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. [Reps, Turetsky, and Prabhu 2016] proposed a general solution that uses tensor products
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T'he Monty-Hall Puzz.

as a probabilistic program

- Programs can use multiple kinds of branching

- Mclver and Morgan's probabilistic Guarded
Command Language (0GCL)

. Combine three kinds of branching:
- Probabilistic
- Demonic

. Conditional

PC {17273}7
cc e (10@1/3]2@1/3]301/3);
ac - 11,2,3} \ {pc,cc};

1f switch then
CC {1,2,3} \ {cc,act
fi
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Termination-Propability Analysis

ol Boolean programs

- Problem: A semiring has only one combine (@) operation

proc X begin
if
then skip
else
if

then b := true
else b := false
fi;

call X
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end
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Termination-Propability Analysis

ol Boolean programs

- Problem: A semiring has only one combine (@) operation

- Introduce extra procedures to
encode different states

proc X begin
i £ proc . Cannot handle infinite state
then skip

skip spaces
end

A workaround .
ﬁ proc begin
if

then call Xtrue
else call Xfalse
fi

end
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call X;
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Towards Multiple Compine Operations

Abstraction Equation

engine solver

System of Solution
_ >
Control-flow graph dataflow equations (dataflow facts)

- Confluence is interpreted by @, implicitly

proc X begin : : :
P f - To support multiple combine operations, we need to

then skip first distinguish different confluences in the graph

else
call X;
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-flow Hyper-graph
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(301/2 1] 401/2)
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Control-flow
hyper-graph

Tree expression
(graphic)
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[ Tree BExpression

(D
(D

Control-flow
hyper-graph

Tree expression
(literal)

A SRS
PR T
&l

ndet(prob[1/2] (sécj[x ; :;]ﬁ(e), seq|x:=2](¢g)),
prob[1/2](seq[x:=3](g), seq[x:=4](€)))

Tree expression
(graphic)




proc X begin
if
then skip
else

call X;
call X
fi
end

£X0ression
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proc X begin
if
then skip
else

call X;
call X
fi
end

- X]0IesS10N

Control-flow
hyper-graph
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proc X begin
if
then skip
else

call X;
call X
fi
end

- X]0IesS10N

Control-flow
hyper-graph

Tree expression
(graphic)
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proc X begin
if
then skip
else

call X;
call X
fi
end

- X]0IesS10N

Control-flow N Iree expression
hyper-graph (graphic)

Tree expression
(literal)

X = prob[1/3](seq[skip](e), call]| X](call[X](€)))

24



Towards Multiple Compine Operations

Abstraction Equation

engine solver

Program Control-flow . System of | Solution
dataflow equations (dataflow facts)

proc X begin
if
then skip
else

call X;
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Towards Multiple Compine Operations

Abstraction Equation

engine solver
Program Control-flow . System of | Solution
dataflow equations (dataflow facts)

proc X begin How to interpret tree expressions, algebraically?

if
then skip

else
call X;

25
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branching
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Markov Algebras

serirings + more compine operations

<M,€B,®,¢€B,r|,g,l>

Conditional & nondeterministic
orobabilistic branching

A semiring for the |
branching

abstract semantics
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Markov Algebras

serirings + more compine operations

Conditional & nondeterministic

probctbilistic bronching . Q interprets abort
branching

A semiring for the

abstract semantics | :
. 1 interprets skip

- Algebraic laws:
ca®b=b_@Da
. a,P b = bﬂ(p@ a
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Interpretation or

using a Markov Algebra

e o R T - 2 RS s AR,
A o TR R SRS R S
S R R S AT T, I o
ah S “"3*‘“3‘9 A s AR BERS
T e ey D
Y e e e 3t o

I (problpl(E,, Ey) = F(E,) B I(E>)
S (cond|@](Ey, E,)) = J(E)) D JF(E,)
S (ndet(E, E,)) = S(E) N S(E,)

I (seqlact](E)) = act ® F(E)
S (call[ XJ(E)) = X. ® S (E)
Je)=1

[Tee EXPressions
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Interpretation or

using a Markov Algebra
SR

I (problpl(E,, E)) = I(E,) D I (Ey)

I (cond|p\(E,, Ey)) = F(E)) B I(E>)

S (ndet(E, E,)) = S(E) N S(E,)

I (seqlact](E)) = act ® F(E)
S (call[ XJ(E)) = X. ® S (E)
Je)=1

[Tee EXPressions

X = prob|[1/3](seq[skip](e), call]| X](call[X](g)))
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Interpretation or

using a Markov Algebra

e o R T - 2 RS s AR,
A o TR R SRS R S
S R R S AT T, I o
ah S “"3*‘“3‘9 A s AR BERS
T e ey D
Y e e e 3t o

I (problpl(E,, Ey) = F(E,) B I(E>)
S (cond|@](Ey, E,)) = J(E)) D JF(E,)
S (ndet(E, E,)) = S(E) N S(E,)

I (seqlact](E)) = act ® F(E)
S (call[ XJ(E)) = X. ® S (E)
Je)=1

[Tee EXPressions

e LRt RN A s
v I R
[ ]
I
|
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I
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WK,
g
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S (ndet(E, E,)) = S(E) N S(E,)
I (seqlact](E)) = act ® I (E)
F(e) =1 X=(skip@ 1) (X@X® 1)

For the termination-probability analysis:
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nterpretation or lree EXPpressions

using a Markov Algebra

WK,
g

I (problpl(Ey, E») = I(E)) D I (Ey)
S (cond|@](Ey, E,)) = J(E)) D JF(E,)
S (ndet(E, E,)) = S(E) N S(E,)
I (seqlact](E)) = act ® F(E)
F(calllX)(E)) = X, ® I (E)
S(e) =1

For the termination-probability analysis:
a®b=a+b

1 2
a@b=a-b ng.(1.1)+§.(X.X.1)
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Equation
solver

algebra
Program Control-flow . System of | Solution
hyper-graph dataflow equations (dataflow facts)

proc X begin
if
then skip
else

call X;
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Towards Multiple Compine Operations

Markov

Equation
solver

algebra
Program Control-flow System of | Solution
hyper-graph dataflow equations (dataflow facts)

pr(.):i X begin X=(06kip®1); s XQ3XRQ1)
1

then skip

else

call X;
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Towards Multiple Compine Operations

Markov Equation
algebra solver

Program Control-flow . System of | Solution
hyper-graph dataflow equations (dataflow facts)

proc X begin
if
then skip
else

X=(skip@ 1) 0 XQ®X® 1)

How to solve such equations, algebraically?

call X;
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Linearization or Ir
for Newton's Method

~XOIesSSIONS

(D
(D

- Syntactic linearization:
D(g © h) = Dg & Dh
D(g® h) =(Dg® h) ® (g ® Dh)
D(8¢€|9 h) = Dg D Dh
D(gmnh)=((g®Dg)N(hd Dh)) S (gnh)

YAS)



[ Inearization of [ree EXPressions
for Newton's Method

.« Syntactic linearization:

D(g © h) = Dg © Dh
Dg®h)=WDg@h) D (g Q@ Dh) Newton's method sound

D(8¢€|9 h) = Dg¢@ Dh
D(gnh)=((g®Dg)n(hd Dh)) S (gnh)

Carefully developed to render
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D(gnh)=((g®Dg)n(hd Dh)) S (gnh)

Carefully developed to render

X = (skip® 1) X®X® 1)

YAS)



Linearization or Ir
for Newton's Method

~XOIesSSIONS

(D
(D

- Syntactic linearization:

D(g © h) = Dg © Dh
Dg®h)=WDg@h) D (g Q@ Dh) Newton's method sound

D(8¢€|9 h) = D8¢€|9 Dh
D(gnh)=((g®Dg)n(hd Dh)) S (gnh)

Linearization at v

Carefully developed to render

where

5= ((skip® 1)y ® v ®1) O




for Newton's Method

X=(skip@ 1) 0 (X®X® 1)

L Inearization o1

11

LIinearization at v

[ Tee EXressions

Y=60 0, (YQr)®d ¥Q®Y)))
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for Newton's Method

X=(skip@ 1) 0 (X®X® 1)

L Inearization o1

11

LIinearization at v

[ Tee EXressions

Y=60 0, (YQr)®d ¥Q®Y)))
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for Newton's Method

X=(skip@ 1) 0 (X®X® 1)

L Inearization o1

11

[ Tee EXressions

Y=60 0, (YQr)®d ¥Q®Y)))

Every root-to-leaf path has
at most one call!
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Towards Multiple Compine Operations

Newton's
method

Markov

algebra
Program Control-flow . System of | Solution
hyper-graph dataflow equations (dataflow facts)

proc X begin
if
then skip
else

call X;
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Towards Multiple Compine Operations

Markov Newton's

algebra method

Program Control-flow System of | Solution
hyper-graph dataflow equations (dataflow facts)

proc X begin
if
then skip
else

For Newton's method to be efficient, we require
an analysis-supplied strategy for solving
inearized equations

call X;
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Towards Multiple Compine Operations

Markov Newton's

method

algebra
Program Control-flow System of | Solution
hyper-graph dataflow equations (dataflow facts)

proc X begin
if
then skip
else

For Newton's method to be efficient, we require
an analysis-supplied strategy for solving
inearized equations

call X; L . .
For example, termination-probability analysis:

- P solvers
- BDD/ADD-based solvers

31




Case Studies (Selected)




Case Studies (Se

Kleene

Termination-probability analysis

ected

32



Case Studies (Se
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Moment-of-reward analysis
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Summary

Newton's
method

Markov

algebra

Program Control-flow . System of | Solution
hyper-graph dataflow equations (dataflow facts)

Key takeaway: Extend Newtonian Program Analysis to support more combine operations

- enabling analysis of programs with probabilistic, demonic, and conditional branching

More in the paper:
.« Support of loops and unstructured control-flow

- More case studies (e.g., expectation-invariant analysis)
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