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Standard programs +
Probability distributions

Random control flows

Can be used to implement and analyze
• Randomized algorithms
• Cryptographic protocols
• Machine-learning algorithms
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Quantities that can only be incremented or decremented

# variables: x, t 
# pre-condition: x > 0 
func rdwalk() begin 
  if x > 0 then 
    t ~ uniform(-1, 2); # sample t from a uniform distribution 
    x := x - t; 
    call rdwalk(); 
    tick(1)             # add one to the cost accumulator 
  fi 
end

Termination time Rewards in MDPs Cash flow
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# variables: x, t 
# pre-condition: x > 0 
func rdwalk() begin 
  if x > 0 then 
    t ~ uniform(-1, 2); 
    x := x - t; 
    call rdwalk(); 
    tick(1) 
  fi 
end

What can we know about the accumulated cost?

The program produces a distribution on 
possible accumulated costs.

By simulation, we can obtain an empirical 
estimation of this distribution.

How to rigorously reasoning about this distribution?

Usually it is intractable to analyze the result 
distribution precisely.
Static analysis can leverage quantitative aggregate 
information of the distribution. 

Such as Moments!
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func rdwalk() begin 
  if x > 0 then 
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• Let  denote the cost accumulatorT
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• Moments can indicate the shape of a distribution

• We can use moments to derive tail bounds, e.g., ℙ[T ≥ 4x]

Lower is better!𝔼[T] ≤ 2x + 4
𝔼[T2] ≤ 4x2 + 22x + 28

𝔼[(T − 𝔼[T])2] ≤ 22x + 28
Central moments can 

provide more information!
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We present the first fully automatic analysis
for deriving symbolic interval bounds

on central moments for cost accumulators
in probabilistic programs with general recursion

Ideas from the literature

• Potential method for cost analysis
• Automation via linear programming
• Optional stopping theorem for 

reasoning about soundness

Our contributions

• An algebraic and systematic approach 
for composing moments

• Moment-polymorphic recursion that 
handles non-trivial recursion patterns

• A program logic for moment 
inference, and proof of its soundness

OUR WORK
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password checker

• It checks the N-bit user input against the secret bit-by-bit
• Its running time might reveal the length of the common prefix of 

the input and the secret
• It adds some random delays through its computation as a defense

Our tool still points out that a timing attack is very likely to succeed!
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𝔼[(T1 − 𝔼[T1])2] ≤ 26N2 + 42N𝔼[(T0 − 𝔼[T0])2] ≤ 8N − 36K2 + 52NK + 24K

By concentration inequalities and central moments, we can derive
tail bounds on  and ℙ[T1 ≤ 13N − 1.5K] ℙ[T0 ≥ 13N − 1.5K]

ℙ[The attack succeeds] ≥ 0.830561 when N = 32



MORE IN THE PAPER

• Full formalism of the program logic for moment inference

• How our system supports inter-procedural reasoning

• Proof of the soundness for the program logic

• An implementation and experiments on analysis capability and scalability

• Comparison with prior work on raw-moment analysis for termination time and 
expected-cost bound analysis
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