
CENTRAL MOMENT ANALYSIS
FOR COST ACCUMULATORS
IN PROBABILISTIC PROGRAMS

Di Wang1, Jan Hoffmann1, Thomas Reps2

1 Carnegie Mellon University
2 University of Wisconsin-Madison

PROBABILISTIC PROGRAMS

2

PROBABILISTIC PROGRAMS

2

Standard programs +

PROBABILISTIC PROGRAMS

2

Standard programs +
Probability distributions

PROBABILISTIC PROGRAMS

2

Standard programs +
Probability distributions

Random control flows

PROBABILISTIC PROGRAMS

2

Standard programs +
Probability distributions

Random control flows

Can be used to implement and analyze
• Randomized algorithms
• Cryptographic protocols
• Machine-learning algorithms

COST ACCUMULATORS

3

COST ACCUMULATORS

3

Quantities that can only be incremented or decremented

COST ACCUMULATORS

3

Quantities that can only be incremented or decremented

Termination time

COST ACCUMULATORS

3

Quantities that can only be incremented or decremented

Termination time Rewards in MDPs

COST ACCUMULATORS

3

Quantities that can only be incremented or decremented

Termination time Rewards in MDPs Cash flow

COST ACCUMULATORS

3

Quantities that can only be incremented or decremented

variables: x, t
pre-condition: x > 0
func rdwalk() begin
 if x > 0 then
 t ~ uniform(-1, 2); # sample t from a uniform distribution
 x := x - t;
 call rdwalk();
 tick(1) # add one to the cost accumulator
 fi
end

Termination time Rewards in MDPs Cash flow

QUANTITATIVE ANALYSIS

4

variables: x, t
pre-condition: x > 0
func rdwalk() begin
 if x > 0 then
 t ~ uniform(-1, 2);
 x := x - t;
 call rdwalk();
 tick(1)
 fi
end

QUANTITATIVE ANALYSIS

4

variables: x, t
pre-condition: x > 0
func rdwalk() begin
 if x > 0 then
 t ~ uniform(-1, 2);
 x := x - t;
 call rdwalk();
 tick(1)
 fi
end

What can we know about the accumulated cost?

QUANTITATIVE ANALYSIS

4

variables: x, t
pre-condition: x > 0
func rdwalk() begin
 if x > 0 then
 t ~ uniform(-1, 2);
 x := x - t;
 call rdwalk();
 tick(1)
 fi
end

What can we know about the accumulated cost?

The program produces a distribution on
possible accumulated costs.

QUANTITATIVE ANALYSIS

4

variables: x, t
pre-condition: x > 0
func rdwalk() begin
 if x > 0 then
 t ~ uniform(-1, 2);
 x := x - t;
 call rdwalk();
 tick(1)
 fi
end

What can we know about the accumulated cost?

The program produces a distribution on
possible accumulated costs.

By simulation, we can obtain an empirical
estimation of this distribution.

QUANTITATIVE ANALYSIS

4

variables: x, t
pre-condition: x > 0
func rdwalk() begin
 if x > 0 then
 t ~ uniform(-1, 2);
 x := x - t;
 call rdwalk();
 tick(1)
 fi
end

What can we know about the accumulated cost?

The program produces a distribution on
possible accumulated costs.

By simulation, we can obtain an empirical
estimation of this distribution.

How to rigorously reasoning about this distribution?

QUANTITATIVE ANALYSIS

4

variables: x, t
pre-condition: x > 0
func rdwalk() begin
 if x > 0 then
 t ~ uniform(-1, 2);
 x := x - t;
 call rdwalk();
 tick(1)
 fi
end

What can we know about the accumulated cost?

The program produces a distribution on
possible accumulated costs.

By simulation, we can obtain an empirical
estimation of this distribution.

How to rigorously reasoning about this distribution?

Usually it is intractable to analyze the result
distribution precisely.

QUANTITATIVE ANALYSIS

4

variables: x, t
pre-condition: x > 0
func rdwalk() begin
 if x > 0 then
 t ~ uniform(-1, 2);
 x := x - t;
 call rdwalk();
 tick(1)
 fi
end

What can we know about the accumulated cost?

The program produces a distribution on
possible accumulated costs.

By simulation, we can obtain an empirical
estimation of this distribution.

How to rigorously reasoning about this distribution?

Usually it is intractable to analyze the result
distribution precisely.
Static analysis can leverage quantitative aggregate
information of the distribution.

QUANTITATIVE ANALYSIS

4

variables: x, t
pre-condition: x > 0
func rdwalk() begin
 if x > 0 then
 t ~ uniform(-1, 2);
 x := x - t;
 call rdwalk();
 tick(1)
 fi
end

What can we know about the accumulated cost?

The program produces a distribution on
possible accumulated costs.

By simulation, we can obtain an empirical
estimation of this distribution.

How to rigorously reasoning about this distribution?

Usually it is intractable to analyze the result
distribution precisely.
Static analysis can leverage quantitative aggregate
information of the distribution.

Such as Moments!

CENTRAL MOMENT ANALYSIS

5

variables: x, t
pre-condition: x > 0
func rdwalk() begin
 if x > 0 then
 t ~ uniform(-1, 2);
 x := x - t;
 call rdwalk();
 tick(1)
 fi
end

CENTRAL MOMENT ANALYSIS

5

variables: x, t
pre-condition: x > 0
func rdwalk() begin
 if x > 0 then
 t ~ uniform(-1, 2);
 x := x - t;
 call rdwalk();
 tick(1)
 fi
end

• Let denote the cost accumulatorT

CENTRAL MOMENT ANALYSIS

5

variables: x, t
pre-condition: x > 0
func rdwalk() begin
 if x > 0 then
 t ~ uniform(-1, 2);
 x := x - t;
 call rdwalk();
 tick(1)
 fi
end

• Let denote the cost accumulatorT

• Raw moments: for 𝔼[Tm] m ≥ 1

CENTRAL MOMENT ANALYSIS

5

variables: x, t
pre-condition: x > 0
func rdwalk() begin
 if x > 0 then
 t ~ uniform(-1, 2);
 x := x - t;
 call rdwalk();
 tick(1)
 fi
end

• Let denote the cost accumulatorT

• Raw moments: for 𝔼[Tm] m ≥ 1

𝔼[T] ≤ 2x + 4
𝔼[T2] ≤ 4x2 + 22x + 28

CENTRAL MOMENT ANALYSIS

5

variables: x, t
pre-condition: x > 0
func rdwalk() begin
 if x > 0 then
 t ~ uniform(-1, 2);
 x := x - t;
 call rdwalk();
 tick(1)
 fi
end

• Let denote the cost accumulatorT

• Raw moments: for 𝔼[Tm] m ≥ 1

• Central moments: for 𝔼[(T − 𝔼[T])m] m ≥ 2

𝔼[T] ≤ 2x + 4
𝔼[T2] ≤ 4x2 + 22x + 28

CENTRAL MOMENT ANALYSIS

5

variables: x, t
pre-condition: x > 0
func rdwalk() begin
 if x > 0 then
 t ~ uniform(-1, 2);
 x := x - t;
 call rdwalk();
 tick(1)
 fi
end

• Let denote the cost accumulatorT

• Raw moments: for 𝔼[Tm] m ≥ 1

• Central moments: for 𝔼[(T − 𝔼[T])m] m ≥ 2

𝔼[T] ≤ 2x + 4
𝔼[T2] ≤ 4x2 + 22x + 28

𝔼[(T − 𝔼[T])2] ≤ 22x + 28

CENTRAL MOMENT ANALYSIS

5

variables: x, t
pre-condition: x > 0
func rdwalk() begin
 if x > 0 then
 t ~ uniform(-1, 2);
 x := x - t;
 call rdwalk();
 tick(1)
 fi
end

• Let denote the cost accumulatorT

• Raw moments: for 𝔼[Tm] m ≥ 1

• Central moments: for 𝔼[(T − 𝔼[T])m] m ≥ 2

• Moments can indicate the shape of a distribution

𝔼[T] ≤ 2x + 4
𝔼[T2] ≤ 4x2 + 22x + 28

𝔼[(T − 𝔼[T])2] ≤ 22x + 28

CENTRAL MOMENT ANALYSIS

5

variables: x, t
pre-condition: x > 0
func rdwalk() begin
 if x > 0 then
 t ~ uniform(-1, 2);
 x := x - t;
 call rdwalk();
 tick(1)
 fi
end

• Let denote the cost accumulatorT

• Raw moments: for 𝔼[Tm] m ≥ 1

• Central moments: for 𝔼[(T − 𝔼[T])m] m ≥ 2

• Moments can indicate the shape of a distribution

• We can use moments to derive tail bounds, e.g., ℙ[T ≥ 4x]

𝔼[T] ≤ 2x + 4
𝔼[T2] ≤ 4x2 + 22x + 28

𝔼[(T − 𝔼[T])2] ≤ 22x + 28

CENTRAL MOMENT ANALYSIS

5

variables: x, t
pre-condition: x > 0
func rdwalk() begin
 if x > 0 then
 t ~ uniform(-1, 2);
 x := x - t;
 call rdwalk();
 tick(1)
 fi
end

• Let denote the cost accumulatorT

• Raw moments: for 𝔼[Tm] m ≥ 1

• Central moments: for 𝔼[(T − 𝔼[T])m] m ≥ 2

• Moments can indicate the shape of a distribution

• We can use moments to derive tail bounds, e.g., ℙ[T ≥ 4x]

Lower is better!𝔼[T] ≤ 2x + 4
𝔼[T2] ≤ 4x2 + 22x + 28

𝔼[(T − 𝔼[T])2] ≤ 22x + 28

CENTRAL MOMENT ANALYSIS

5

variables: x, t
pre-condition: x > 0
func rdwalk() begin
 if x > 0 then
 t ~ uniform(-1, 2);
 x := x - t;
 call rdwalk();
 tick(1)
 fi
end

• Let denote the cost accumulatorT

• Raw moments: for 𝔼[Tm] m ≥ 1

• Central moments: for 𝔼[(T − 𝔼[T])m] m ≥ 2

• Moments can indicate the shape of a distribution

• We can use moments to derive tail bounds, e.g., ℙ[T ≥ 4x]

Lower is better!𝔼[T] ≤ 2x + 4
𝔼[T2] ≤ 4x2 + 22x + 28

𝔼[(T − 𝔼[T])2] ≤ 22x + 28
Central moments can

provide more information!

6

We present the first fully automatic analysis
for deriving symbolic interval bounds

on central moments for cost accumulators
in probabilistic programs with general recursion

OUR WORK

6

We present the first fully automatic analysis
for deriving symbolic interval bounds

on central moments for cost accumulators
in probabilistic programs with general recursion

Ideas from the literature

OUR WORK

6

We present the first fully automatic analysis
for deriving symbolic interval bounds

on central moments for cost accumulators
in probabilistic programs with general recursion

Ideas from the literature

• Potential method for cost analysis

OUR WORK

6

We present the first fully automatic analysis
for deriving symbolic interval bounds

on central moments for cost accumulators
in probabilistic programs with general recursion

Ideas from the literature

• Potential method for cost analysis
• Automation via linear programming

OUR WORK

6

We present the first fully automatic analysis
for deriving symbolic interval bounds

on central moments for cost accumulators
in probabilistic programs with general recursion

Ideas from the literature

• Potential method for cost analysis
• Automation via linear programming
• Optional stopping theorem for

reasoning about soundness

OUR WORK

6

We present the first fully automatic analysis
for deriving symbolic interval bounds

on central moments for cost accumulators
in probabilistic programs with general recursion

Ideas from the literature

• Potential method for cost analysis
• Automation via linear programming
• Optional stopping theorem for

reasoning about soundness

Our contributions

OUR WORK

6

We present the first fully automatic analysis
for deriving symbolic interval bounds

on central moments for cost accumulators
in probabilistic programs with general recursion

Ideas from the literature

• Potential method for cost analysis
• Automation via linear programming
• Optional stopping theorem for

reasoning about soundness

Our contributions

• An algebraic and systematic approach
for composing moments

OUR WORK

6

We present the first fully automatic analysis
for deriving symbolic interval bounds

on central moments for cost accumulators
in probabilistic programs with general recursion

Ideas from the literature

• Potential method for cost analysis
• Automation via linear programming
• Optional stopping theorem for

reasoning about soundness

Our contributions

• An algebraic and systematic approach
for composing moments

• Moment-polymorphic recursion that
handles non-trivial recursion patterns

OUR WORK

6

We present the first fully automatic analysis
for deriving symbolic interval bounds

on central moments for cost accumulators
in probabilistic programs with general recursion

Ideas from the literature

• Potential method for cost analysis
• Automation via linear programming
• Optional stopping theorem for

reasoning about soundness

Our contributions

• An algebraic and systematic approach
for composing moments

• Moment-polymorphic recursion that
handles non-trivial recursion patterns

• A program logic for moment
inference, and proof of its soundness

OUR WORK

CASE STUDY: TIMING ATTACK

7

password checker

CASE STUDY: TIMING ATTACK

7

password checker

• It checks the N-bit user input against the secret bit-by-bit

CASE STUDY: TIMING ATTACK

7

password checker

• It checks the N-bit user input against the secret bit-by-bit
• Its running time might reveal the length of the common prefix of

the input and the secret

CASE STUDY: TIMING ATTACK

7

password checker

• It checks the N-bit user input against the secret bit-by-bit
• Its running time might reveal the length of the common prefix of

the input and the secret
• It adds some random delays through its computation as a defense

CASE STUDY: TIMING ATTACK

7

password checker

• It checks the N-bit user input against the secret bit-by-bit
• Its running time might reveal the length of the common prefix of

the input and the secret
• It adds some random delays through its computation as a defense

Our tool still points out that a timing attack is very likely to succeed!

CASE STUDY: TIMING ATTACK

8

CASE STUDY: TIMING ATTACK

8

T1
def= the runtime if we have obtained the first K bits and the next bit is one

T0
def= the runtime if we have obtained the first K bits and the next bit is zero

CASE STUDY: TIMING ATTACK

8

T1
def= the runtime if we have obtained the first K bits and the next bit is one

T0
def= the runtime if we have obtained the first K bits and the next bit is zero

Runtime Characteristics (Obtained via Our Tool)

13N − 5K ≤ 𝔼[T0] ≤ 13N − 3K 13N ≤ 𝔼[T1] ≤ 15N

CASE STUDY: TIMING ATTACK

8

T1
def= the runtime if we have obtained the first K bits and the next bit is one

T0
def= the runtime if we have obtained the first K bits and the next bit is zero

Runtime Characteristics (Obtained via Our Tool)

13N − 5K ≤ 𝔼[T0] ≤ 13N − 3K
So if the runtime is less than , the next bit is likely to be zero13N − 1.5K

13N ≤ 𝔼[T1] ≤ 15N

CASE STUDY: TIMING ATTACK

8

T1
def= the runtime if we have obtained the first K bits and the next bit is one

T0
def= the runtime if we have obtained the first K bits and the next bit is zero

Runtime Characteristics (Obtained via Our Tool)

13N − 5K ≤ 𝔼[T0] ≤ 13N − 3K
So if the runtime is less than , the next bit is likely to be zero13N − 1.5K

13N ≤ 𝔼[T1] ≤ 15N

𝔼[(T1 − 𝔼[T1])2] ≤ 26N2 + 42N𝔼[(T0 − 𝔼[T0])2] ≤ 8N − 36K2 + 52NK + 24K

CASE STUDY: TIMING ATTACK

8

T1
def= the runtime if we have obtained the first K bits and the next bit is one

T0
def= the runtime if we have obtained the first K bits and the next bit is zero

Runtime Characteristics (Obtained via Our Tool)

13N − 5K ≤ 𝔼[T0] ≤ 13N − 3K
So if the runtime is less than , the next bit is likely to be zero13N − 1.5K

13N ≤ 𝔼[T1] ≤ 15N

𝔼[(T1 − 𝔼[T1])2] ≤ 26N2 + 42N𝔼[(T0 − 𝔼[T0])2] ≤ 8N − 36K2 + 52NK + 24K

By concentration inequalities and central moments, we can derive
tail bounds on and ℙ[T1 ≤ 13N − 1.5K] ℙ[T0 ≥ 13N − 1.5K]

CASE STUDY: TIMING ATTACK

8

T1
def= the runtime if we have obtained the first K bits and the next bit is one

T0
def= the runtime if we have obtained the first K bits and the next bit is zero

Runtime Characteristics (Obtained via Our Tool)

13N − 5K ≤ 𝔼[T0] ≤ 13N − 3K
So if the runtime is less than , the next bit is likely to be zero13N − 1.5K

13N ≤ 𝔼[T1] ≤ 15N

𝔼[(T1 − 𝔼[T1])2] ≤ 26N2 + 42N𝔼[(T0 − 𝔼[T0])2] ≤ 8N − 36K2 + 52NK + 24K

By concentration inequalities and central moments, we can derive
tail bounds on and ℙ[T1 ≤ 13N − 1.5K] ℙ[T0 ≥ 13N − 1.5K]

ℙ[The attack succeeds] ≥ 0.830561 when N = 32

MORE IN THE PAPER

• Full formalism of the program logic for moment inference

• How our system supports inter-procedural reasoning

• Proof of the soundness for the program logic

• An implementation and experiments on analysis capability and scalability

• Comparison with prior work on raw-moment analysis for termination time and
expected-cost bound analysis

9

