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P(Bladl) °e° H:D(Bl,dl)

dla'"adi | \A] |

-3

NAN [T

Z P(By g P(B;i_1 4 )P(B; )

dl’""di—l |}\

J |

-3

) -

N AN [T j#dydiy

P(By ) PB4 )

dl’“"di—l |}\

J |

-3

) -

P(Byg)PBi14_)

dl’°”’di—l |)\

= PA;_) -

J |

) -

NAN [T

daysinYear — (i — 1)

daysInYear

D PGB

Y;NSE JFdy,d;_y

daysinYear — (i — 1)

daysInYear
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BirthdayOdds

TopCoder SRM 174, Div 1 - Easy

© 0] LUBIT AR KIES

® ij(;féx | A &RETi - 1 DAEBRBARBNFETE I DABARSMIIEEEE
R
. daysinYear — (i — 1)
® @Etﬂ: daysinYear
2T AESA _ 365 , 364 365 - (23 —-1) N e
. 230 P(A) = 22 x 2 x o x 2 % 0,493, P(A) & 0507

o A WHBIRMZEAZ Lk, BF Hk caysnlear ~ U2 1) ; X Z] (100 — minOdds) %

=1 daysInYear
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o LEMERZTH (Q,F,P),

® X{E

=S5 reR, £f

© G

© P(X <1)xx~

o P(X = 10) = P({(a.

TR 8 Q BFR

KX : Q - RFEARAMBH LT =

£, ﬁu%

(R E

LI
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I

B S TA Q
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T {w e Q| X(w) <t} € F AERTBPHE

1inl
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YE££, IZEXKZFEAE

5,6} }
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(]

P{w e Q| X(w) <t}), X<t U—fkHAKXT XBIEG
© Hal: Z RSB FF
© X:(a,b)~ a+bFxr I HHRE A | NEYZT=

b)|a+b=10}) =P({(4,6),(5,5),(6,4)}) = 1/12
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IK‘X Ell\] y 7/

FHNFRE TR ENX A

(B|A) =
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EVNEIPS

O,
In

B

FRon M x, x,, -

Xn_l_l ‘ Xl — xl’XZ — x29 ooo,

SHET , HAT

AWA

/Ro] 8% (Markov chain) Z[@—EAST |8 &

X, B F R DM

ElbSi=¢ 05210

X =x)FNMT

X. i%/J\/';: l /\#Iglli

X ZR7NB {RIPE

- EFS X, X, -

_l]j)( +1‘X —)C)
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® LI : Z & rand(N) REIAL A HHEERIRE 0, , N — 1 PE—EREN

o TTHR#MEW nestings )X /5, 1RO target BIHEZR
o MIEL /R X8 VT E X, xR NFEB i RXENIRE1E
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b
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® ZWER DM
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FTH =15
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KE X BITER
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Z
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Guessing the Dice Roll
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MAITE

JU |
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Guessing the Dice Roll

HDU 5955
© WA P, RN SHMRM AT EY, BAFTEITE lim,_, VP’

o SARETFEIERN G, o LIEBRREEFAL
© FHA—: FEMFRRER, BIIWE

@ 7E-/Z\_ XJL: 'JﬁD;F{JZ' = lim

I/Pta B/A\_ﬂ':ﬂp

I— 00
© LM AR, BIYSETEITKEE 1
o LLEDRZS x B 1 30 6 SUS MG AR E x| Bl x, HA

DAY <=

N\

o m(x) = =(x]) + -+ + =7(xf)



W6 101

DA

AT

o T FENTEXAY,

- A A0 B YRR A :

P(B|A) =

(Y| X) =1

AR DI PX | Y) A
P(ANB) P(B)P(A | B)
PA) PA)

© ZBEHBNIT = XA Y BYRRAS

PY=y|X=x) =

PY=y)PX=x|Y=Y)

S RENL IS B X A Y BORRA ;

leX(y | x) =

P(X = x)

PY(Y)PX| y(x | y)

px(x)

S Y

W HT AT
(Bayes’ rule)
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Bi: BA TRETHRS] , AR TKNZ0EM

© WREEEREN1% , KWNEFREKRNIS% , ERB

P(B)P(A | B)
P(A)

B P(B)P(A | B)

-~ P(B)P(A | B) + P(B)P(A | B)

- 1/100 x 95/100

~ (1/100 x 95/100) + (99/100 x 5/100)

P(B|A) =

~ 16.1 % FASTRANME , EAREMMRE SRS




FRIR - Maria Gorinova’'s Advances in Programming Languages (Cuest Lecture) slides on Probabilistic Programming.
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P(ZEFE1S| ]| EFAF 2=1))
PEE1SIDPEFAF 25T | EFE15]))

P(EiFAFF25))

PENP(E? | )+ PE)P(E? | F2) + PEF)PC
1/3 % 1/2 [

(1/3%1/2) +(1/3X0)+(1/3x1) 3
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o NAHZENAE, I 28R
© WRFTHIFLLIE, MAMHM NZFTA=ENI HEMAT
o WHEA . WRIMHH NIZTFEN HAEMIT , AR TAEIE
© ZREIEDNT, SBA TAAFE] , AN T MPEZFNEHEIT |




Al - SRR B

© BRI RAIRLIES ,

© S/RP(B), ENIZZEZM

P(B | A)
P(B)P(A | B)

B w5

I,EIE%J ’ A?ﬂ |_|/‘

E/NBIBER , 1R

P(B)P(A | B)

P(A) P(B)

NI

P(A | B) + P(B)

P(A | B)

(1 — 1/500000000) x 1/73000000

((1 = 1/500000000) x 1/73000000) + (1/500000000 X 1)

~ 87.3 %

BHERITTEE N {02
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DLt iy

Bayesian Inference X H Y563t = AN E &2 EBNURE

(prior) (likelihood)

anemanil g gy PEDPE | H) ;if) | )

© W HEZHNXEEAERRRERNSEMF, Il [ R ViR
o OJIEM MR (Hypothesis)

© X ExS HEXMA T LIBINERRE NS, Lol MeN=[81%
o tJIEAE NUEHE (Evidence)




DLt iy

Bayesian Inference

WEZE| FE 5,

X H B9 5388 X AN E & AR E

(prior) (likelihood)

e " PH | E) =

o LRI T = KIEME

BITWEIETE ERNGER , AMIBEERNIIRIR H 2RI BIAK

P(H)P(E | H)

P(E)

’ % XZ_,_Q/_J\/’LJ\

(X |Z=2)=

aufl

S RNENE, Z3k0 RERIEX

P(X)P(Z =z | X)
P(Z = 2)
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Shakespeare’s Othello

RODERIGO: Tush, never tell me, I take it much unkindly «—2_
That thou, Iago, who hast had my purse\
As if the strings were thine, should know of this.
IAGO: ‘Sblood, but you’ll not hear me. If ever I did dream
Of such a matter, abhor m&
RODERIGO: Thou told’st me
Thou didst hold him in thy hate. <«
IAGO: Despise The
If I do not. Three great ones of the city,
In personal suit to make me his lieutenant, «—
Off-capped to him; and, by the faith of man,
I know my price, Yamworth goworse-aptace
But he, as loving his own pride and purp
Evades them with a bombast circumstance,
Horrlbly stuffed with epithets of war,«___

And in conc:lu5|on
Nonsuits my mediators. For "Certes," says he,

"I have already chose my officer."

And what was he? \
Forsooth, a great arithmetician,

One Michael Cassio, a Florentine,

A fellow almost damned W/
That never set a squadron #-the-field;

Nor the division of a battle anows

rﬁzz_
© X153

o X.: B HiElER, Z: XZIK

© LI PX): ﬁﬁmmw‘t KBJ3EfA[o

/\/b%ﬂ'j\]_

o MREPZ=z|X): BEFSTEALE
WL ‘EZXZIKZE%E;%

e G PX|Z=2): MBRANAKz, BNFE
A IS RN SR 0

negative 0.04 money 0.04 military  0.04
Topics hate 0.02 worth 0.02 conflict  0.02
bad 0.01 purse 0.01 officer 0.02

K KR https://www.ibm.com/think/topics/latent-dirichlet-allocation 71
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© X: NegsANNE

O /L,E_IJ_L P(X) ZI_%)/:F?\E/]
O /1’/(/\\\/2 P(Z — Z ‘ X)

@FE_ILL”:D(X‘Z_Z)

Mes AL E B

y L1

M 2R 2

/q\%/u\ |:||:|L_ = 1:| /\J\Z 9’]@%&

/l\—

RS

K KR S Thrun, W. Burgard, and D. Fox. 2005. Probabilistic Robotics. MIT Press.
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o X: PN, Z: [hEHIE
® I P(X): BT —ERH (LtlEihidizE) SEEBTEHN DM
o WREPZ=z|X): LEEHINZ, WSTHEEIE 89K

o B PX|Z=27): URBFHERIE 7, EEMENFZEMERDH
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80 r

60

40
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0 1 1 1 1 1 1 1 1 1 1 1 1 L 1 | [ 8 1 0 1 1 1 1 1 1 1 1 1 1 1 1 L | 1 —
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

FEHENRMSER (B M)

FHEKIR - https://fred.stlouisfed.org/series/RPM 73
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o X: RITHZE, Z. KITBEMR

o ¥ P(X): BB ARIKIT R

o WUREPZ=z|X): LEXRITHZE, AT BIRz IR
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M— /\WA Sy laal-a
Bt EERESHNF RS

YK AE
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Observed images

o X. FHE, Z: WirtiEE

o F£i P(X): FEN AT &

o MAREP(Z=1z]| X): BEFATE
[E RIS IE RS & 7 IR
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Inference

Training
traces

10° WpzyTcQ mTYnIwd NmnMmC3

wB3Fc6  EqgK4hhc BRI IENFEITE
_ﬁy %kLu EE_l;

E KR T A Le, A G.Baydin, and F Wood. 2017. Inference Compilation and Universal Probabilistic Programming. In AISTATS7. &
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Inferred model
re-rendered with

Observed Inferred

o X: AKRBIDEW. HiEAE. XRER, Z: AmE

SE80 P(X) . BBAL~Z48I3D 4 7|t/jfr1|:|/b\
/(,m EPZ=z|X): 8EIDEMFER, EXERTE

B E 7 IR

® FL PX|Z=72): WREF@E z, sDEWFERNFE

(BRI RSN

OBSERVED INFERENCE
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o X: EJR

o LI P(X): FBALZA

&

Stable Diffusion 7|(7E<9E
® X,mf PZ=z]|X):
SRS VAR AN

NVARE TN

&z E’W%é

o 53 P(X \ Z=7z). WREHA

JREIH S

FREER A0

& 2KJR 0 G Cardoso, Y.]. E. Idrissi, S. L. Corff, and E. Moulines. 2024. Monte Carlo guided Diffusion for Bayesian linear inverse problems. In ICLR'24.
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Bayesian Inference

MR ZBVBE N z /5, [ (X ‘ / = Z) — L (X)L (Z — < ‘ X)
W X /S IR S P(Z = 2)

o £— =1, BT NITEEREIN T
FTEMEB A, HMEBIIT X BIAK

e plan: NITFER (VEEEH)

® 1968 &£ . US Submarine Scorpion

® 1988 &£ . SS Central America

® 2008 &£ . Fosset

11
N

®© 2011 . AFa47 (GEAL 447 X

Posterior Assuming ULBs Worked Posterior Assuming ULBs Failed

K KR L D. Stone. 2017. Bayesian Search for Missing Aircraft. Online. 78
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Bayesian Inference

P(Z=z|X)
P(Z = 7)
© IMNNIZEMBMAAFNZ (aiEY, WEMLXIFVIERE) 7
© Hw: FATBIMERMNIZR O] ge R 2 Lot R P(X)
@ SEIMERRNER, P(Z=1z]|X)/P(Z=z) BREIWE
© HEXMERSHEE, P(Z=z]|X)/P(Z = 7) REHIWE
@ BAIEW, P(Z=z|X)/P(Z=2)%0T 1 N 2xEEREINE

PX|Z=2=PX) X
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XS NS T HBE
P(X|Z=2) =

© £ EHET , F1EP(Z =) /1EXEX

o AMEAREPX | Z =

L

(Z =2z)

P(X)P(Z =z | X)

(BB RIEK) B
z) WEAMERL, BITIARE AT AKX

® The Metropolis-Hastings Algorithm, B/ 43

© 2\ BEzlE, BI

o T AE® x,x,, LLE

X|Z=2) «I

P(X = x,

(Xl

/= 7)

P (X X>

/= 7)

Z=z|X), BMNHKF

PX =x)P(Z =z

REE SRR B HY

X =Xx)

FAET LTS

P(X = x,)P(Z =7

X = Xz)

o] PIIT &
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The Metropolis-Hastings (MH) Algorithm
— R TSR R A DL I 27 4 M

© HKNTEBEXNARI DT p(x) TATHKAE, HP x € QFRRER
© BRADHAEAND, BEXFITE f(x) FHE p(x) o flx)
© XN FERMFAx, M x,, TJLUTELUE p(x)/p(x,) = flx)/f(x,)
® X, — FWEFEA o] IR AR B B
© ER, HEPFE i RIERMx_ BITRIND T g(; x,_ ;) KAF x’

® i+:§*§§*ﬂi$ OC(X'; xi—l) — Hlin(l, p(x/) ' Q(xi_l;x’) )
p(xi_1) - q(x5x;_y)

© UER a(x’;x_ )< x <« x', SN2 x « x_,
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BARAR PR IS B /R A RS

Markov Chain Monte Carlo (MCMC)

© MIEL/RUKEX,X,, -+, FEINEE X FRAB i KERITEIFER
o ABMR (BB HAZTE MESD /RO KEHIEBHEER
o PX ., =k|X,=x)=qlk;x)-alk,x,), &k+#x,

o PXyp =k X, =k =qk; k) + X, 9(j;k) - (1 — a(j; k)

m\m

o TIIH, BILEFATp BIEEE 1, PX,,, | X,) BIEHEMEP,
o BT R T KRB THTEE, BOENGEEREHHH

7P = P




Y. MICMC &%

Glbbs Sampling

© T E_HFENFEATIE R x R A
MR 90 p(x, y) « f(x, )

o BRIZFHMWMERDM p(x | y) Al
p(y | x) B =B 7 K EH

® M(Jﬁuﬁ o] PSS KAF

l}E(X | ) < x z+;E’T ~ 7|(-P(y | X4 1)
9 Vig1» AR (15 Yigr)

® I T/ RENELRERE T HEAR

SNEIRIR . https://chi-feng.github.io/mcmc-demo/
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Y. MICMC &%

I—Iamﬂtoman Monte Carlo

© T E_HFENFEATIE R x R A
MR 90 p(x, y) « f(x, )

© O XMT% (x,y —log p(x y)) ) BX
2 7 |8 E’] N
ZIKXTF\L 1 -8y — /\,m

o BEBREIRERF ZIK—/\IKUFILE’]EjJ
£, ReRUEER Liag)—E
| 57, ey LA lSIKUFL/E%iE RET
I, FEMETFHERSHNME

SNEIRIR . https://chi-feng.github.io/mcmc-demo/
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Probabilistic .

o B KRR D |

rogramming

(X, Z) LI AMERIER, TR PX) FUIIAE |

o MRIEHF =L B> + XK&F (sample) + MW (observe)

o KfE . WXL

® =

1

N

® I

o BAl&

A

g —EARETXE

~N

MCMC Bk

] PyMC R 2

FE AT HE N oRBYTH AR

"NFIA, L DI

RAGRI SIS, , BRI T O

T (variational inference)

(Z]X)
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bb

with pm.Model() as model:
car = pm.Categorical("car", p=[1/3,1/3,1/3])

nick = pm.
0_host = p
Nost = pm.

1data = pm

Categorical("pick", p=[1/3,1/3,1/3], observed=0)

n.Data("p_host", [[0,1/2,1/2],

Categorical("host", p=p_host[ca

.sample(10600)

94% HDI

6,0,1], [0,1,8]])

], observed=1)

[ERMEMmEE, FHIN

AR —BIEHEEX RN 2/3

DO R 3 B
P(X|Z=72)
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ith pm.Model() as model:
infected = pm.Bernoulli("infected", 0.01)

DO R HE R

n_pos = pm.Data("p_pos", [06.85,08.95]) PX|Z =2

nos = pm.Bernoulli("pos", p_pos[infected], observed=True)

idata = pm.sample(106060)

3B 3B
ERBER T T
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with pm.Model() as model:

infected = pm.Bernoulli("infected",

N0S
N0SZ

0_pOoS =

0

0

MR g A

om.Data("p_pos"

n.Bernoull

M.

ol 3R R

Bernoull

N
\I’Z’-
~

l(ll
i l(”

0081”

nos2",

idata = pm.sample(10000)

0

0

D0S

D0S

FRoMER DM, NEE

0.01)

. [0.95,0.95])
infected ]

infected |

118,

observed=1
observed=1

N

DO R HE R

RER[E

Mmeéﬁ@mT

PX|Z =2
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e data
ground truth
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S
© BZ& @b (intercept)

© HZFEk (slope)
© HFIEM) o (sigma)

with pm.Model() as model:

intercept = pm.Normal("intercept", mu=8, sigma=1) N A
slope = pm.Normal("slope", mu=8, sigma=1) EHINZ ﬁ@x, YE=SNPVE:S
sigma = pm.HalfCauchy("sigma", beta=10) AR 5\337@%}3 WS

o 1= | B BB L D))

x = pm.Data("x", xdata)
mu = am.Determlnistic(”mu”, intercept + slope * x)
v = pm.StudentT("y", mu=mu, sigma=sigma, nu=3, observed=ydata)

idata = pm.sample(10060)

KR AIRE K-

SHN R D h




e data
ground truth

M):%/\/\%‘E“”F TETFEEZ, 9L
PREENEBELT, 05,\\\
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-  ground truth

10
5 ___________________________________________
S
0 = . . i
OMERF|—NX BN B2 TE =
_5 —————————————————————————————————————————————————
~10

-10.0 -7.5 -=-5.0 =25 0.0 2.5 5.0 7.5 10.0
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with pm.Model() as model: NEETSATE ¢

intercept = pm.Normal("intercept", mu=0, sigma=1) B T5E
slope = pm.Normal("slope", mu=8, sigma=1)
sigma = pm.HalfCauchy("sigma", beta=10)

e ground truth

x = pm.Data("x", xdata)

mu = pm.Deterministic("mu", intercept + slope * x)

v = pm.StudentT("y", mu=mu, sigma=sigma, nu=3,
observed=ydata)

idata = pm.sample(106060)

WEBR—K, RBSIE
FIRR I X IEWI\E’]*Q%
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MF%/\/\%‘E LAY B
BZ, PR

with pm.Model() as model:
intercept = pm.Normal("intercept", mu=8, sigma=1)
slope = pm.Normal("slope", mu=8, sigma=1)

sigma = pm.HalfCauchy("sigma", beta=10)

x = pm.Data("x", xdata)
mu = om.Determlnistic(”mu”, intercept + slope * x)
v_dist = pm.StudentT.dist(mu=mu, sigma=sigma, nu=3)
v = pm.Truncated("y", y_dist, lower=bounds[8],
upper=boufds[1], observed=ydata)

idata =[ bm.sample(10060)

== Iy

zE|<r_|J X |Ejj\_’fT E
\ 1ﬂ;&'ﬂ’/< x_l/ _;%:
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© TREE|, ZBYE 50 E RV E %
o F—HFP, BEAMEDNTENE EHIBRKI NFE%

® 1% Fourier Series: s(f) = Z]nvz (a, ( )+,B (Zﬂm))
o PEAMPKE ([tl—F8ARE) , NeEERAAZNWIRENSL
© WTAMBA y=kt+b, BNy =((kt+b)(1+s))
© R a, p, =FNIRNSEL, EFERNNEIEMKXFEE /R DM
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with pm.Model() as model:

intercept = pm.Normal("intercept", mu=8, sigma=1)
slope = pm.Normal("slope", mu=8, sigma=1) — — — —
sigma = pm.HalfCauchy("sigma", beta=10) [cos( ﬂP ), sin( ﬂP ), -+, cos( ”P ), sin( ”P )]

features = pm.Data("features", fourier_features) (a1, fy, -+, ay, Py

fourier = pm.Normal("fourier", mu=8, sigma=8.1, shape=(2*N,))
seasonality = pm.Deterministic("seasonality", pm.math.dot(fourier, features.T))

t = pm.Data("t", tdata)
trend = pm.Deterministic("trend", intercept + slope * t)

mu = pm.Deterministic("mu", trend * (1 + seasonality))
v = pm.StudentT("y", mu=trend, sigma=sigma, nu=3, observed=ydata)

idata = pm.sample(10060)
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® Z0o] A% pY A O R HeE lfr [B) /R 7
o X: BRTHBRER, Z: BERARSHERE
® STH P(X): WM, BRIASEIMEERT LB MK —LL
e UREPZ=z]|X): BERZR, MEXSEWN IBEE | 2IELK
© ERPX|Z=27: URIGRZF[ERENEN, RRROEFHERERDM
© REZERRETHNEREZER, T zRLE true
© AR LZRKAFIRIEILINA [BE | BSRFARIRE R D
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n.Model() as model:
om.BetaBinomial("x", n=h-1, alpha=2, beta=2)
om.BetaBinomial("y", n=w-1, alpha=2, beta=2)
om.Deterministic("u", x * w + y)

= pm.Data("p", darkness)
likelihood = pm.Bernoulli("likelihood", p=p[u], observed=True)

idata = pm.sample(10000)
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Infilling Hard Constraints Prompt Intersection
Prompt: Prompt: Prompts:
“To tell the truth, every[BLANK] “The Fed says” “My favorite physicist 1s probably”
Query he[BLANK] to|[BLANK] Constraint: (use only short words) “My favorite writer is probably”
another[BLANK].” def constraint(p):

return len(p.split()[-1]) <=5

. . ZIK . A2 —+ . “To tell the truth, every day I heave a “The Fed says it will taper, but rate “ Richard Feynman. I really admire
® X ‘ Z ‘ * /\] N OSLErIo sigh of relief to myself that another hikes are still years away.” how he communicates complex ideas

o L6 P(X): 1B =HE A A B ST A Sample okt has gone without incident.” so clearly.”
o HIRE l]:D(Z =< ‘ X): 2B FER Probabilistic
;I%_ /IC_:I_ é/:\u ||ZJ G/\] z/\]ﬁiléll\] 7@%@ Graphical
o BRP(X|Z=2): MBEIA| M
E/\] Z/\] o,R Z s XZIKE/] 7+~ 7IKE/IL$ 47% def infilling(prompt): def constraints(prompt, constraint): def prompt_intersect (prompts):

# Initialize # Initialize # Initialize
Language parts = prompt.split(" [BLANK]") s = "" xs = [new_context(p)
s = parts[0] x = new_context(prompt) for p in prompts]
Model X = new_context(s) g = "
Sue a8 # Generate for each blank # Generate until EOS # Generate until EOS
Probabilistic for part in parts[1:]: while True: while True:
n = sample(geom(0.5)) + 1 tok = sample(1lm(x)) tok = sample(llm(xs([@]))
Program for _ in range(n): if tok == EO0S: for x in xs[1:]:
s += sample(llm(x)) break observe(1llm(x), tok)
(PythOI’l for t in tokenize(part): s += tok if tok == EOS:
s += observe(llm(x), t) condition(constraint(s)) break
pSQUdOCOde) return s return s s += tok
return s

A. K. Lew, T. Zhi-Xuan, G. Grand, and V. K. Mansinghka. 2023. Sequential Monte Carlo Steering of Large Language Models using Probabilistic Programs. In arXiv. 110
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