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⃗ν(0) = ⃗⊥
⃗ν(i+1) = ⃗ν(i) ⊕ ⃗Y (i)

where  is the least solution to⃗Y (i)

⃗Y = ( ⃗f( ⃗ν(i)) ⊖ ⃗ν(i)) ⊕ D ⃗f | ⃗ν(i) ( ⃗Y )

Linear correction term

Leibniz product rule
Really a differential: f(X) ν f′￼(ν) ⊗ Y

D 𝖼𝗈𝗇𝗌𝗍 |ν (Y) = 0
D X |ν (Y) = Y

D(g(X) ⊕ h(X)) |ν (Y) = Dg(X) |ν (Y) ⊕ Dh(X) |ν (Y)
D(g(X) ⊗ h(X)) |ν (Y) = (Dg(X) |ν (Y) ⊗ h(ν))

⊕ (g(ν) ⊗ Dh(X) |ν (Y))

X ⊗ X ν (Y ⊗ ν) ⊕ (ν ⊗ Y)

b ⊗ X ⊗ X ⊗ c ν (b ⊗ Y ⊗ ν ⊗ c) ⊕ (b ⊗ ν ⊗ Y ⊗ c)

Semiring constant 0

12 is some  such 
that 

a ⊖ b c
b ⊕ c = a
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X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X)  
where 

Y = δ ⊕ (p(2/3) ⊗ Y ⊗ ν) ⊕ (p(2/3) ⊗ ν ⊗ Y)

δ = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ ν ⊗ ν) ⊖ ν

Linearization at ν

xi

f(xi)
Each summand has only one variable 

→ 
The equation becomes linear!
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ν

ν

• At 1st call, perform 
exploration; at 2nd call, 
use the summary ( )ν

• At 1st call, use ; at 2nd 
call, perform 
exploration

ν

• Combine via ⊕
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Termination-Probability Analysis
via Newton's Method for Program Analysis

15

X = (p(1/3) ⊗ skip) ⊕ (p(2/3) ⊗ X ⊗ X) Y = δ ⊕ (p(2/3) ⊗ Y ⊗ ν) ⊕ (p(2/3) ⊗ ν ⊗ Y)

Linearization at ν

Y = (
1
3

+
2
3

ν2 − ν) + (
2
3

⋅ Y ⋅ ν) + (
2
3

⋅ ν ⋅ Y)

Y =
−2ν2 + 3ν − 1

4ν − 3

Newton iteration for program analysis: 

ν(i+1) = ν(i) ⊕ Y(i) =
2ν(i)2 − 1
4ν(i) − 3

Use the abstract 
semanticsSolve the linear 

equation
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So far so good?

• Each Newton iteration generates a system of linear equations:

• However, Newton's method is efficient only if one can solve linear equations efficiently

• [Reps, Turetsky, and Prabhu 2016] proposed a general solution that uses tensor products
16

Y1 = g1(Y1, Y2, …, YN)
Y2 = g2(Y1, Y2, …, YN)

⋮
YN = gN(Y1, Y2, …, YN)

Each  has the form: g
a ⊕ (b1 ⊗ Yi1 ⊗ c1) ⊕ (b2 ⊗ Yi2 ⊗ c2) ⊕ … ⊕ (bk ⊗ Yik ⊗ ck)
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Probabilistic Programs

• We have already seen probabilistic branching

• True randomness

• A distribution of execution paths

• Probabilistic nondeterminism

17

if 
| prob(1/3) → cc := 1 
| prob(1/3) → cc := 2 
| prob(1/3) → cc := 3 
fi 

cc :∈ (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3)
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if 
| true → pc := 1 
| true → pc := 2 
| true → pc := 3 
fi 

pc :∈ {1,2,3}

Probabilistic Programs

• There are also other kinds of branching

• Dijkstra's Guarded Command Language (GCL)

• A set of execution paths

• Demonic nondeterminism

18
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pc :∈ {1,2,3}; 
cc :∈ (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3); 
ac :∈ {1,2,3} \ {pc,cc}; 
if switch then 
  cc :∈ {1,2,3} \ {cc,ac} 
fi
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pc :∈ {1,2,3}; 
cc :∈ (1 @ 1/3 | 2 @ 1/3 | 3 @ 1/3); 
ac :∈ {1,2,3} \ {pc,cc}; 
if switch then 
  cc :∈ {1,2,3} \ {cc,ac} 
fi

The Monty-Hall Puzzle
as a probabilistic program

• Programs can use multiple kinds of branching

• McIver and Morgan's probabilistic Guarded 
Command Language (pGCL)

• Combine three kinds of branching:

• Probabilistic

• Demonic

• Conditional

19
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Termination-Probability Analysis
of Boolean programs

• Problem: A semiring has only one combine ( ) operation⊕

20

proc X begin 
  if b 
  then skip 
  else 
    if prob(1/3) 
    then b := true 
    else b := false 
    fi; 
    call X 
  fi 
end

proc Xtrue begin 
 skip 
end 

proc Xfalse begin 
  if prob(1/3) 
  then call Xtrue 
  else call Xfalse 
  fi 
end

A workaround

• Introduce extra procedures to 
encode different states

• Cannot handle infinite state 
spaces
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Towards Multiple Combine Operations

21

Program Control-flow graph
System of 

dataflow equations
Solution 

(dataflow facts)

Abstraction 
engine

Equation 
solver

proc X begin 
  if prob(1/3) 
  then skip 
  else 
    call X; 
    call X 
  fi 
end

p(1/3) p(2/3)

skip
call X

call X

• Confluence is interpreted by , implicitly⊕
• To support multiple combine operations, we need to 
first distinguish different confluences in the graph
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Control-flow Hyper-graph

22

if 
| true → x :∈ (1 @ 1/2 | 2 @ 1/2) 
| true → x :∈ (3 @ 1/2 | 4 @ 1/2) 
fi

x := 0

x ≔ 2

x ≔ 3

x ≔ 4

x ≔ 1
true

true

p(1/2)

p(1/2)

p(1/2)

p(1/2)

p(1/2)

Hyper-edge 
(for confluence) 

x'=1 x'=2 x'=3 x'=4

{ , }p(1/2) p(1/2) p(1/2) p(1/2)

Hyper-path 
(like a tree)
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x := 0

x ≔ 2

x ≔ 3

x ≔ 4

x ≔ 1
true

true

p(1/2)

p(1/2)

p(1/2)

p(1/2)

p(1/2)

x ≔ 1

true true

p(1/2) p(1/2) p(1/2)p(1/2)

x ≔ 2 x ≔ 3 x ≔ 4

ndet(prob[1/2](seq[x:=1](ε), seq[x:=2](ε)),
prob[1/2](seq[x:=3](ε), seq[x:=4](ε)))

Control-flow 
hyper-graph Tree expression 

(graphic)

Tree expression 
(literal)
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Tree Expression

proc X begin 
  if prob(1/3) 
  then skip 
  else 
    call X; 
    call X 
  fi 
end

p(1/3) p(2/3)

skip
call X

call X

p(1/3) p(2/3)

skip call X

call X

Control-flow 
hyper-graph

Tree expression 
(graphic)
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Tree Expression

proc X begin 
  if prob(1/3) 
  then skip 
  else 
    call X; 
    call X 
  fi 
end

p(1/3) p(2/3)

skip
call X

call X

p(1/3) p(2/3)

skip call X

call X

X = prob[1/3](seq[skip](ε), call[X](call[X](ε)))

Control-flow 
hyper-graph

Tree expression 
(graphic)

Tree expression 
(literal)

24
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Program
Control-flow 

hyper-graph
System of 

dataflow equations
Solution 

(dataflow facts)

Abstraction 
engine

Equation 
solver

proc X begin 
  if prob(1/3) 
  then skip 
  else 
    call X; 
    call X 
  fi 
end

p(1/3) p(2/3)

skip
call X

call X

How to interpret tree expressions, algebraically?
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Markov Algebras
semirings + more combine operations

⟨M, ⊕ , ⊗ ,ϕ⊕ , ⊓ ,0, 1⟩
A semiring for the 
abstract semantics

Conditional & 
probabilistic 
branching

nondeterministic 
branching •  interprets abort0

•  interprets skip1

• Algebraic laws:

• ap⊕ b = b1−p⊕ a
• aφ⊕ b = b¬φ⊕ a
• …… 26
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Interpretation of Tree Expressions
using a Markov Algebra

ℐ(prob[p](E1, E2)) = ℐ(E1)p⊕ ℐ(E2)
ℐ(cond[φ](E1, E2)) = ℐ(E1)φ⊕ ℐ(E2)

ℐ(ndet(E1, E2)) = ℐ(E1) ⊓ ℐ(E2)
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How to solve such equations, algebraically?
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Carefully developed to render 
Newton's method sound

X = (skip ⊗ 1)1/3⊕ (X ⊗ X ⊗ 1)  
where 
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X = (skip ⊗ 1)1/3⊕ (X ⊗ X ⊗ 1) Y = δ ⊕ (01/3⊕ ((Y ⊗ ν) ⊕ (ν ⊗ Y)))

Linearization at ν
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δ

ν

ν

Every root-to-leaf path has 
at most one call!
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proc X begin 
  if prob(1/3) 
  then skip 
  else 
    call X; 
    call X 
  fi 
end

p(1/3) p(2/3)

skip
call X

call X

For Newton's method to be efficient, we require 
an analysis-supplied strategy for solving 
linearized equations

For example, termination-probability analysis:
• LP solvers
• BDD/ADD-based solvers
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Summary
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• More in the paper:

• Support of loops and unstructured control-flow

• More case studies (e.g., expectation-invariant analysis)

Program
Control-flow 
hyper-graph

System of 
dataflow equations

Solution 
(dataflow facts)

Markov 
algebra

Newton's 
method

33


