PMAF: An Algebraic Framework for Static Analysis of Probabilistic Programs

Di Wang¹, Jan Hoffmann¹, Thomas Reps²
${ }^{1}$ Carnegie Mellon University
2 University of Wisconsin; GrammaTech, Inc.
PLDI 2018

What is probabilistic programming?

Randomized Algorithms

Bayesian Modeling

Cryptography Protocols

Cognitive Models

Probabilistic Programming

- Deterministic programs with:

Probabilistic Programming

- Deterministic programs with:
- the ability to draw random data from distributions

Probabilistic Programming

- Deterministic programs with:
- the ability to draw random data from distributions

Probabilistic Programming

- Deterministic programs with:
- the ability to draw random data from distributions

- the ability to condition control-flow at random

Probabilistic Programming

- Deterministic programs with:
- the ability to draw random data from distributions

- the ability to condition control-flow at random

Probabilistic Programming

- An example: an asymmetric 1d random walk
x := 1;
while x > 0 do
r ~ Uniform(0,2);
if prob(0.75) then $x:=x-r$
else
$x:=x+r$
fi
od

Probabilistic Programming

- An example: an asymmetric 1d random walk

```
x := 1;
while x > 0 do
    r ~ Uniform(0,2);
    if prob(0.75) then
        x := x - r
    else
        x := x + r
    fi
od
```


Probabilistic Programming

- An example: an asymmetric 1d random walk
$x:=1 ;$
while $x>0$ do
r ~ Uniform(0,2);
if prob(0.75) then x := x - r
else
$x:=x+r$

Data Randomness

Control-flow Randomness
od

Why is static analysis useful?

Bayesian Inference

What is the probability that I am poorly prepared but end up with a good mood?

Bayesian Inference

repeat do

$$
\begin{aligned}
& D:=0[0.6] D:=1 ; \\
& P:=0[0.7] P:=1 ; \\
& \text { if } D=0 \text { GU } P=0 \text { then } \\
& G:=0[0.95] G:=1 \\
& \text { else if } D=1 \text { GG } P=1 \text { then } \\
& G:=0[0.05] G:=1 \\
& \text { else if } D=0 \text { Gf } P=1 \text { then } \\
& G:=0[0.5] G:=1
\end{aligned}
$$

else

$$
\mathrm{G}:=0[0.6] \mathrm{G}:=1
$$

fi;
if $G=0$ then

$$
M:=0[0.9] M:=1
$$

else

$$
M:=0[0.3] M:=1
$$

fi
until $P=0$ \&́f $M=1$

Sampling-base Techniques

- Rejection Sampling, Markov Chain Monte Carlo, etc.
- sample multiple times to approximate the distribution

Sampling-base Techniques

- Rejection Sampling, Markov Chain Monte Carlo, etc.
- sample multiple times to approximate the distribution
- Two concerns:
- not a sound guarantee - only suggests some property
- may sample incredibly many times to get a good precision

Bayesian Inference

- The probability that I am poorly prepared but end up with a good mood is about 0.15
- Rejection sampling needs $1 / 0.15=6.7$ rounds to obtain an accepting sample
- For some networks, the expectation is incredibly large (>1018)

Static Analysis

- Formally prove a program satisfies some properties
- Eg:
- Bayesian inference on general probabilistic programs
- expected running time analysis
- lower bound analysis for probability of post-conditions

Static Analysis

- Formally prove a program satisfies some properties
- Eg:
- Bayesian inference on general probabilistic programs
- expected running time analysis
- lower bound analysis for probability of post-conditions

Contributions

- Developed an algebraic framework for dataflow analysis of first-order probabilistic programs
- Reformulated Bayesian inference \& Markov decision problem in the framework
- Developed a novel expectation-invariant analysis by instantiating the framework
- Implemented an effective prototype

Example: Expectation Invariants

x := 1;
while $\mathrm{x}>0$ do
r ~Uniform(0,2);
if $\operatorname{prob}(0.75)$ then x := $\mathrm{x}-\mathrm{r}$
else

$$
x:=x+r
$$

fi
od
$x:=1 ; t:=0$;
while $\mathrm{x}>0$ do
r ~Uniform(0,2);
if $\operatorname{prob}(0.75)$ then x := $\mathrm{x}-\mathrm{r}$
else x := x + r
fi;
$\mathrm{t}:=\mathrm{t}+1$
od

- Want to know its expected termination time
- Analyze expectation invariants of the loop body
- $E\left[r^{\prime}\right]=1, E\left[t^{\prime}\right]=t+1, E\left[x^{\prime}\right]=x-0.5$
- $\mathrm{E}\left[2 \mathrm{x}^{\prime}+\mathrm{t}^{\prime}\right]=2 \mathrm{x}+\mathrm{t}$
- Martingales

Data \& Control-flow Randomness

- Data randomness
- r ~ Uniform(0,2)
- Control-flow randomness
- if $\operatorname{prob}(0.75)$ then ... else ... fi

Data \& Control-flow Randomness

- Data randomness
- r ~ Uniform(0,2)
- Control-flow randomness
- if $\operatorname{prob}(0.75)$ then ... else ... fi
- Design choice: explicit separation

Data \& Control-flow Randomness

- One can actually simulate control-flow randomness using data randomness
- $p \sim \operatorname{Uniform}(0,1)$; if $p<0.75$ then ... else ... fi

Data \& Control-flow Randomness

- One can actually simulate control-flow randomness using data randomness
- $\mathrm{p} \sim \operatorname{Uniform}(0,1)$; if $p<0.75$ then ... else ... fi
- Design choice: flexibility for analysis designer
- only keeping track of expectation still produces meaningful results

Control-flow Graphs

- A traditional approach to separate data and control-flow

$$
\begin{gathered}
\text { while }(n \neq 1)\{ \\
\text { if }(n \% 2==0) \\
n:=n / 2 ; \\
\text { else } \\
n:=3 * n+1 ; \\
\text { i }:=i+1 ; \\
\}
\end{gathered}
$$

- Semantics could be defined as collections of paths

Control-flow Graphs

- A traditional approach to separate data and control-flow

$$
\begin{gathered}
\text { while }(n \neq 1)\{ \\
\text { if }(n \% 2==0) \\
n:=n / 2 ; \\
\text { else } \\
n:=3 * n+1 ; \\
i \quad:=i+1 ; \\
\}
\end{gathered}
$$

- Semantics could be defined as collections of paths
- What about probabilistic programs?

Probabilistic Programs

Probabilistic Programs

- Paths are not independent

Probabilistic Programs

- Paths are not independent
- A program specifies probability distributions over paths

Probabilistic Programs

- Paths are not independent
- A program specifies probability distributions over paths
- Need to reason about collections of paths!

Hyper-Graphs

```
x := 1;
while x > 0 do
    r ~ Uniform(0,2);
    if prob(0.75) then
        x := x - r
    else
        x := x + r
    fi
od
od
```

- Edges have one source and multiple destinations
- cond. choices \& prob. choices are modeled by hyper-edges with two destinations

Hyper-Graphs

```
x := 1;
while x > 0 do
    r ~ Uniform(0,2);
    if prob(0.75) then
        x := x - r
    else
        x := x + r
    fi
od
```


Hyper-Paths

- A hyper-path is made up of hyper-edges
- A hyper-path represents a collection of paths
- Distribution w.r.t. a hyper-path
- Nondeterminism - sets of hyper-paths

Forward Assertions

Forward Assertions

- Traditional static analyses can compute either forward or backward assertions

Forward Assertions

- Traditional static analyses can compute either forward or backward assertions
- Hyper-edges have one source and multiple destinations

Forward Assertions

- Traditional static analyses can compute either forward or backward assertions
- Hyper-edges have one source and multiple destinations
- Asymmetry!

Forward Assertions

- Traditional static analyses can compute either forward or backward assertions
- Hyper-edges have one source and multiple destinations
- Asymmetry!
- Hyper-graphs prefer forward assertions
- the semantics of a node v represents the computation that can continue from v

Forward Assertions

```
x := 1; t := 0;
while x > 0 do
    r ~ Uniform(0,2);
    if prob(0.75) then
        x := x - r
    else
        x := x + r
    fi;
    t := t + 1
od
```


Forward Assertions

```
x := 1; t := 0;
while x > 0 do
    r ~ Uniform(0,2);
    if prob(0.75) then
        x := x - r
    else
        x := x + r
    fi;
    t := t + 1
od
```

- Assertions assigned to v6:
- $\mathrm{E}\left[\mathrm{x}^{\prime}\right]=\mathrm{x}, \mathrm{E}\left[\mathrm{r}^{\prime}\right]=\mathrm{r}, \mathrm{E}\left[\mathrm{t}^{\prime}\right]=\mathrm{t}$

Forward Assertions

```
x := 1; t := 0;
while x > 0 do
    r ~ Uniform(0,2);
    if prob(0.75) then
        x := x - r
    else
        x := x + r
```

 fi;
 \(\mathrm{t}:=\mathrm{t}+1\)
 od

- Assertions assigned to v6:
- $\mathrm{E}\left[\mathrm{x}^{\prime}\right]=\mathrm{x}, \mathrm{E}\left[\mathrm{r}^{\prime}\right]=\mathrm{r}, \mathrm{E}\left[\mathrm{t}^{\prime}\right]=\mathrm{t}$
- Assertions assigned to v1:
- $\mathrm{E}\left[2 x^{\prime}+\mathrm{t}^{\prime}\right]=2 x+t, \mathrm{E}\left[\mathrm{x}^{\prime}\right]>=-2$

Forward Assertions

```
x := 1; t := 0;
while x > 0 do
    r ~ Uniform(0,2);
    if prob(0.75) then
        x := x - r
    else
        x := x + r
    fi;
    t := t + 1
od
```

- Assertions assigned to v6:
- $\mathrm{E}\left[\mathrm{x}^{\prime}\right]=\mathrm{x}, \mathrm{E}\left[\mathrm{r}^{\prime}\right]=\mathrm{r}, \mathrm{E}\left[\mathrm{t}^{\prime}\right]=\mathrm{t}$
- Assertions assigned to vi:
- $\mathrm{E}\left[2 x^{\prime}+\mathrm{t}^{\prime}\right]=2 x+t, \mathrm{E}\left[\mathrm{x}^{\prime}\right]>=-2$
- Assertions assigned to vo:
- $E\left[t^{\prime}\right]<=t+6$
$\operatorname{seq}[x:=x-r]$

Backward Analysis

- The meaning of $v 4$: $\mathrm{E}\left[2 x^{\prime}+\mathrm{t}^{\prime}\right]=2(\mathrm{x}-1)+(\mathrm{t}+1)=2 \mathrm{x}+\mathrm{t}-1$
- The meaning of $v 5: E\left[2 x^{\prime}+t^{\prime}\right]=2(x+1)+(t+1)=2 x+t+3$

Backward Analysis

- The meaning of $v 4: \mathrm{E}\left[2 x^{\prime}+\mathrm{t}^{\prime}\right]=2(\mathrm{x}-1)+(\mathrm{t}+1)=2 \mathrm{x}+\mathrm{t}-1$
- The meaning of $v 5: E\left[2 x^{\prime}+t^{\prime}\right]=2(x+1)+(t+1)=2 x+t+3$
- We can compute the meaning of $v 3$ by "combining" two:
- $\mathrm{E}\left[2 x^{\prime}+\mathrm{t}^{\prime}\right]=0.75(2 \mathrm{x}+\mathrm{t}-1)+0.25(2 \mathrm{x}+\mathrm{t}+3)=2 \mathrm{x}+\mathrm{t}$

Backward Analysis

- The meaning of $v 4: \mathrm{E}\left[2 x^{\prime}+\mathrm{t}^{\prime}\right]=2(\mathrm{x}-1)+(\mathrm{t}+1)=2 \mathrm{x}+\mathrm{t}-1$
- The meaning of $v 5: E\left[2 x^{\prime}+t^{\prime}\right]=2(x+1)+(t+1)=2 x+t+3$
- We can compute the meaning of $v 3$ by "combining" two:
- $\mathrm{E}\left[2 \mathrm{x}^{\prime}+\mathrm{t}^{\prime}\right]=0.75(2 \mathrm{x}+\mathrm{t}-1)+0.25(2 \mathrm{x}+\mathrm{t}+3)=2 \mathrm{x}+\mathrm{t}$
- A hyper-edge is a transformer that computes properties of source as a function of properties of destinations

Interprocedural Analysis

Interprocedural Analysis

- Two-vocabulary program properties
- $P[x=5]=0.3$ is a one-vocabulary property
- $\mathrm{E}\left[2 \mathrm{x}^{\prime}+\mathrm{t}^{\prime}\right]=2 \mathrm{x}+\mathrm{t}$ is a two-vocabulary expectation invariant

Interprocedural Analysis

- Two-vocabulary program properties
- $P[x=5]=0.3$ is a one-vocabullary property
- $\mathrm{E}\left[2 \mathrm{x}^{\prime}+\mathrm{t}^{\prime}\right]=2 \mathrm{x}+\mathrm{t}$ is a two-vocabulary expectation invariant
- One-vocabulary properties specify states

Interprocedural Analysis

- Two-vocabulary program properties
- $P[x=5]=0.3$ is a one-vocabulary property
- $\mathrm{E}\left[2 \mathrm{x}^{\prime}+\mathrm{t}^{\prime}\right]=2 \mathrm{x}+\mathrm{t}$ is a two-vocabulary expectation invariant
- One-vocabulary properties specify states
- Two-vocabulary properties specify state transformers

Interprocedural Analysis

- Two-vocabulary program properties
- $P[x=5]=0.3$ is a one-vocabulary property
- $\mathrm{E}\left[2 \mathrm{x}^{\prime}+\mathrm{t}^{\prime}\right]=2 \mathrm{x}+\mathrm{t}$ is a two-vocabulary expectation invariant
- One-vocabulary properties specify states
- Two-vocabulary properties specify state transformers
- Two-vocabulary properties can be used as procedure summaries

An Algebraic Approach

An Algebraic Approach

- Any static analysis method performs reasoning in some space of program properties and property operations; such property operations should obey algebraic laws
- skip should be interpreted as the identity element

An Algebraic Approach

- Any static analysis method performs reasoning in some space of program properties and property operations; such property operations should obey algebraic laws
- skip should be interpreted as the identity element

$$
\left\langle M, \sqsubseteq, \otimes,{ }_{\varphi} \diamond,{ }_{p} \oplus, \mathbb{ש}, \perp, \underline{1}\right\rangle
$$

An Algebraic Approach

- Any static analysis method performs reasoning in some space of program properties and property operations; such property operations should obey algebraic laws
- skip should be interpreted as the identity element

$$
\left\langle M, \sqsubseteq, \otimes,{ }_{\varphi} \diamond,{ }_{p} \oplus, \cup, \perp, \underline{1}\right\rangle
$$

Property universe

An Algebraic Approach

- Any static analysis method performs reasoning in some space of program properties and property operations; such property operations should obey algebraic laws
- skip should be interpreted as the identity element

An Algebraic Approach

- Any static analysis method performs reasoning in some space of program properties and property operations; such property operations should obey algebraic laws
- skip should be interpreted as the identity element

An Algebraic Approach

- Any static analysis method performs reasoning in some space of program properties and property operations; such property operations should obey algebraic laws
- skip should be interpreted as the identity element

An Algebraic Approach

- Any static analysis method performs reasoning in some space of program properties and property operations; such property operations should obey algebraic laws
- skip should be interpreted as the identity element

An Algebraic Approach

- Any static analysis method performs reasoning in some space of program properties and property operations; such property operations should obey algebraic laws
- skip should be interpreted as the identity element

An Algebraic Approach

- Any static analysis method performs reasoning in some space of program properties and property operations; such property operations should obey algebraic laws
- skip should be interpreted as the identity element

An Algebraic Approach

- Any static analysis method performs reasoning in some space of program properties and property operations; such property operations should obey algebraic laws
- skip should be interpreted as the identity element

An Algebraic Approach

Approximation

Approximation

Approximation

Approximation

General Analysis Algorithm

- Solve an equation system extracted from the controlflow hyper-graph
- Chaotic-iteration strategy
- Widening
- The framework furnishes the

```
S[v0] \geqslant seq[x:=1](S[v1])
S[v1]\geqslantcond[x>0](S[v2],S[v6])
S[v2]\geqslantseq[r~U(0,2)](S[v3])
S[v3]\geqslant\operatorname{prob}[0.75](S[v4],S[v5])
S[v4] \geqslant seq[x:=x-r](S[v1])
S[v5] \geqslant seq[x:=x+r](S[v1])
S[v6]\geqslant1
``` analysis implementation


\section*{Technical Summary}
- A blending of ideas from prior work on
- static analysis of single-procedure probabilistic programs
- interprocedural dataflow analysis of standard programs
- Especially
- the separation of data \& control-flow randomness
- backward analysis on control-flow hyper-graphs
- two-vocabulary program properties
- an algebraic approach

\section*{Instantiations}
- Bayesian inference: compute the posterior distribution
- abstract programs as distribution transformers matrices
- Markov decision problem: compute the optimal expected reward
- abstract programs as real numbers (reward gain)
- Linear expectation-invariant analysis
- abstract programs as pairs of polyhedra (relational domain)

\section*{Future Work}
- Design more efficient analysis algorithms to exploit all algebraic laws
- Find useful coarser abstractions for Bayesian inference by analogy with the techniques for predicate abstraction
- Use the framework to design new analysis for expected resource analysis and side-channel attack analysis```

