W. Burgard, and D. Fox. 2005. Probabilistic Robotics. MIT Press.

使用 24 个声呐传感器进行概率定位

๏ 样本空间：机器人所在的可能位置 
๏ 概率分布：与传感器得到的信息的

一致性越高，则概率越高

https://rse-lab.cs.washington.edu/projects/mcl/


时间序列
Time Series

29
美国国内民航总里程（按月份）

๏ 样本空间：平面上的所有月份-里程的走势折线 
๏ 概率分布：折线拟合的数据点越多、越准确，则概率越高

对未来趋势的预测 
对未来变化的适应

数据来源：https://fred.stlouisfed.org/series/RPM

https://fred.stlouisfed.org/series/RPM


过程化设计
Procedural Design

30

从一个初始结构出发 
设计具有稳定结构的积木结构

给定一个前视图 
设计一个具有该前视图的飞船

动图和图片来源：D. Ritchie. 2016. Probabilistic Programming for Procedural Modeling and Design. Ph.D. Thesis.

๏ 样本空间：所有潜在的可能的设计 
๏ 概率分布：达成目标越好（比如越稳定、越对称等）则概率越高



验证码破解
Captcha Breaking

31动图和图片来源：T. A. Le, A. G. Baydin, and F. Wood. 2017. Inference Compilation and Universal Probabilistic Programming. In AISTATS'17.

๏ 样本空间：验证码字符串 
๏ 概率分布：渲染后与图片越接

近，则概率越高

渲染过程从字符串随机
生成一张验证码图片

验证码破解演示



逆向图形学
Inverse Graphics

32动图和图片来源：T. D. Kulkarni, P. Kohli, J. B. Tenenbaum, and  V. Mansinghka. 2015. Picture: A Probabilistic Programming Language for Scene Perception. In CVPR'15.

人脸扫描 3D 建模演示

๏ 样本空间：人脸的 3D 结构、扫描的角度、光照情况等不同的组合 
๏ 概率分布：渲染后与扫描图越接近，则概率越高

渲染 改变角度、光照后渲染



Image Restoration

๏ 样本空间：所有可能的复原图 

๏ 概率分布：与输入图越接近，则
概率越高 

๏ 其实，Stable Diffusion（图片生成
模型）和 GPT（文本生成模型）的
理论中都涉及概率分布

图片复原

图片来源：G. Cardoso, Y. J. E. Idrissi, S. L. Corff, and E. Moulines. 2024. Monte Carlo guided Diffusion for Bayesian linear inverse problems. In ICLR'24.

去模糊

图像修复

超分辨率
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以上问题是否有共性？
除了都可以建模成对未知概率分布采样之外？

๏ 如何描述一个未知的概率分布？ 

๏ 首先，要有一个样本空间 

๏ 放置跳板的方案、机器人所在位置、潜在的可能设计、人脸的 3D 结构 

๏ 然后，要有一个概率高低的衡量指标 

๏ 进入桶的球多、与传感器信息一致、设计达到目标、人脸结构渲染图接近扫描图 

๏ 还有吗？ 

๏ 在解决问题前，我们可以先添加一些先验信息，表示「大概哪些样本概率更高」
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概率论 101
为了严谨地进行后面的讨论

๏ 样本空间 ：在随机过程/现象中可能出现的结果集合 

๏ 样本  通常表示不可再细分的结果 

๏ 例如：掷骰子的样本空间为  

๏ 事件  是样本空间的子集 

๏ 例如：掷骰子为偶数对应事件  

๏ 事件域  是所有我们感兴趣的事件的集合 

๏ 当样本空间有限（或离散）时，通常可考虑所有  子集构成的集合

Ω

ω ∈ Ω

Ω = {1,2,3,4,5,6}

A ⊆ Ω

A = {2,4,6}

ℱ

Ω

35



概率论 101
概率空间

๏ 概率分布  为事件到实数的映射，满足  且 

๏ 对任意两两不交的事件 ，都有  

๏ 当样本空间  有限（或离散）且事件域包含所有  子集时，可以发现 

๏ 存在概率质量函数 ，使得  

๏ 例如：掷均匀骰子对应  

๏ 概率空间即三元组  

๏ 在很多场景下，我们可以使用二元组 

ℙ : ℱ → [0,1] ℙ(Ω) = 1

A1, A2, ⋯ ℙ(⋃i≥1 Ai) = ∑i≥1 ℙ(Ai)

Ω Ω

p : Ω → [0,1] ℙ(A) = ∑ω∈A p(ω)

p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1
6

(Ω, ℱ, ℙ)

(Ω, p)

36



样本空间连续的情况呢？

๏ 连续样本空间很常见，例如实数   

๏ 严格定义需要微积分和测度论 

๏ 考虑一种特殊情形，可以用概率密度函数 
 定义概率空间 

๏ 例如：标准正态分布  

๏ 事件  的概率  为  从  
到  与横轴围成的面积

ℝ

p : Ω → [0, + ∞)

p(x) = 1

2π
e− x2

2

[l, r] ℙ([l, r]) p(x) l
r

概率论 101

37图片来源：https://commons.wikimedia.org/wiki/File:Standard_deviation_diagram.svg

https://commons.wikimedia.org/wiki/File:Standard_deviation_diagram.svg


NestedRandomness
TCO05 Qual 5, Div 1 - Level 3

๏ 考虑  函数以均匀的概率返回  中的一个整数 

๏ 计算嵌套调用  次后，返回  的概率 

๏ 调用一次是 ，调用两次是 ，…… 

๏ 样本空间是什么？ 

๏ 概率分布是什么？

rand(N) 0,⋯, N − 1

nestings target

rand(N) rand(rand(N))

38



NestedRandomness
TCO05 Qual 5, Div 1 - Level 3

๏ 样本空间  

๏ 使用概率质量函数来定义概率分布： 

๏  

๏ 计算  

๏ 对应的事件为 
 

๏ 本质上是计算 

Ω = {(n1, n2, ⋯, nnestings) ∣ N > n1 > n2 > ⋯ > nnestings}

p(n1, n2, ⋯, nnestings) = 1
N × 1

n1
× 1

n2
× ⋯ × 1

nnestings−1

∑n1,n2,⋯,nnestings−1
p(n1, n2, ⋯, nnestings−1, target)

A = {(n1, n2, ⋯, nnestings−1, target) ∣ N > n1 > n2 > ⋯ > nnestings−1 > target}

ℙ(A)

39



NestedRandomness
TCO05 Qual 5, Div 1 - Level 3

๏ 动态规划：  表示  时，从  开始的求和式的值 

๏ 初始时  对 ，结束时答案为  

๏

dp(i, j) ni−1 = j ni

dp(nestings, j) = 1 j > target 1
N × dp(1,N)

dp(i, j) = ∑j−1
k=target+nestings−i

1
k × dp(i + 1,k) = dp(i, j − 1) + 1

j − 1 × dp(i + 1,j − 1)
40

ℙ(A) = ∑
N>n1>n2>⋯>nnestings−1>target

p(n1, n2, ⋯, nnestings−1, target)

=
N−1

∑
n1=target+nestings−1

n1−1

∑
n2=target+nestings−2

⋯
nnestings−2−1

∑
nnestings−1=target+1

1
N

×
1
n1

×
1
n2

× ⋯ ×
1

nnestings−1

=
1
N

N−1

∑
n1=target+nestings−1

1
n1

n1−1

∑
n2=target+nestings−2

1
n2

⋯
nnestings−2−1

∑
nnestings−1=target+1

1
nnestings−1



概率论 101
事件的运算

๏ 事件的补集：   表示「  不发生」的事件 

๏ 例如：「掷骰子为偶数」的补集是「掷骰子为奇数」 

๏ 事件的并集：  表示「  发生或  发生」的事件 

๏ 例如：「掷骰子为偶数」与「掷骰子为奇数」的并集是整个样本空间 

๏ 事件的交集：  表示「  发生且  发生」的事件 

๏ 例如：「掷骰子为偶数」与「掷骰子为质数」的交集是 

A A

A ∪ B A B

A ∩ B A B

{2}

41



概率论 101
概率的运算

๏  

๏ 推导：  

๏  

๏ 推导：  

๏ 当 ，即「  与  互斥」时，  

๏ 什么情况下能有 ？

ℙ(A) = 1 − ℙ(A)

ℙ(A) = ℙ(Ω∖A) = ℙ(Ω) − ℙ(A) = 1 − ℙ(A)

ℙ(A ∪ B) = ℙ(A) + ℙ(B) − ℙ(A ∩ B)

ℙ(A ∪ B) = ℙ((A∖(A ∩ B)) ∪ (B∖(A ∩ B)) ∪ (A ∩ B))

A ∩ B = ∅ A B ℙ(A ∪ B) = ℙ(A) + ℙ(B)

ℙ(A ∩ B) = ℙ(A)ℙ(B)
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概率论 101
条件概率

๏ 如果事件  满足 ，那么对任意事件 ，可按照如下方式定义「已知  发生
的条件下  发生」的概率  ： 

๏ 例如：考虑掷均匀骰子，  表示「掷出偶数」，  表示「掷出
小于 」，则有  

๏  

๏ 当 （或 ）时，有  

๏ 此时称「  与  独立」

A ℙ(A) > 0 B A
B ℙ(B ∣ A)

A = {2,4,6} B = {1,2,3}
4 ℙ(B ∣ A) = (1/6)/(1/2) = 1/3

ℙ(A ∩ B) = ℙ(A)ℙ(B ∣ A) = ℙ(B)ℙ(A ∣ B)

ℙ(B ∣ A) = ℙ(B) ℙ(A ∣ B) = ℙ(A) ℙ(A ∩ B) = ℙ(A)ℙ(B)

A B

43

ℙ(B ∣ A) =
ℙ(A ∩ B)

ℙ(A)



概率论 101
条件概率

๏ 注意，条件概率  不代表「因为  所以 」或「先  后 」 

๏ 例如：  为「感染了病毒」，  为「检测呈阳性」，  仍是有意义的 

๏ 给定 ，可证明函数  也是一个概率分布 

๏ 所以条件概率也满足各种运算规则 

๏ 例如：  

๏ 推论：若  与  独立，则  与  也独立 

๏

ℙ(B ∣ A) A B A B

B A ℙ(B ∣ A)

ℙ(A) > 0 B ↦ ℙ(B ∣ A)

ℙ(B ∣ A) = 1 − ℙ(B ∣ A)

A B A B

ℙ(B ∣ A) = 1 − ℙ(B ∣ A) = 1 − ℙ(B) = ℙ(B)
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QuizShow
TopCoder SRM 223, Div 1 - Easy

๏ 三名玩家，第  名玩家有分数 ，可以下注 ，然后回答问题，回答正确加 
 分，回答错误减  分，最后分数高的玩家获胜 

๏ 事件「第  名玩家答对」相互独立，概率为  

๏ 已知所有玩家的分数和 、 ，请问零号玩家下注多少能最大化获胜概率？ 

๏ 样空空间是什么？ 

๏ 概率分布是什么？

i si wi ≤ si
wi wi

i pi

w1 w2
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QuizShow
TopCoder SRM 223, Div 1 - Easy

๏ 样本空间 ，  表示答对，  表示答错 

๏ 事件「零号玩家答对」  

๏ 对第  名玩家有 ，且  相互独立 

๏ ， ，…… 

๏ 算法：枚举零号玩家的下注 ，然后通过枚举所有样本计算获胜概率

Ω = {(b0, b1, b2) ∣ bi = ⊤ 或 bi = ⊥ } ⊤ ⊥

B0 = {( ⊤ , b1, b2) ∣ bi = ⊤ 或 bi = ⊥ }

i ℙ(Bi) = pi Bi

ℙ(B0 ∩ B1 ∩ B2) = p1p2p3 ℙ(B0 ∩ B1 ∩ B2) = (1 − p1)p2p3

w0
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BirthdayOdds
TopCoder SRM 174, Div 1 - Easy

๏ 生日悖论：若房间里有至少  个人，则有大于  的概率有两人同月同日生 

๏ 应该有怎样的独立性假设？ 

๏ 样本空间和概率分布是什么？ 

๏ 考虑有这么一个星球，它每年有  天 

๏ 请问至少要多少人，才能促成「生日悖论」中的概率至少为 ？

23 50 %

daysInYear

minOdds %
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BirthdayOdds
TopCoder SRM 174, Div 1 - Easy

๏ 样本空间 ，其中  表示人数 

๏ 事件 「第  个人出生在第  天」
 

๏ 独立性假设：对任意 ，事件  相互独立 

๏  

๏ 考虑事件  为「所有人的生日都不相同」，  为「前  个人的生日都不相同」 

๏ ，  

๏  即「有两人同月同日生」的概率

Ω = {(d1, d2, ⋯, dk) ∣ 1 ≤ di ≤ daysInYear} k

i j
Bi,j = {(d1, ⋯, di−1, j, di+1, ⋯, dk) ∣ d1, ⋯, di−1, di+1, ⋯, dk ≤ daysInYear}

d1, d2, ⋯, dk Bi,di

ℙ(Bi,di
) = 1/daysInYear

A Ai i

ℙ(Ak) = ℙ(A) ℙ(A1) = 1

ℙ(A) = 1 − ℙ(A)

48



BirthdayOdds
TopCoder SRM 174, Div 1 - Easy

ℙ(Ai) = ∑
d1,⋯,dk∣d1,⋯,di两两不同

ℙ(B1,d1
)⋯ℙ(Bk,dk

)

= ∑
d1,⋯,di两两不同

ℙ(B1,d1
)⋯ℙ(Bi,di

)

= ∑
d1,⋯,di−1两两不同

∑
j≠d1,⋯,di−1

ℙ(B1,d1
)⋯ℙ(Bi−1,di−1

)ℙ(Bi,j)

= ∑
d1,⋯,di−1两两不同

ℙ(B1,d1
)⋯ℙ(Bi−1,di−1

) ∑
j≠d1,⋯,di−1

ℙ(Bi,j)

= ∑
d1,⋯,di−1两两不同

ℙ(B1,d1
)⋯ℙ(Bi−1,di−1

) ⋅
daysInYear − (i − 1)

daysInYear

= ℙ(Ai−1) ⋅
daysInYear − (i − 1)

daysInYear
49



BirthdayOdds
TopCoder SRM 174, Div 1 - Easy

๏ 也可以通过条件概率来推导 

๏  

๏  表示前  个人生日两两不同的条件下第  个人也不与他们生日相同
的概率 

๏ 也就是  

๏ 生日悖论： ，  

๏ 算法：从小到大枚举人数 ，直到  达到 

ℙ(Ai) = ℙ(Ai ∩ Ai−1) = ℙ(Ai ∣ Ai−1)ℙ(Ai−1)

ℙ(Ai ∣ Ai−1) i − 1 i

daysInYear − (i − 1)
daysInYear

ℙ(A) = 365
365 × 364

365 × ⋯ × 365 − (23 − 1)
365 ≈ 0.493 ℙ(A) ≈ 0.507

k ∏k
i=1

daysInYear − (i − 1)
daysInYear (100 − minOdds) %

50



概率论 101
随机变量

๏ 给定概率空间 ，函数  被称为随机变量，如果 

๏ 对任意 ，都有  为概率空间中的事件 

๏ 若样本空间  有限（或离散）且事件域包含所有  子集，该要求是平凡的 

๏  表示 ，  可以一般化为关于  的谓词 

๏ 例如：考虑掷均匀骰子两次  

๏  表示「掷出点数之和」的随机变量 

๏

(Ω, ℱ, ℙ) X : Ω → ℝ

t ∈ ℝ {ω ∈ Ω ∣ X(ω) ≤ t} ∈ ℱ

Ω Ω

ℙ(X ≤ t) ℙ({ω ∈ Ω ∣ X(ω) ≤ t}) X ≤ t X

Ω = {(a, b) ∣ a, b ∈ {1,2,3,4,5,6}}

X : (a, b) ↦ a + b

ℙ(X = 10) = ℙ({(a, b) ∣ a + b = 10}) = ℙ({(4,6), (5,5), (6,4)}) = 1/12
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概率论 101
随机变量

๏ 若  是离散型随机变量，那么  的概率质量函数可定义为  

๏ 若  是连续型随机变量，那么一些情况下可以定义其概率密度函数  

๏ 回顾：事件  与  独立定义为  

๏ 随机变量  与  独立可以定义为对任意 ，都有  

๏

X X pX(xi) = ℙ(X = xi)

X pX(x)

A B ℙ(A ∩ B) = ℙ(A)ℙ(B)

X Y x, y ∈ ℝ

ℙ(X ≤ x, Y ≤ y) = ℙ(X ≤ x)ℙ(Y ≤ y)

52



概率论 101
随机变量

๏ 回顾：对于事件  在事件  发生的条件下的概率定义为  

๏ 在已知随机变量  的条件下，随机变量  的条件概率分布记为  

๏ 若  是离散型随机变量：  

๏ 若  是连续型随机变量：一些情况下可以定义其概率密度函数  

๏ 若  和  的取值都是有限的，那么  可以用矩阵来描述

B A ℙ(B ∣ A) = ℙ(A ∩ B)
ℙ(A)

X = x Y ℙ(Y ∣ X = x)

Y pY∣X(yi ∣ x) = ℙ(Y = yi ∣ X = x) =
ℙ(X = x, Y = yi)

ℙ(X = x)

Y pY∣X(y ∣ x)

X Y ℙ(Y ∣ X)
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概率论 101
马尔可夫链

๏ 马尔可夫链（Markov chain）是同一样本空间上的随机变量序列 ，满足 

๏ 对任意  和 ，都有条件概率分布 

๏  等价于   

๏ 例如： 

๏ 重复掷骰子，样本空间为点数序列，  表示第  次掷出点数 

๏ 重复掷骰子，样本空间为点数序列，  表示前  次掷出点数之和 

๏ 再想一些例子？

X1, X2, ⋯

n x1, x2, ⋯, xn

ℙ(Xn+1 ∣ X1 = x1, X2 = x2, ⋯, Xn = xn) ℙ(Xn+1 ∣ Xn = xn)

Xi i

Xi i
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概率论 101
马尔可夫链

๏ 回顾：考虑  函数以均匀的概率返回  中的一个整数 

๏ 计算嵌套调用  次后，返回  的概率 

๏ 构造马尔可夫链：随机变量  表示调用  次后的返回值 

๏ ，  若  

๏   

๏ ，也可以进行动态规划

rand(N) 0,⋯, N − 1

nestings target

Xi i

X0 = N ℙ(Xn+1 = k ∣ Xn = xn) = 1/xn k < xn

ℙ(Xn+1 = k) = ∑j=k+1 ℙ(Xn+1 = k, Xn = j) = ∑j=k+1 ℙ(Xn+1 = k ∣ Xn = j)ℙ(Xn = j)

ℙ(Xn+1 = k) = ∑j=k+1
1
j ℙ(Xn = j)
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概率论 101
马尔可夫链

๏ 无限猴子定理：给猴子打字机和充分长的时间，那么它一定能打出三体全集 

๏ 构造马尔可夫链：随机变量  表示打了  个字后，如果前面已经打出过三体，那么
随机变量取值为三体的长度，否则取值为当前后缀能匹配三体前缀的长度 

๏ 可以证明， ，其中  为三体的长度 

๏ 如何构造条件概率分布 ？ 

๏ 该概率分布与  无关，所以只需要考虑构造  表示从匹配长度为  到匹配
长度为  的概率 

๏ 这是字符串匹配问题，可以用 KMP 算法或 AC 自动机构造状态机

Xi i

limt→∞ ℙ(Xt = N) = 1 N

ℙ(Xt+1 ∣ Xt)

t p(x′￼; x) x
x′￼
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概率论 101
马尔可夫链

๏ 考虑一个简化问题，字符集只有 ，希望打出的字符串是  

๏ 共有四种匹配状态，状态转移之间的有向边刻画了状态转移关系和概率 

๏ 表达了条件概率分布 ，状态有限时可以用矩阵表示

H, T HTH

ℙ(Xt+1 ∣ Xt)

57图片来源：https://commons.wikimedia.org/wiki/File:Markov_Chain_for_String_Generation_Example.png

https://commons.wikimedia.org/wiki/File:Markov_Chain_for_String_Generation_Example.png


Guessing the Dice Roll
HDU 5955

๏ 有  个人，每人给出长度为  的点数序列，重复掷骰子直到掷出的点数序列的
后缀与某个人的序列匹配，结束并认为那个人获胜 

๏ 计算每个人获胜的概率 

๏ 第一步：构造马尔可夫链  表示重复掷骰子过程中的匹配状态 

๏ 设  表示  个人获胜的状态，这些状态满足  

๏ 第二步：计算 ，对第  个人计算匹配到其获胜的状态  的概率

n m

X1, X2, ⋯

a1, a2, ⋯, an n p(ai; ai) = 1

limt→∞ ℙ(X = ai) i ai
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Guessing the Dice Roll
HDU 5955

๏ 设转移矩阵为 ，初始状态的概率分布为行向量 ，那么需要计算  

๏ 与无限猴子定理的情况类似，可以证明极限存在 

๏ 算法一：矩阵快速幂，直到收敛 

๏ 算法二：观察到如果 ，那么有  

๏ 建立线性方程组，通过高斯消元求解  

๏ 比如状态  在掷出  到  点后的后继状态是  到 ，那么有方程 

๏

P ν limt→∞ νPt

π = limt→∞ νPt π = πP

π

x 1 6 x′￼1 x′￼6

π(x) = 1
6 π(x′￼1) + ⋯ + 1

6 π(x′￼6)
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概率论 101
贝叶斯公式

๏ 对于随机变量  和 ，条件概率分布  和  有何关系？ 

๏ 事件  和  的版本： 

๏ 离散随机变量  和  的版本： 

๏ 连续随机变量  和  的版本：

X Y ℙ(X ∣ Y) ℙ(Y ∣ X)

A B

X Y

X Y

60

ℙ(B ∣ A) =
ℙ(A ∩ B)

ℙ(A)
=

ℙ(B)ℙ(A ∣ B)
ℙ(A)

ℙ(Y = y ∣ X = x) =
ℙ(Y = y)ℙ(X = x ∣ Y = y)

ℙ(X = x)

pY∣X(y ∣ x) =
pY(y)pX∣Y(x ∣ y)

pX(x)

贝叶斯公式 
（Bayes’ rule）



病毒检测

๏ 回顾：  为「感染了病毒」，  为「检测呈阳性」，  为真阳性的概率 

๏ 如果群体患病率为 ，检测准确率为 ，真阳性的概率是多少？

B A ℙ(B ∣ A)

1 % 95 %

61

贝叶斯公式：ℙ(B ∣ A) =
ℙ(B)ℙ(A ∣ B)

ℙ(A)
ℙ(B ∣ A) =

ℙ(B)ℙ(A ∣ B)
ℙ(A)

=
ℙ(B)ℙ(A ∣ B)

ℙ(B)ℙ(A ∣ B) + ℙ(B)ℙ(A ∣ B)

=
1/100 × 95/100

(1/100 × 95/100) + (99/100 × 5/100)
≈ 16.1 % 即便检测阳性，真的感染的概率其实也不高

 表示「没有感染病毒」B



三门问题

62图片来源：Maria Gorinova’s Advances in Programming Languages (Guest Lecture) slides on Probabilistic Programming.
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三门问题

63

1 2 3

1 2 3

贝叶斯公式：ℙ(B ∣ A) =
ℙ(B)ℙ(A ∣ B)

ℙ(A)

ℙ(车在 1 号门) =
1
3

ℙ(车在 1 号门 ∣主持人开 2 号门)

=
ℙ(车在 1 号门)ℙ(主持人开 2 号门 ∣车在 1 号门)

ℙ(主持人开 2 号门)

=
ℙ(车 1)ℙ(主2 ∣车1)

ℙ(车1)ℙ(主2 ∣车1) + ℙ(车2)ℙ(主2 ∣车2) + ℙ(车3)ℙ(主2 ∣车3)

=
1/3 × 1/2

(1/3 × 1/2) + (1/3 × 0) + (1/3 × 1)
=

1
3



萨利·克拉克的审判

๏ 1996 年，萨利·克拉克的新生儿在出生两周后去世 

๏ 一年之后历史重演，她的第二个新生儿也去世了 

๏ 儿科医生罗伊·梅多斯出庭作证「两名新生儿接连由于自然原因死亡的概率是 
7300 万分之一」，这段证词给萨利·克拉克定了罪 

๏ 这个审判是否存在问题？
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萨利·克拉克的审判

๏ 从经典逻辑的角度，似乎没有问题 

๏ 如果克拉克无罪，那么她的两个孩子不会都刚出生就死亡 

๏ 逆否命题：如果她的两个孩子都刚出生就死亡，那么克拉克有罪 

๏ 考虑概率分析，令  为「克拉克无罪」，  为「两个孩子刚出生就死亡」B A

65

贝叶斯公式：ℙ(B ∣ A) =
ℙ(B)ℙ(A ∣ B)

ℙ(A)

医生的证词只说明  概率很低ℙ(A ∣ B)

但是「两个孩子刚出生就死亡」本来就及其罕见！



萨利·克拉克的审判

๏ 令  为「克拉克无罪」，  为「克拉克有罪」，  为「两个孩子刚出生就死亡」 

๏ 考虑 ，它应该是个很小的概率，根据历史统计估算为 5 亿分之一

B B A

ℙ(B)
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ℙ(B ∣ A)

=
ℙ(B)ℙ(A ∣ B)

ℙ(A)
=

ℙ(B)ℙ(A ∣ B)
ℙ(B)ℙ(A ∣ B) + ℙ(B)ℙ(A ∣ B)

=
(1 − 1/500000000) × 1/73000000

((1 − 1/500000000) × 1/73000000) + (1/500000000 × 1)
≈ 87.3 %

医生的证词说明  为 7300 万分之一ℙ(A ∣ B)

在有罪的条件下，估算 ℙ(A ∣ B) = 1

克拉克无罪的概率很大！



萨利·克拉克的审判

๏ 概率视角下，如何看待逆否命题？ 

๏  接近 ，但是  接近 ！ 

๏ 相比于经典逻辑，似乎「贝叶斯式的逻辑」更适合我们的现实生活 

๏ 为命题赋予置信度，而不是单纯的真与假的二分法 

๏ 使用贝叶斯公式来更新我们对命题的置信度

ℙ(孩子没死 ∣ 无罪) 1 ℙ(有罪 ∣ 孩子死了) 0
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贝叶斯推断
Bayesian Inference

๏ 设  是我们关注但无法直接获取信息的事件，比如「感染了病毒」 

๏ 可理解为假设（Hypothesis） 

๏ 设  是与  相关而且可以通过观察获取信息的事件，比如「检测呈阳性」 

๏ 可理解为证据（Evidence）

H

E H
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ℙ(H ∣ E) =
ℙ(H)ℙ(E ∣ H)

ℙ(E)

对  的先验概率 
（prior）

H 若  发生则  发生的似然度 
（likelihood）

H E

观察到  后，
对  的后验概率 

（posterior）

E
H



贝叶斯推断
Bayesian Inference

๏ 通过观察证据  获取信息，从而调整我们对假设  是否成立的认知 

๏ 按照随机变量来理解，若  表示无法直接观察的量，  表示可以观察的相关量：

E H

X Z
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ℙ(H ∣ E) =
ℙ(H)ℙ(E ∣ H)

ℙ(E)

对  的先验概率 
（prior）

H 若  发生则  发生的似然度 
（likelihood）

H E

观察到  后，
对  的后验概率 

（posterior）

E
H

ℙ(X ∣ Z = z) =
ℙ(X)ℙ(Z = z ∣ X)

ℙ(Z = z)
观察  的值为  后，
对  的后验概率分布

Z z
X



机制设计
是贝叶斯推断
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๏ ：放置跳板的方案， ：进入目标桶的小球数 
๏ 先验 ：随机在平面上放置 
๏ 似然度 ：给定方案，有  个小球进入目标桶的概率 
๏ 后验 ：观察到  个小球进入目标桶，方案的条件概率分布

X Z
ℙ(X)

ℙ(Z = z ∣ X) z
ℙ(X ∣ Z = z) z

ℙ(X ∣ Z = z) =
ℙ(X)ℙ(Z = z ∣ X)

ℙ(Z = z)



文本分类
是贝叶斯推断

71图片来源：https://www.ibm.com/think/topics/latent-dirichlet-allocation

๏ 只从单词出现的角度来考虑文本分类，即
「词袋」（bag of words） 

๏ 设单词表长度为  

๏ ：每个主题中的单词概率， ：文本 
๏ 先验 ：随机的长度为   的非负向量，

其元素和为一 
๏ 似然度 ：给定每个主题的单词

概率，生成文本  的概率 
๏ 后验 ：观察到文本 ，每个主

题的单词概率的条件概率分布

K

X Z
ℙ(X) K

ℙ(Z = z ∣ X)
z

ℙ(X ∣ Z = z) z

ℙ(X ∣ Z = z) =
ℙ(X)ℙ(Z = z ∣ X)

ℙ(Z = z)

https://www.ibm.com/think/topics/latent-dirichlet-allocation


概率定位
是贝叶斯推断

72图片来源：S. Thrun, W. Burgard, and D. Fox. 2005. Probabilistic Robotics. MIT Press.

๏ ：机器人的位置， ：传感器返回的信息 
๏ 先验 ：在考虑的空间里的随机分布 
๏ 似然度 ：给定机器人的位置，

传感器返回信息  的概率 
๏ 后验 ：观察到传感器信息 ，

机器人位置的条件概率分布

X Z
ℙ(X)

ℙ(Z = z ∣ X)
z

ℙ(X ∣ Z = z) z

ℙ(X ∣ Z = z) =
ℙ(X)ℙ(Z = z ∣ X)

ℙ(Z = z)



时间序列
是贝叶斯推断
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美国国内民航总里程（按月份）

๏ ：走势折线， ：历史数据 
๏ 先验 ：通过一些方式（比如高斯过程）给出走势折线的分布 
๏ 似然度 ：给定走势折线，拟合历史数据  的概率 
๏ 后验 ：观察到历史数据 ，走势折线的条件概率分布

X Z
ℙ(X)

ℙ(Z = z ∣ X) z
ℙ(X ∣ Z = z) z

数据来源：https://fred.stlouisfed.org/series/RPM

ℙ(X ∣ Z = z) =
ℙ(X)ℙ(Z = z ∣ X)

ℙ(Z = z)

https://fred.stlouisfed.org/series/RPM


过程化设计
是贝叶斯推断
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从一个初始结构出发 
设计具有稳定结构的积木结构

给定一个前视图 
设计一个具有该前视图的飞船

图片来源：D. Ritchie. 2016. Probabilistic Programming for Procedural Modeling and Design. Ph.D. Thesis.

๏ ：设计方案， ：设计目标 
๏ 先验 ：随机生成设计方案 
๏ 似然度 ：给定设计方案，达成设计目标  的概率 
๏ 后验 ：观察到设计目标 ，设计方案的条件概率分布

X Z
ℙ(X)

ℙ(Z = z ∣ X) z
ℙ(X ∣ Z = z) z

ℙ(X ∣ Z = z) =
ℙ(X)ℙ(Z = z ∣ X)

ℙ(Z = z)



验证码破解
是贝叶斯推断

75图片来源：T. A. Le, A. G. Baydin, and F. Wood. 2017. Inference Compilation and Universal Probabilistic Programming. In AISTATS'17.

渲染过程从字符串随机
生成一张验证码图片

ℙ(X ∣ Z = z) =
ℙ(X)ℙ(Z = z ∣ X)

ℙ(Z = z)

๏ ：字符串， ：验证码图片 
๏ 先验 ：随机产生的字符串 
๏ 似然度 ：给定字符串，渲染

后接近验证码图片  的概率 
๏ 后验 ：观察到验证码图片 ，

字符串的条件概率分布

X Z
ℙ(X)

ℙ(Z = z ∣ X)
z

ℙ(X ∣ Z = z) z



逆向图形学
是贝叶斯推断

76图片来源：T. D. Kulkarni, P. Kohli, J. B. Tenenbaum, and  V. Mansinghka. 2015. Picture: A Probabilistic Programming Language for Scene Perception. In CVPR'15.

๏ ：人脸的 3D 结构、扫描角度、光照情况， ：扫描图 
๏ 先验 ：随机产生的 3D 结构等信息 
๏ 似然度 ：给定 3D 结构等信息，渲染后接近扫

描图  的概率 
๏ 后验 ：观察到扫描图 ，3D 结构等信息的条

件概率分布

X Z
ℙ(X)

ℙ(Z = z ∣ X)
z
ℙ(X ∣ Z = z) z

渲染 改变角度、光照后渲染

ℙ(X ∣ Z = z) =
ℙ(X)ℙ(Z = z ∣ X)

ℙ(Z = z)



是贝叶斯推断

๏ ：复原图， ：输入图 
๏ 先验 ：随机产生的复原图（可以使

用 Stable Diffusion 模型） 
๏ 似然度 ：给定复原图，破坏

后接近输入图  的概率 
๏ 后验 ：观察到输入图 ，复

原图的条件概率分布

X Z
ℙ(X)

ℙ(Z = z ∣ X)
z

ℙ(X ∣ Z = z) z

图片复原

图片来源：G. Cardoso, Y. J. E. Idrissi, S. L. Corff, and E. Moulines. 2024. Monte Carlo guided Diffusion for Bayesian linear inverse problems. In ICLR'24.

去模糊

图像修复

超分辨率
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ℙ(X ∣ Z = z) =
ℙ(X)ℙ(Z = z ∣ X)

ℙ(Z = z)



贝叶斯推断
Bayesian Inference

๏ 在一些场景中，通过贝叶斯推断建议下
一步去观察什么，进而更新对  的认知 

๏ 例如：贝叶斯搜索（物理层面的） 

๏ 1968 年：US Submarine Scorpion 

๏ 1988 年：SS Central America 

๏ 2008 年：Fosset 

๏ 2011 年：AF 447（法航 447 空难）

X
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ℙ(X ∣ Z = z) =
ℙ(X)ℙ(Z = z ∣ X)

ℙ(Z = z)
观察  的值为  后，
对  的后验概率分布

Z z
X

图片来源：L. D. Stone. 2017. Bayesian Search for Missing Aircraft. Online.





贝叶斯推断
Bayesian Inference

๏ 我们应该去观察什么样的 （换句话说，收集什么样的证据）？ 

๏ 直觉：我们的观察应该尽可能大地改变先验概率  

๏ 当先验概率很低的时候，  很大的观察 

๏ 当先验概率很高的时候，  很低的观察  

๏ 换句话说，  接近于  的则是没啥信息量的观察

Z

ℙ(X)

ℙ(Z = z ∣ X)/ℙ(Z = z)

ℙ(Z = z ∣ X)/ℙ(Z = z)

ℙ(Z = z ∣ X)/ℙ(Z = z) 1
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ℙ(X ∣ Z = z) = ℙ(X) ×
ℙ(Z = z ∣ X)

ℙ(Z = z)
观察  的值为  后，
对  的后验概率分布

Z z
X

萨根标准：超凡主张
须有超凡证据



贝叶斯视角下的星座特质

๏ 考虑  为我的星座，  是星座学告诉我的性格特质，然后我发现很符合 

๏ 「他们也很实际，能使爱幻想与图实际的性格共存且并荣。 做事周到细
心、谨慎有条理，非常理性，甚至冷酷，有特殊的评论力。 喜欢一点点的
分析、批判，做事很投入。 好学、好奇、求知欲旺盛……」 

๏ 也就是说，  

๏ 但是， 观察本身的概率 ，也就是描述对于大多数人多少都符合 

๏ 那么，比值 ，是信息量很少的观察！

x z

ℙ(Z = z ∣ X = x) ≈ 1

ℙ(Z = z) ≈ 1

ℙ(Z = z ∣ X)/ℙ(Z = z) ≈ 1

81



贝叶斯视角下的医生诊断

๏ 医生诊断需要选择「性价比」高的观察 

๏ 「性能」：观察带来的信息量 

๏ 「价格」：进行观察的时间消耗、检查成本、对病人的伤害等 

๏ 例子：考虑两种疾病   和 ，已知  下症状  的概率  

๏ 考虑下列两条信息，应该选择哪一条？ 

๏ 在另外一种疾病  下症状  的概率  

๏ 找疾病  下的另一个症状  及其概率  

H1 H2 H1 E1 ℙ(E1 ∣ H1)

H2 E1 ℙ(E1 ∣ H2)

H1 E2 ℙ(E2 ∣ H1)
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贝叶斯视角下的医生诊断

๏ 回顾可以衡量信息量的比值： ，其中  为疾病，  为症状 

๏ 获取  可以帮助我们评估  作为证据的「排他性」 

๏ 如果 ，那么后验概率  

๏ 优先找其它能解释证据的假设，而不是只找当前假设能对应上的证据！

ℙ(E ∣ H)/ℙ(E) H E

ℙ(E1 ∣ H2) E1

ℙ(E1 ∣ H2) ≈ 0 ℙ(H1 ∣ E1) = ℙ(H1) ×
ℙ(E1 ∣ H1)

ℙ(E1)
≈ 1
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ℙ(E1 ∣ H1)
ℙ(E1)

=
ℙ(E1 ∣ H1)

ℙ(H1)ℙ(E1 ∣ H1) + ℙ(H2)ℙ(E1 ∣ H2)

已知



到达「平衡态」
这确实是个不得了的能力

๏ 在贝叶斯推理中，往往  是很难求（或者没法求）的 

๏ 即使不知道  的具体形式，通过迭代算法可以达到对其采样的目的 

๏ The Metropolis-Hastings Algorithm，即将介绍 

๏ 核心：给定  后，有 ，右侧式子往往可以计算 

๏ 对于不同的 ，比值  可以计算

ℙ(Z = z)

ℙ(X ∣ Z = z)

z ℙ(X ∣ Z = z) ∝ ℙ(X)ℙ(Z = z ∣ X)

x1, x2
ℙ(X = x1 ∣ Z = z)
ℙ(X = x2 ∣ Z = z) = ℙ(X = x1)ℙ(Z = z ∣ X = x1)

ℙ(X = x2)ℙ(Z = z ∣ X = x2)
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ℙ(X ∣ Z = z) =
ℙ(X)ℙ(Z = z ∣ X)

ℙ(Z = z)



The Metropolis-Hastings (MH) Algorithm
一种基于采样的贝叶斯推断算法

๏ 我们需要对未知分布  进行采样，其中  表示样本 

๏ 虽然分布是未知的，但是支持计算  并满足  

๏ 这样对于任意样本  和 ，可以计算比值  

๏  

๏ 迭代，其中第  次迭代从  通过提议分布  采样  

๏ 计算接受概率  

๏ 以概率  令 ，否则令 

p(x) x ∈ Ω

f(x) p(x) ∝ f(x)

x1 x2 p(x1)/p(x2) = f(x1)/f(x2)

x0 ← 初始样本

i xi−1 q(x′￼; xi−1) x′￼

α(x′￼; xi−1) = min(1,
p(x′￼) ⋅ q(xi−1; x′￼)

p(xi−1) ⋅ q(x′￼; xi−1)
)

α(x′￼; xi−1) xi ← x′￼ xi ← xi−1
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可理解为邻居选择的推广

当  具备对称性且  是玻尔兹曼
分布，退化为模拟退火中的形式

q p



MH 算法演示

86动图来源：https://chi-feng.github.io/mcmc-demo/

二维标准正态分布 
采样效果不错

二维「甜甜圈」分布 
采样效果较差

MH 算法 + 随机游走提议分布

https://chi-feng.github.io/mcmc-demo/


MH 算法本质是在构造马尔可夫链
Markov Chain Monte Carlo (MCMC)

๏ 构造马尔可夫链 ，随机变量  表示第  次迭代时的样本 

๏ 在有限（或离散）样本空间下推导马尔可夫链的转移概率 

๏ ，若  

๏  

๏ 可证明，若把目标分布  看作向量 ，  看作矩阵 ，有  

๏ 通过模拟马尔可夫链转移完成采样，充分长时间后逼近目标分布

X1, X2, ⋯ Xi i

ℙ(Xn+1 = k ∣ Xn = xn) = q(k; xn) ⋅ α(k; xn) k ≠ xn

ℙ(Xn+1 = k ∣ Xn = k) = q(k; k) + ∑j≠k q( j; k) ⋅ (1 − α( j; k))

p π ℙ(Xn+1 ∣ Xn) P πP = P
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Gibbs Sampling

๏ 考虑二维的样本空间  和目
标概率分布  

๏ 假设条件概率分布  和 
 都是容易采样的 

๏ 那么从  出发，可以先采样 
 得 ，再采样  

得 ，从而得到  

๏ 相当于每次迭代都能接受新样本

ℝ × ℝ
p(x, y) ∝ f(x, y)

p(x ∣ y)
p(y ∣ x)

(xi, yi)
p(x ∣ yi) xi+1 p(y ∣ xi+1)

yi+1 (xi+1, yi+1)

其它 MCMC 算法

88动图来源：https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/


Hamiltonian Monte Carlo

๏ 考虑二维的样本空间  和目
标概率分布  

๏ 可以想像  构成
了三维空间中的一个面，每个样
本对应面上的一个点 

๏ 再想像每次给样本一个随机的动
量，然后模拟其在面上运动一段
时间，则可以比随机游走探索得
更远，并且倾向于概率高的位置

ℝ × ℝ
p(x, y) ∝ f(x, y)

(x, y, − log p(x, y))

其它 MCMC 算法

89动图来源：https://chi-feng.github.io/mcmc-demo/

https://chi-feng.github.io/mcmc-demo/


还有很多 MCMC 算法！

๏ 为什么会有多种算法？ 

๏ 不存在一个算法能在所有的贝叶斯推断问题上都达到好的采样效果 

๏ 对于一个贝叶斯推断问题，实现不同的 MCMC 算法感觉很重复工作呢？ 

๏ 确实！ 

๏ 怎么办？ 

๏ 将贝叶斯推断问题分成建模和求解两部分 

๏ 概率编程！
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概率编程
Probabilistic Programming

๏ 建模：将概率模型  实现为概率程序，表达先验  和似然度  

๏ 概率程序 = 普通程序 + 采样（sample） + 观察（observe） 

๏ 求解：概率编程系统实现多种推断算法，自动对概率程序进行贝叶斯推断 

๏ 各种 MCMC 算法 

๏ 还有一些不基于采样的算法，比如变分推断（variational inference） 

๏ 我们使用 PyMC 概率编程库进行接下来的讲解

ℙ(X, Z) ℙ(X) ℙ(Z ∣ X)
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三门问题
使用概率编程求解

92

参数 
ℙ(X)

模型 
ℙ(Z ∣ X)

观察 
Z = z

贝叶斯推断 
ℙ(X ∣ Z = z)

with pm.Model() as model: 
  car = pm.Categorical("car", p=[1/3,1/3,1/3]) 

  pick = pm.Categorical("pick", p=[1/3,1/3,1/3], observed=0) 
  p_host = pm.Data("p_host", [[0,1/2,1/2], [0,0,1], [0,1,0]]) 
  host = pm.Categorical("host", p=p_host[car], observed=1) 

  idata = pm.sample(10000)

后验概率分布表明，车出现
在另一扇门后的概率为 2/3



病毒检测
使用概率编程求解

93

参数 
ℙ(X)

模型 
ℙ(Z ∣ X)

观察 
Z = z

贝叶斯推断 
ℙ(X ∣ Z = z)

with pm.Model() as model: 
  infected = pm.Bernoulli("infected", 0.01) 

  p_pos = pm.Data("p_pos", [0.05,0.95]) 
  pos = pm.Bernoulli("pos", p_pos[infected], observed=True) 

  idata = pm.sample(10000)

后验概率分布表明，真阳
性的概率远低于假阳性



病毒检测，测两次
使用概率编程求解
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参数 
ℙ(X)

模型 
ℙ(Z ∣ X)

观察 
Z = z

贝叶斯推断 
ℙ(X ∣ Z = z)

with pm.Model() as model: 
  infected = pm.Bernoulli("infected", 0.01) 

  p_pos = pm.Data("p_pos", [0.05,0.95]) 
  pos1 = pm.Bernoulli("pos1", p_pos[infected], observed=True) 
  pos2 = pm.Bernoulli("pos2", p_pos[infected], observed=True) 

  idata = pm.sample(10000)

后验概率分布表明，测两次都阳性
的话，真阳性的概率就很高了



线性回归

95

给出平面上很多数据点，画一
条直线对这些数据点进行拟合

少量异常点，在拟合时应
该减少它们对直线的影响

如何定义这里的概率模型？



线性回归
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with pm.Model() as model: 
  intercept = pm.Normal("intercept", mu=0, sigma=1) 
  slope = pm.Normal("slope", mu=0, sigma=1) 
  sigma = pm.HalfCauchy("sigma", beta=10) 

  x = pm.Data("x", xdata) 
  mu = pm.Deterministic("mu", intercept + slope * x) 
  y = pm.StudentT("y", mu=mu, sigma=sigma, nu=3, observed=ydata) 

  idata = pm.sample(10000)

参数： 
๏ 直线截距 （intercept） 
๏ 直线斜率 （slope） 
๏ 数据扰动 （sigma）

b
k
σ

给定输入数据 ，观察对应的输
出数据 ，建模方式为  等于  

 加上由  控制的随机扰动

x
y y

kx + b σ

通过采样算法获得关于直线
参数的后验概率分布



线性回归
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从后验分布采样了若干条直线，可以
发现在有异常点存在的情况下，仍然

比较好地完成了数据点拟合



线性回归，但是有未知数据

98

只观察到一个区间内的数据点



线性回归，但是有未知数据
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with pm.Model() as model: 
  intercept = pm.Normal("intercept", mu=0, sigma=1) 
  slope = pm.Normal("slope", mu=0, sigma=1) 
  sigma = pm.HalfCauchy("sigma", beta=10) 

  x = pm.Data("x", xdata) 
  mu = pm.Deterministic("mu", intercept + slope * x) 
  y = pm.StudentT("y", mu=mu, sigma=sigma, nu=3, 
observed=ydata) 

  idata = pm.sample(10000)

之前的线性回归模型 拟合效果一般，没有考虑
到限制区间外的数据

从后验分布采样了
若干条直线



线性回归，但是有未知数据
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with pm.Model() as model: 
  intercept = pm.Normal("intercept", mu=0, sigma=1) 
  slope = pm.Normal("slope", mu=0, sigma=1) 
  sigma = pm.HalfCauchy("sigma", beta=10) 

  x = pm.Data("x", xdata) 
  mu = pm.Deterministic("mu", intercept + slope * x) 
  y_dist = pm.StudentT.dist(mu=mu, sigma=sigma, nu=3) 
  y = pm.Truncated("y", y_dist, lower=bounds[0], 
upper=bounds[1], observed=ydata) 

  idata = pm.sample(10000)

根据限制区间进行截断，
并调整似然度计算

从后验分布采样了若干
条直线，拟合效果不错



时间序列，简化版
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其实也是一种数据拟合



时间序列，简化版
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使用之前的线性回归模型 
对趋势的后验分布采样

使用之前的线性回归模型 
对每个点预测的后验分布采样

效果较差，基本只
体现出了整体趋势



时间序列，简化版

๏ 注意到，该时间序列问题有较强的周期性 

๏ 每一年中，随着月份/季节会呈现固定的增长或下降趋势 

๏ 使用 Fourier Series：  

๏  是周期长度（比如一年的天数），  是度量周期变化快慢的参数 

๏ 对于线性模型 ，调整为  

๏ 系数  是新的模型参数，同样使用贝叶斯推断来采样其后验分布

s(t) = ∑N
n=1 (αn cos( 2πnt

P ) + βn sin( 2πnt
P ))

P N

y = kt + b y = (kt + b) ⋅ (1 + s(t))

αn, βn

103



时间序列，简化版
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with pm.Model() as model: 
  intercept = pm.Normal("intercept", mu=0, sigma=1) 
  slope = pm.Normal("slope", mu=0, sigma=1) 
  sigma = pm.HalfCauchy("sigma", beta=10) 

  features = pm.Data("features", fourier_features) 
  fourier = pm.Normal("fourier", mu=0, sigma=0.1, shape=(2*N,)) 
  seasonality = pm.Deterministic("seasonality", pm.math.dot(fourier, features.T)) 

  t = pm.Data("t", tdata) 
  trend = pm.Deterministic("trend", intercept + slope * t) 
  mu = pm.Deterministic("mu", trend * (1 + seasonality)) 
  y = pm.StudentT("y", mu=trend, sigma=sigma, nu=3, observed=ydata) 

  idata = pm.sample(10000)

[cos( 2π ⋅ 1t
P ), sin( 2π ⋅ 1t

P ), ⋯, cos( 2π ⋅ Nt
P ), sin( 2π ⋅ Nt

P )]

[α1, β1, ⋯, αN, βN]

y = (kt + b) ⋅ (1 + s(t))



时间序列，简化版
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使用调整后的模型 
对趋势的后验分布采样

使用调整后的模型 
对每个点预测的后验分布采样

效果不错



过程化设计之图片生成
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设计目标 
（给定原图）

设计方案

设计方案



๏ 如何建模成贝叶斯推断问题？ 

๏ ：图片中的像素点， ：像素点是否在原图中 

๏ 先验 ：均匀分布，图片边缘的概率可以稍微低一些 

๏ 似然度 ：给定像素点，概率与它的「暗度」呈正比 

๏ 后验 ：观察到像素点在原图的情况，像素点的条件概率分布 

๏ 只考虑原图中的像素点，所以  就是  

๏ 本质上是采样根据先验和「暗度」的乘积决定的概率分布

X Z

ℙ(X)

ℙ(Z = z ∣ X)

ℙ(X ∣ Z = z)

z true

过程化设计之图片生成
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过程化设计之图片生成
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with pm.Model() as model: 
  x = pm.BetaBinomial("x", n=h-1, alpha=2, beta=2) 
  y = pm.BetaBinomial("y", n=w-1, alpha=2, beta=2) 
  u = pm.Deterministic("u", x * w + y) 
  p = pm.Data("p", darkness) 
  likelihood = pm.Bernoulli("likelihood", p=p[u], observed=True) 

  idata = pm.sample(10000)

原图中越暗的地方，概率越高

相邻的样本间连线



语言模型概率编程
先来看看语言模型的大致原理

109

语言模型输入：提示或上下文 输出：下一个词的概率

<句子开始>
：我， ：你， ：她们，……0.1 0.1 0.05

<句子开始> 我
：爱， ：是， ：把，……0.2 0.1 0.1

<句子开始> 我 爱
：你， ：她， ：火锅，……0.4 0.4 0.1

<句子开始> 我 爱 火锅
：<句子结束>， ：面，……0.3 0.1

<句子开始> 我 爱 火锅 <句子结束>

是否可以与概率编程结合？



语言模型概率编程

110A. K. Lew, T. Zhi-Xuan, G. Grand, and V. K. Mansinghka. 2023. Sequential Monte Carlo Steering of Large Language Models using Probabilistic Programs. In arXiv.

๏ ：文本， ：各种约束 
๏ 先验 ：语言模型生成的文本 
๏ 似然度 ：给定文本，

满足  给出的约束的概率 
๏ 后验 ：观察到对文本

的约束 ，文本的条件概率分布

X Z
ℙ(X)

ℙ(Z = z ∣ X)
z
ℙ(X ∣ Z = z)

z

约束：填空 约束：词长 约束：交叉



从模拟退火到概率编程

模拟退火算法 
模拟退火的正确性 
概率论 101 
贝叶斯公式 
贝叶斯推理 
MCMC 算法及其变种 
概率编程语言
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