Newtonian Program Analysis of
Propapilistic Programs

Di Wang and Thomas Reps
OOPSLA24

2024.0702

A Pipe.

[)

ne ol

Program Analysis

Program Control-flow graph g System of .
dataflow equations

Solution

(dataflow facts)

[)

ne ol

A Pipe.

Program Analysis

Program Control-flow graph g System of .
dataflow equations

proc X begin
if
then skip
else

call X;

Solution

(dataflow facts)

[)

ne ol

A Pipe.

Program Analysis

Program Control-flow graph g System of .
dataflow equations

proc X begin
if
then skip
else

call X;

Solution

(dataflow facts)

ne o

A Pipe.

proc X begin
if
then skip
else
call X;

Crogram Analysis

Abstraction
engine

System of
dataflow equations

Solution
(dataflow facts)

A Pipe.

ne o

proc X begin
if
then skip
else
call X;

Crogram Analysis

Abstraction
engine

System of
dataflow equations

X = (p(1/3) & skip)
D (p(2/3) ® X ® X)

Solution
(dataflow facts)

A Pipe.

ne o

proc X begin
if
then skip
else
call X;

Crogram Analysis

Abstraction
engine

System of
dataflow equations

X = (p(1/3) & skip)
D (p(2/3) ® X ® X)

Equation
solver

Solution
(dataflow facts)

A Pipeline of Program Analysis

Abstraction
engine

Equation

solver

Solution
(dataflow facts)

System of
dataflow equations

e ——

proc X begin
if

X ="termination
then skip .

orobability is 1/2"

else X = (p(1/3) & skip)
call X; @ (p(2/3) @ X ® X)

ne o

A Pipe.

proc X begin
if
then skip
else
call X;

“rogram Ana

Abstraction
engine

System of
dataflow equations

X =(p(/3) ®
D (p(2/3) ®

VSIS

Equation

solver

Solution
(dataflow facts)

 ——

X ="termination
orobability is 1/2"

skip)
X® X)

Also o procedure

summary for X

T'he Functional Approach

Sharir and Pnueli 1981

T'he Functional Approach

Sharir and Pnueli 1981

. Given possibly recursive procedures { P;} and an abstract semantics, i.e.,

T'he Functional Approach

Sharir and Pnueli 1981

. Given possibly recursive procedures { P;} and an abstract semantics, i.e.,

. a transformer on each control-tflow edge, e.g., skip

T'he Functional Approach

Sharir and Pnueli 1981

. Given possibly recursive procedures { P;} and an abstract semantics, i.e.,

. a transformer on each control-tflow edge, e.g., skip

. extend (@) and combine (6B) operations

T'he Functional Approach

Sharir and Pnueli 1981

. Given possibly recursive procedures { P;} and an abstract semantics, i.e.,

. a transformer on each control-tflow edge, e.g., skip

. extend (@) and combine (6B) operations

» Find a procedure summary for each P;

T'he Functional Approach

Sharir and Pnueli 1981

T'he Functional Approach

Sharir and Pnueli 1981

T'he Functional Approach

Sharir and Pnueli 1981

X

[, s]

T'he Functional Approach

Sharir and Pnueli 1981

X

[, s]

s, n] = (pls,m] ® flm,, n])

D ...
D (pls, m | & flmy, nl)

T'he Functional Approach

Sharir and Pnueli 1981

X

[, s]

s, n] = (pls,m] ® flm,, n])

D ...
D (pls, m | & flmy, nl)

T'he Functional Approach

Sharir and Pnueli 1981

X

[, s]

ls, nl = (@ls, m] @ flmy, n]) pls,rl = @ls,c] @ In,

@ls, sl =1d D ... o
D (¢ls, mk] ®f[mk, nl) & QD[S ,X] X Outx’,r

T'he Functional Approach

Sharir and Pnueli 1981

X

[, s]

B Orocedure

pls.n] = (@ls, m] @ flm, n) ¢[Sa rl = Q”[Sa c|® Inc s’
P ... — ’
D (¢ls, mk] ®f[mk, nl) & §0[S ,)C] X Outx’,r

T'he Functional Approach

Sharir and Pnueli 1981

T'he Functional Approach

Sharir and Pnueli 1981

. Let X represent the procedure summary of P, i.e, ¢ls;, X;]

T'he Functional Approach

Sharir and Pnueli 1981

. Let X represent the procedure summary of P, i.e, ¢ls;, X;]

T'he Functional Approach

Sharir and Pnueli 1981

. Let X represent the procedure summary of P, i.e, ¢ls;, X;]

- Solve the equation system using successive approximation (Kleene or chaotic)

T'he Functional Approach

Sharir and Pnueli 1981

. Let X represent the procedure summary of P, i.e, ¢ls;, X;]

- Solve the equation system using successive approximation (Kleene or chaotic)

T'he Functional Approach

Sharir and Pnueli 1981

. Let X represent the procedure summary of P, i.e, ¢ls;, X;]

- Solve the equation system using successive approximation (Kleene or chaotic)

ANYYYY %

Termination-Propabl

ity Ana

VSIS

Termination-Propability Analysis

. Abstract semantics: Termination probability on [0,1]

Termination-Propabl

ity Ana

. Abstract semantics: Termination probability on [0,1]

X = (p(1/3) ® skip) B (p(2/3) ® X ® X)

VSIS

Termination-Propabl

ity Ana

. Abstract semantics: Termination probability on [0,1]

. Transformers: skip =1, prob(1/3) =1/3

X = (p(1/3) ® skip) B (p(2/3) ® X ® X)

VSIS

Termination-Propability Analysis

. Abstract semantics: Termination probability on [0,1]

. Transformers: skip =1, prob(1/3) =1/3

. Extend (@): Multiplication

X = (p(1/3) ® skip) B (p(2/3) ® X ® X)

Termination-Propability Analysis

. Abstract semantics: Termination probability on [0,1]

. Transformers: skip =1, prob(1/3) =1/3

. Extend (@): Multiplication
. Combine (B): Addition

X = (p(1/3) ® skip) B (p(2/3) ® X ® X)

Termination-Propability Analysis

. Abstract semantics: Termination probability on [0,1]

. Transformers: skip =1, prob(1/3) =1/3

. Extend (@): Multiplication
. Combine (B): Addition

X = (p(1/3) ® skip) B (p(2/3) ® X ® X)

Termination-Propability Ana

. Abstract semantics: Termination probability on [0,1]

. Transformers: skip =1, prob(1/3) =1/3

. Extend (@): Multiplication
. Combine (B): Addition

27

R ol

TRR e
5‘4," ” o
B

X = (p(1/3) & skip) @ (p(2/3) ® X ® X)

J

Newton's Method tor Finding Roots

J

Newton's Method tor Finding Roots

- A way to find successively better
approximations of a root a function

Newton's Method t

- A way to find successively better
approximations of a root a function

O I

J

nding

ROOtS

Newton's Method t

- A way to find successively better
approximations of a root a function

O I

J

nding

ROOtS

J(x;)

Newton's Method t

- A way to find successively better
approximations of a root a function

O I

J

Nnaing Roots

J(x;)

Newton's Method :

- A way to find successively better
approximations of a root a function

Ol I

I]

INnding Roots

Newton's Method :

- A way to find successively better
approximations of a root a function

Ol I

I]

INnding Roots

Newton's Method :

- A way to find successively better
approximations of a root a function

Ol I

I]

Tgleligle]

ROOtS

Newton's Method tor Finding Roots

- A way to find successively better
approximations of a root a function

. Given a function f, its derivative f" and an initial

i (x;)
J'(x;)

Xy, repeatedly perform x; 1 = X; —

J(x;)

e

Aig2 Ait1 A

Newton's Method for

- A way to find successively better
approximations of a root a function

. Given a function f, its derivative f" and an initial

i (x;)
J'(x;)

Xy, repeatedly perform x; 1 = X; —

Finding

Create a linear model 10 find PR

a better approximation

ROOtS

J(x;)

Termination-Propabl

via Newton's Method

ity Ana

VSIS

Termination-Propability Analysis

via Newton's Method

- Reformulate the problem as root-finding:

Termination-Propabl

via Newton's Method

- Reformulate the problem as root-finding:

- Newton's method: ;
0 f(l/(i)) 5 2,7 _
FQO) 400 =3

S+ —

ity Ana

Termination-Propabl

via Newton's Method

- Reformulate the problem as root-finding:

g s AR,
T T T Jer Z%k“f
PRES ey e A A {348 ‘*z. SR
YU IR bl Sihe

- Newton's method: ;
0 f(l/(’)) N 2007 1

(i+1) _
% — U — = :
F®) 403

ity Ana

Kleene vs Newton

which converges taster?

Kleene vs Newton

which converges taster?

—&— Kleene
—®— Newton

Newton's Method for

E

Program Ana
Esparza, Kiefer, and Luttenberger 2008]

VSIS

Newton's Method

e Kleene iteration

—

KO = 1
KD = £y

r—

[Or

Program Ana
Esparza, Kieter, and Luttenberger 2008

VSIS

Newton's Method

e Kleene iteration

—

KO = 1
KD = £y

e Newton iteration

—>

V= 1

DD = f0DY @ LinearCorrectionTerm(f,)

r—

[Or

Program Ana
Esparza, Kieter, and Luttenberger 2008

VSIS

Newton's Method

e Kleene iteration

—

KO = 1
KD = £y

e Newton iteration

—>

=1

DD = f0DY @ LinearCorrectionTerm(f,)

r—

[Or

Program Ana
Esparza, Kieter, and Luttenberger 2008

VSIS

Newton's Method for

E

Program Ana
Esparza, Kiefer, and Luttenberger 2008]

VSIS

Newton's Method

E

r-

- Esparza et al. had to tackle several issues:

[Or
Esparza, Kiefer, and Luttenberger 2008]

Program Ana

VSIS

Newton's Method

r—

[Or

- Esparza et al. had to tackle several issues:

Program Ana
Esparza, Kieter, and Luttenberger 2008

- Real-valued equations — Algebraic semiring

- Numeric multiplication = Extend (&)

- Numeric addition = Combine (@)

VSIS

Newton's Method

r—

[Or

- Esparza et al. had to tackle several issues:

Program Ana
Esparza, Kieter, and Luttenberger 2008

- Real-valued equations — Algebraic semiring

- Numeric multiplication = Extend (&)

- Numeric addition = Combine (@)

e Root finding vs fixed-point finding?

VSIS

Newton's Method

E

r—

[Or

- Esparza et al. had to tackle several issues:

Program Ana
Esparza, Kiefer, and Luttenberger 2008]

- Real-valued equations — Algebraic semiring

- Numeric multiplication = Extend (&)

- Numeric addition = Combine (@)

e Root finding vs fixed-point finding?

e Derivatives?

VSIS

1

Newton's Method for

E

Program Ana
Esparza, Kiefer, and Luttenberger 2008]

VSIS

Newton's Method

- Syntactic linearization:
D(g & h) = Dg & Dh
D(g®h)=(Dg®h) d (g &® Dh)

r-

[Or

Program Ana
Esparza, Kieter, and Luttenberger 2008

VSIS

Newton's Method

D(g®h)=(Dg®h) D (g Dh)

r—

[Or

Program Ana
Esparza, Kieter, and Luttenberger 2008

- Syntactic linearization: eibniz product rule
D(g @ h) = Dg & Dh

VSIS

Newton's Method

E

- Syntactic linearization

IC 1l ization: L eibniz product rule
D(g © h) = Dg @ Dh

D(g®h)=(Dg®h) D (g Dh)

- Newton iteration for program analysis:

—

=1
pi+h — 7 @ YO
where 7@ is the least solution to

= (f@") © 1)) @ Df |, (Y)

r—

[Or

Program Ana
Esparza, Kiefer, and Luttenberger 2008]

VSIS

12

Newton's Method

E

- Syntactic linearization

IC 1l ization: L eibniz product rule
D(g © h) = Dg @ Dh

D(g®h)=(Dg®h) D (g Dh)

- Newton iteration for program analysis:

—

=1
pi+h — 7 @ YO
where 7@ is the least solution to

= (f@") © 1) @ Df |, (Y)

a © bissome ¢ such

thatb @ ¢ = a

r—

[Or

Program Ana
Esparza, Kiefer, and Luttenberger 2008]

VSIS

12

Newton's Method

E

- Syntactic linearization

IC 1l ization: L eibniz product rule
D(g © h) = Dg @ Dh

D(g®h)=(Dg®h) D (g Dh)

- Newton iteration for program analysis:

—

=1
D) — 0 @ YO

L — Linear correction term
_’(i) : :
where Y\ is the least solution to

Y = (f09) © 29) @ Df |, (Y)

a © bissome ¢ such

thatb @ ¢ = a

r

[Or

Program Ana
Esparza, Kiefer, and Luttenberger 2008]

VSIS

12

Newton's Method

E

D(g®h)=(Dg®h) D (g Dh)

- Newton iteration for program analysis:

—>

=1
D) — 0 @ YO

L — Linear correction term
_’(i) : :
where Y is the least solution to

Y = (f09) © 29) @ Df |, (Y)

a © bissome ¢ such

thatb @ ¢ = a

r—

[Or

- Syntactic linearization: eibniz product rule
D(g @ h) = Dg & Dh

Program Analysis
Esparza, Kiefer, and Luttenberger 2008]

Really a differential: f(X) —y>f’(1/) RY

12

r—

Newton's Method tor Program Analysis
Esparza, Kieter, and Luttenberger 2008

. Syntactic linearization: eibniz product rule Really a differential: f(X) - f(v) ® Y
D(g @ h) — Dg @ Dh Dconst| (Y)=0
Y

D(g®h)=(Dg®h) D (g Dh)

DX|,(Y) =

D(g(X) @ (X)) | (Y) =Dg(X)| (Y) & Dh(X)| (¥)
. . . D(g(X) @ (X)) | (Y) = ()
. Newton iteration for program analysis: o |
=1
i) = Pl oy, 7(i) Linear correction term

where YW is the least solution to

Y = (f09) © 29) @ Df |, (Y)

a © bissome ¢ such

thatb @ ¢ = a

Newton's Method

- Syntactic linearization: eibniz product rule
D(g @ h) = Dg & Dh

D(g®h)=(Dg®h) D (g Dh)

- Newton iteration for program analysis:

r—

[Or

Program Ana
Esparza, Kieter, and Luttenberger 2008

VSIS

Really a differential: f(X) —y>f’(1/) RY

Dconst| (Y)=0 Semiring constant O

DX|,(Y) =

D(g(X) @ n(X))|,(Y) = Dg(X)|,(Y) @ Dh(X) |, (Y)

D(g(X) @ h(X))|,(Y) = (

=1
it — D &) 7(i) Linear correction term

where YW is the least solution to

Y = (f09) © 29) @ Df |, (Y)

a © bissome ¢ such

thatb @ ¢ = a

)
)

12

r—

Newton's Method tor Program Analysis
Esparza, Kieter, and Luttenberger 2008

. Syntactic linearization: eibniz product rule Really a differential: f(X) - f(v) ® Y
D(g @ h) — Dg @ 1D)/) Dconst| (Y)=0 Semiring constant O
Y

DX| (Y)=
D h) = (D h Dh v
(g ®h) = (8§ &) & (g ®) D(g(X) & (X)) |, (Y) = Dg(X)| (Y) ® Dh(X) |, (Y)
. . . D(g(X) ® h(X))|, (Y) = ()
. Newton iteration for program analysis: o)
=1
prh) = PO @ 7(i) Linear correction term

where YW is the least solution to

Y = (f09) © 29) @ Df |, (Y)

a © bissome ¢ such

XQRXSTYRVPW®Y)

12

thatb @ ¢ = a

Newton's Method tor Program Analysis

- Syntactic linearization: eibniz product rule
D(g @ h) = Dg & Dh

D(g®h)=(Dg®h) D (g Dh)

- Newton iteration for program analysis:

—>

=1
pi+h — 7 @ YO

Linear correction term

where YW is the least solution to

Y = (f09) © 29) @ Df |, (Y)

a © bissome ¢ such

thatb @ ¢ = a

Esparza, Kieter, and Luttenberger 2008

Really a differential: f(X) —y>f’(1/) RY

Dconst| (Y)=0 Semiring constant O
DX| (Y)=
D(g(X) @ n(X)) [, (Y) = DgX) |, (Y) ® Dh(X)| (Y)
D(g(X) ® h(X))| (¥) = ()
D ()

XQRXSTYRVPW®Y)

bRXRXQRcS>bRYRr®)DDPRURY®c)

12

Termination-Propability Analysis

via Newton's Method for Program Analysis

Termination-Propability Ana

via Newton's Method for Program Analysis

VSIS

13

Termination-Propabl

ity Analysis

via Newton's Method for Program Analysis

LInearization at v

X = (p(1/3) @ skip) @ (p(2/3) @ X ® X)

Y=0®p2RIJAYRV)P (p(2/3) v Y)
where

6= (p(1/3) @ skip) B (p(2/3) v @ v) O v

13

Termination-Propabl

ity Analysis

via Newton's Method for Program Analysis

LInearization at v

X = (p(1/3) @ skip) @ (p(2/3) @ X ® X)

J0x;)

Y=0®p2RIJAYRV)P (p(2/3) v Y)
where

6= (p(1/3) @ skip) B (p(2/3) v @ v) O v

13

Termination-Propabl

ity Analysis

via Newton's Method for Program Analysis

LInearization at v

X = (p(1/3) @ skip) @ (p(2/3) @ X ® X)

Y=0® (p2/3)Q@YQ®v)® (p(2/3) v ®Y)

where

5 = (p(1/3) @ skip) @ (p(2/3) v @ v) OV

13

Termination-Propabl

ity Analysis

via Newton's Method for Program Analysis

LInearization at v

X = (p(1/3) @ skip) @ (p(2/3) @ X ® X)

Y=080 (p2/3)QYQ®v)® (p(2/3) v ®Y)

where

6= (p(1/3) @ skip) B (p(2/3) v @ v) O v

13

Termination-Propabl

ity Analysis

via Newton's Method for Program Analysis

LInearization at v

X = (p(1/3) @ skip) @ (p(2/3) @ X ® X)

Y=08® (p/3AQAYQR/v)P (p(2/3) v®Y)

where

5=(p(1/3) @ skip) ® (p(2/3) @v@v) v [

Fach summand has only one variable
_}

The equation becomes linear!

13

Termination-Propabl

ity Analysis

via Newton's Method for Program Analysis

LInearization at v

X = (p(1/3) @ skip) @ (p(2/3) @ X ® X)

Y=08® (p2/3) Q@Y Q®v)® (p(2/3) Qv ®Y)

14

Termination-Propabl

ity Analysis

via Newton's Method for Program Analysis

LInearization at v

X = (p(1/3) @ skip) @ (p(2/3) @ X ® X)

p(1/3ﬂ(2/3)
, ‘I:all X
skip

‘/agx

‘ C

Y=060 (p2/3AQAYQr)PD (p(2/3) Qv Y)

14

Termination-Propability Analysis

via Newton's Method for Program Analysis

LInearization at v

WA, o
3 g O
AR

X = (p(1/3) @ skip) @ (p(2/3) @ X ® X) Y=6@0 (p23B)AYVL)D (p(23Or®Y)

p(1/3A0(2/3)
, ‘I:all X
skip

Termination-Propability Analysis

via Newton's Method for Program Analysis

LInearization at v

X = (p(1/3) @ skip) @ (p(2/3) @ X ® X) Y=6@0 (p23B)AYVL)D (p(23Or®Y)

P(1/3A0(2/3)
, Eall X
skip

. At st call, perform
exploration: at 2nd call,

use the summary (v)

14

Termination-Propability Analysis

via Newton's Method for Program Analysis

LInearization at v

X = (p(1/3) @ skip) @ (p(2/3) @ X ® X) Y=6@0 (p23B)AYVL)D (p(23Or®Y)

. At st call, perform
p(1/3ﬂo(2/3) exploration; at 2nd call,

use the summary (v)

. call X .« At st call, use v; at 2nd
skip call, perform

exploration

Termination-Propability Analysis
via Newton's Method for Program Analysis

LInearization at v

X = (p(1/3) @ skip) @ (p(2/3) @ X ® X) Y=6@0 (p23B)AYVL)D (p(23Or®Y)

. At st call, perform
p(/BAO(Z/B) exploration; at 2nd call,
use the summary (v)
call X - At st call, use v; at 2nd
skip call, perform

A/‘ exploration
all X

‘ C

. Combine via @

14

Termination-Propabl

ity Analysis

via Newton's Method for Program Analysis

LInearization at v

X = (p(1/3) @ skip) @ (p(2/3) @ X ® X)

Y=08® (p2/3) Q@Y Q®v)® (p(2/3) Qv ®Y)

15

Termination-Propabl

ity Analysis

via Newton's Method for Program Analysis

LInearization at v

X = (p(1/3) @ skip) @ (p(2/3) @ X ® X)

Y=08® (p2/3) Q@Y Q®v)® (p(2/3) Qv ®Y)

Use the abstract
semantics

Y (1+2 ’)+(2 Y)+(2 Y)
=(—+—-v"—v — -1V — - U-
3 3 3 3

—20%+3u—1
4y — 3

15

Termination-Propability Analysis

via Newton's Method for Program Analysis

LInearization at v

X = (p(1/3) @ skip) @ (p(2/3) @ X ® X) Y=6@0 (p23B)AYVL)D (p(23Or®Y)

Use the abstract

Solve the linear semantics

equation

|
Newton iteration for program czmalysis: Y = (g T 51/2 — V) + (g - Y-v) + (5 V- Y)
. . 2007
I/(H_l) — U(l) oy Y(l) = —21/2 +3v—1
4p() — 3 Yy =—
4y — 3

15

o0

far so good?

SO far so good?

- Each Newton iteration generates a system of linear equations:

T L i
Sa R ,.'S‘N. ¥3
RS,y PR T
B R
2R
b b i

16

SO far so good?

- Each Newton iteration generates a system of linear equations:

Y., — (Y Y Y) Fach g has the form:
1 = 61V 720 -0 N a®0,QY, &c)B D, RY, ®c))D... (YL, QY V)

Yy = gv(Y;, Yo, ..., V)

16

SO far so good?

- Each Newton iteration generates a system of linear equations:

Y., — (Y Y Y) Fach g has the form:
1 = 61V 720 -0 N a®0,QY, &c)B D, RY, ®c))D... (YL, QY V)

Yy = gv(Y;, Yo, ..., V)

- However, Newton's method is efficient only if one can solve linear equations efficiently

16

SO far so good?

- Each Newton iteration generates a system of linear equations:

Y., — (Y Y Y) Fach g has the form:
1 = 61V 720 -0 N a®0,QY, &c)B D, RY, ®c))D... (YL, QY V)

Yy = gv(Y;, Yo, ..., V)

- However, Newton's method is efficient only if one can solve linear equations efficiently

. [Reps, Turetsky, and Prabhu 2016] proposed a general solution that uses tensor products

16

Probabl

1stiC .

“rograms

Propabilistic Programs

- We have already seen probabilistic branching

(1e1/3|2w@1/3]3@1/3)

17

Propabilistic Programs

- We have already seen probabilistic branching

rue randomness

(1e1/3|2w@1/3]3@1/3)

17

Propabilistic Programs

- We have already seen probabilistic branching

rue randomness

- A distribution of execution paths

(1e1/3|2w@1/3]3@1/3)

17

Propabilistic Programs

- We have already seen probabilistic branching

rue randomness

- A distribution of execution paths

e Probabilistic nondeterminism

(1e1/3|2w@1/3]3@1/3)

Probabl

1stiC .

“rograms

Propabilistic Programs

. There are also other kinds of branching

18

Propabilistic Programs

. There are also other kinds of branching

. Dijkstra's Guarded Command Language (GCL)

18

Propabilistic Programs

- There are also other kinds of branching
. Dijkstra's Guarded Command Language (GCL)

. A set of execution paths

18

Propabilistic Programs

- There are also other kinds of branching
. Dijkstra's Guarded Command Language (GCL)
. A set of execution paths

e Demonic hondeterminism

18

The Monty-Hal

Puzz

as a probabilistic program

The Monty-Hal

Puzz

as a probabilistic program

- Programs can use multiple kinds of branching

19

T'he Monty-Hall Puzz.

as a probabilistic program

- Programs can use multiple kinds of branching

- Mclver and Morgan's probabilistic Guarded
Command Language (0GCL)

PC {17273}7
cc e (10@1/3]2@1/3]301/3);
ac - 11,2,3} \ {pc,cc};

1f switch then
CC {1,2,3} \ {cc,act
fi

T'he Monty-Hall Puzz.

as a probabilistic program

- Programs can use multiple kinds of branching

- Mclver and Morgan's probabilistic Guarded
Command Language (0GCL)

. Combine three kinds of branching:
- Probabilistic
- Demonic

. Conditional

PC {17273}7
cc e (10@1/3]2@1/3]301/3);
ac - 11,2,3} \ {pc,cc};

1f switch then
CC {1,2,3} \ {cc,act
fi

Termination-Propabl

of

Boolean programs

ity Ana

VSIS

Termination-Propability Analysis

ol Boolean programs

- Problem: A semiring has only one combine (@) operation

proc X begin
if
then skip
else
if

then b := true
else b := false
fi;

call X

20

Termination-Propability Analysis

ol Boolean programs

- Problem: A semiring has only one combine (@) operation

proc X begin
if
then skip

proc
skip
end

A workaround _
ﬁ proc begin
if

then call Xtrue

else call Xfalse
fi
end

20

Termination-Propability Analysis

ol Boolean programs

- Problem: A semiring has only one combine (@) operation

- Introduce extra procedures to

Y beg encode different states
proc egin

if
then skip

proc
skip
end

A workaround .
ﬁ proc begin
if

then call Xtrue

else call Xfalse
fi
end

Termination-Propability Analysis

ol Boolean programs

- Problem: A semiring has only one combine (@) operation

- Introduce extra procedures to
encode different states

proc X begin
i £ proc . Cannot handle infinite state
then skip

skip spaces
end

A workaround .
ﬁ proc begin
if

then call Xtrue
else call Xfalse
fi

end

Towaras Mul

1P

le Combine Operations

Towards Multip

le Combine Operations

Abstraction Equation

engine solver

System of Solution
_ >
Control-flow graph dataflow equations (dataflow facts)

A

Towards Multiple Compine Operations

Abstraction Equation

engine solver

System of Solution
_ >
Control-flow graph dataflow equations (dataflow facts)

proc X begin
if
then skip
else

call X;

A

Towards Multiple Compine Operations

Abstraction Equation

engine solver

System of Solution
_ >
Control-flow graph dataflow equations (dataflow facts)

- Confluence is interpreted by @, implicitly

proc X begin
if
then skip

else
call X;

A

Towards Multiple Compine Operations

Abstraction Equation

engine solver

System of Solution
_ >
Control-flow graph dataflow equations (dataflow facts)

- Confluence is interpreted by @, implicitly

proc X begin : : :
P f - To support multiple combine operations, we need to

then skip first distinguish different confluences in the graph

else
call X;

Control-I

OW

vper-grapn

[)
|

Contro

-flow Hyper-graph

(1e1/21201/2)

(301/2 1] 401/2)

22

Contro

OW

vper-grapn

22

[)
|

Contro

-flow Hyper-graph

(1e1/21261/2)
(301/2 1] 401/2)

22

Control-:

[)
|

ow Hyper-grapn

(1e1/21261/2)
(301/2 1] 401/2)

22

Control-:

[)
|

ow Hyper-grapn

(1e1/21261/2)
(301/2 1] 401/2)

22

- X]0IesS10N

Control-flow
hyper-graph

23

- X]0IesS10N

Control-flow
hyper-graph

Tree expression
(graphic)

23

[Tree BExpression

(D
(D

Control-flow
hyper-graph

Tree expression
(literal)

A SRS
PR T
&l

ndet(prob[1/2] (sécj[x ; :;]ﬁ(e), seq|x:=2](¢g)),
prob[1/2](seq[x:=3](g), seq[x:=4](€)))

Tree expression
(graphic)

proc X begin
if
then skip
else

call X;
call X
fi
end

£X0ression

24

proc X begin
if
then skip
else

call X;
call X
fi
end

- X]0IesS10N

Control-flow
hyper-graph

24

proc X begin
if
then skip
else

call X;
call X
fi
end

- X]0IesS10N

Control-flow
hyper-graph

Tree expression
(graphic)

24

proc X begin
if
then skip
else

call X;
call X
fi
end

- X]0IesS10N

Control-flow N Iree expression
hyper-graph (graphic)

Tree expression
(literal)

X = prob[1/3](seq[skip](e), call]| X](call[X](€)))

24

Towards Multiple Compine Operations

Abstraction Equation

engine solver

Program Control-flow . System of | Solution
dataflow equations (dataflow facts)

proc X begin
if
then skip
else

call X;

25

Towards Multiple Compine Operations

Abstraction Equation

engine solver
Program Control-flow . System of | Solution
dataflow equations (dataflow facts)

proc X begin How to interpret tree expressions, algebraically?

if
then skip

else
call X;

25

Markov Algebras

serirings + more compine operations

Markov Algebras

serirings + more compine operations

26

Markov A

geras

serirings + more compine operations

A semiring for the
abstract semantics

<M, D, R:,D,MN ,Q,1>

26

Markov Al

gepras

serirings + more compine operations

A semiring for the
abstract semantics

(M.0.84®,M0.1)

Conditional &
orobabilistic
branching

26

Markov Algebras

serirings + more compine operations

<M,€B,®,¢€B,r|,g,l>

Conditional & nondeterministic
orobabilistic branching

A semiring for the |
branching

abstract semantics

Markov Algebras

serirings + more compine operations

Conditional & nondeterministic

probctbilistic bronching . Q interprets abort
branching

A semiring for the
abstract semantics

Markov Algebras

serirings + more compine operations

Conditional & nondeterministic

probctbilistic bronching . Q interprets abort

A semiring for the |
branching

abstract semantics

. 1 interprets skip

Markov Algebras

serirings + more compine operations

Conditional & nondeterministic

probctbilistic bronching . Q interprets abort
branching

A semiring for the

abstract semantics | :
. 1 interprets skip

- Algebraic laws:
ca®b=b_@Da
. a,P b = bﬂ(p@ a

[nterpretation of Tree Expressions

using a Markov Algebra

Interpretation or

using a Markov Algebra

e o R T - 2 RS s AR,
A o TR R SRS R S
S R R S AT T, I o
ah S “"3*‘“3‘9 A s AR BERS
T e ey D
Y e e e 3t o

I (problpl(E,, Ey) = F(E,) B I(E>)
S (cond|@](Ey, E,)) = J(E)) D JF(E,)
S (ndet(E, E,)) = S(E) N S(E,)

I (seqlact](E)) = act ® F(E)
S (call[XJ(E)) = X. ® S (E)
Je)=1

[Tee EXPressions

27

Interpretation or

using a Markov Algebra
SR

I (problpl(E,, E)) = I(E,) D I (Ey)

I (cond|p\(E,, Ey)) = F(E)) B I(E>)

S (ndet(E, E,)) = S(E) N S(E,)

I (seqlact](E)) = act ® F(E)
S (call[XJ(E)) = X. ® S (E)
Je)=1

[Tee EXPressions

X = prob|[1/3](seq[skip](e), call]| X](call[X](g)))

27

Interpretation or

using a Markov Algebra

e o R T - 2 RS s AR,
A o TR R SRS R S
S R R S AT T, I o
ah S “"3*‘“3‘9 A s AR BERS
T e ey D
Y e e e 3t o

I (problpl(E,, Ey) = F(E,) B I(E>)
S (cond|@](Ey, E,)) = J(E)) D JF(E,)
S (ndet(E, E,)) = S(E) N S(E,)

I (seqlact](E)) = act ® F(E)
S (call[XJ(E)) = X. ® S (E)
Je)=1

[Tee EXPressions

e LRt RN A s
v I R
[]
I
|
I I
I

27

nterpretation or lree EXPpressions

using a Markov Algebra

WK,
g

J (prob|pl(Ey, E,)) = j(El)p® S (E,)
S (cond|@p|(Ey, Ey) = F (E1)¢€|9 J(E,)
S (ndet(E, E,)) = S(E) N S(E,)
I (seqlact](E)) = act ® I (E)
F(e) =1 X=(skip@ 1) (X@X® 1)

For the termination-probability analysis:

a@b=a+b
a®@®b=a-b

nterpretation or lree EXPpressions

using a Markov Algebra

WK,
g

I (problpl(Ey, E») = I(E)) D I (Ey)
S (cond|@](Ey, E,)) = J(E)) D JF(E,)
S (ndet(E, E,)) = S(E) N S(E,)
I (seqlact](E)) = act ® F(E)
F(calllX)(E)) = X, ® I (E)
S(e) =1

For the termination-probability analysis:
a®b=a+b

1 2
a@b=a-b ng.(1.1)+§.(X.X.1)

Towards Multiple Compine Operations

Markov

Equation
solver

algebra
Program Control-flow . System of | Solution
hyper-graph dataflow equations (dataflow facts)

proc X begin
if
then skip
else

call X;

28

Towards Multiple Compine Operations

Markov

Equation
solver

algebra
Program Control-flow System of | Solution
hyper-graph dataflow equations (dataflow facts)

pr(.):i X begin X=(06kip®1); s XQ3XRQ1)
1

then skip

else

call X;

28

Towards Multiple Compine Operations

Markov Equation
algebra solver

Program Control-flow . System of | Solution
hyper-graph dataflow equations (dataflow facts)

proc X begin
if
then skip
else

X=(skip@ 1) 0 XQ®X® 1)

How to solve such equations, algebraically?

call X;

28

Linearization or Ir
for Newton's Method

~XOIeSSIONS

(D
(D

Linearization or Ir
for Newton's Method

~XOIesSSIONS

(D
(D

- Syntactic linearization:
D(g © h) = Dg & Dh
D(g® h) =(Dg® h) ® (g ® Dh)
D(8¢€|9 h) = Dg D Dh
D(gmnh)=((g®Dg)N(hd Dh)) S (gnh)

YAS)

[Inearization of [ree EXPressions
for Newton's Method

.« Syntactic linearization:

D(g © h) = Dg © Dh
Dg®h)=WDg@h) D (g Q@ Dh) Newton's method sound

D(8¢€|9 h) = Dg¢@ Dh
D(gnh)=((g®Dg)n(hd Dh)) S (gnh)

Carefully developed to render

29

Linearization or Ir
for Newton's Method

~XOIesSSIONS

(D
(D

- Syntactic linearization:

D(g © h) = Dg © Dh
Dg®h)=WDg@h) D (g Q@ Dh) Newton's method sound

D(§¢€|9 h) = D8¢@ Dh
D(gnh)=((g®Dg)n(hd Dh)) S (gnh)

Carefully developed to render

X = (skip® 1) X®X® 1)

YAS)

Linearization or Ir
for Newton's Method

~XOIesSSIONS

(D
(D

- Syntactic linearization:

D(g © h) = Dg © Dh
Dg®h)=WDg@h) D (g Q@ Dh) Newton's method sound

D(8¢€|9 h) = D8¢€|9 Dh
D(gnh)=((g®Dg)n(hd Dh)) S (gnh)

Linearization at v

Carefully developed to render

where

5= ((skip® 1)y ® v ®1) O

for Newton's Method

X=(skip@ 1) 0 (X®X® 1)

L Inearization o1

11

LIinearization at v

[Tee EXressions

Y=60 0, (YQr)®d ¥Q®Y)))

30

for Newton's Method

X=(skip@ 1) 0 (X®X® 1)

L Inearization o1

11

LIinearization at v

[Tee EXressions

Y=60 0, (YQr)®d ¥Q®Y)))

30

Ol mm

_lnearization or [ree EXpressions

for Newton's Method

T
WG T R

X=(skip@1);s 0 XXX 1)

for Newton's Method

X=(skip@ 1) 0 (X®X® 1)

L Inearization o1

11

[Tee EXressions

Y=60 0, (YQr)®d ¥Q®Y)))

Every root-to-leaf path has
at most one call!

30

Towards Multiple Compine Operations

Newton's
method

Markov

algebra
Program Control-flow . System of | Solution
hyper-graph dataflow equations (dataflow facts)

proc X begin
if
then skip
else

call X;

31

Towards Multiple Compine Operations

Markov Newton's

algebra method

Program Control-flow System of | Solution
hyper-graph dataflow equations (dataflow facts)

proc X begin
if
then skip
else

For Newton's method to be efficient, we require
an analysis-supplied strategy for solving
inearized equations

call X;

31

Towards Multiple Compine Operations

Markov Newton's

method

algebra
Program Control-flow System of | Solution
hyper-graph dataflow equations (dataflow facts)

proc X begin
if
then skip
else

For Newton's method to be efficient, we require
an analysis-supplied strategy for solving
inearized equations

call X; L . .
For example, termination-probability analysis:

- P solvers
- BDD/ADD-based solvers

31

Case Studies (Selected)

Case Studies (Se

Kleene

Termination-probability analysis

ected

32

Case Studies (Se

Termination-probability analysis

ected

Moment-of-reward analysis

32

Summary

Control-flow
hyper-graph

Markov

algebra

System of
dataflow equations

S ——

Newton's
method

Solution
(dataflow facts)

33

Summary

Newton's
method

Markov

algebra

Program Control-flow . System of | Solution
hyper-graph dataflow equations (dataflow facts)

- Key takeaway: Extend Newtonian Program Analysis to support more combine operations

33

Summary

Newton's
method

Markov

algebra

Program Control-flow . System of | Solution
hyper-graph dataflow equations (dataflow facts)

- Key takeaway: Extend Newtonian Program Analysis to support more combine operations

- enabling analysis of programs with probabilistic, demonic, and conditional branching

33

Summary

Newton's
method

Markov

algebra

Program Control-flow . System of | Solution
hyper-graph dataflow equations (dataflow facts)

Key takeaway: Extend Newtonian Program Analysis to support more combine operations

- enabling analysis of programs with probabilistic, demonic, and conditional branching

More in the paper:
.« Support of loops and unstructured control-flow

- More case studies (e.g., expectation-invariant analysis)

33

