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EXAMPLE OF WORST-CASE ANALYSIS

PHP

1 CVE - CVE-2011-4885. Available on: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885.
2 PHP 5.3.8 - Hashtables Denial of Service. Available on https://www.exploit-db.com/exploits/18296/. 
3 PHP: PHP 5 ChangeLog. Available on http://www.php.net/ChangeLog-5.php#5.3.9. 
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EXAMPLE OF WORST-CASE ANALYSIS

PHP

Potential Denial-of-Service attack1

Concrete exploits (by hash collisions)2

Bug fixed!3

Worst-case inputs 
are instrumental to 
understand and fix 
performance bugs!
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EXISTING APPROACHES

Fuzz testing
Symbolic execution
Dynamic worst-case analysis
…

Flexible & universal
Potentially unsound: The resulting 
inputs might not expose the 
worst-case behavior.

Dynamic
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EXISTING APPROACHES

Fuzz testing
Symbolic execution
Dynamic worst-case analysis
…

Flexible & universal
Potentially unsound: The resulting 
inputs might not expose the 
worst-case behavior.

Type systems
Abstract interpretation
…

Sound upper bounds
Potentially not tight: No concrete 
witness — the bound might be 
too conservative.

Dynamic Static
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CONTRIBUTIONS
A type-guided worst-case input generation algorithm

Proof of soundness and relative completeness

Heuristics to improve scalability
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TYPE-BASED ANALYSIS

let rec lpairs l = 
  match l with 
  | [] -> [] 
  | x1 :: xs -> 
    match xs with 
    | [] -> [] 
    | x2 :: xs’ -> 
      if (x1:int) < (x2:int) then 
        (x1, x2) :: lpairs xs’ 
      else 
        lpairs xs’

The potential at a 
program point is defined 
by a static annotation of 
data structures.

A list of length n annotated 
with a nonnegative number 
q has q·n units of potential.
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γ ⊢ e1 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨γ(e) ∧ ψ, S⟩

γ ⊢ e2 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨¬γ(e) ∧ ψ, S⟩

Symbolic execution rules for conditional expressions
Then Else



SYMBOLIC EXECUTION

let rec lpairs l = 
  match l with 
  | [] -> [] 
  | x1 :: xs -> 
    match xs with 
    | [] -> [] 
    | x2 :: xs’ -> 
      if (x1:int) < (x2:int) then 
        (x1, x2) :: lpairs xs’ 
      else 
        lpairs xs’
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An example of worst-case 
execution paths for input lists 
of length 4

SYMBOLIC EXECUTION

let rec lpairs l = 
  match l with 
  | [] -> [] 
  | x1 :: xs -> 
    match xs with 
    | [] -> [] 
    | x2 :: xs’ -> 
      if (x1:int) < (x2:int) then 
        (x1, x2) :: lpairs xs’ 
      else 
        lpairs xs’

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4] ⊢
𝗅𝗉𝖺𝗂𝗋𝗌 ℓ ⇒ ⟨(𝗂𝗇𝗍1 < 𝗂𝗇𝗍2) ∧ (𝗂𝗇𝗍3 < 𝗂𝗇𝗍4),

[(𝗂𝗇𝗍1, 𝗂𝗇𝗍2), (𝗂𝗇𝗍3, 𝗂𝗇𝗍4)]⟩
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Invoke an SMT solver to find a 
model, e.g., [0,1,0,1]
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Use the information about potentials obtained 
from resource aware type checking to prune 

the search space of symbolic execution.
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SOUNDNESS & COMPLETENESS

Soundness: If the algorithm generates an input, then the input will 
cause the program to consume exactly the same amount of 
resource as the inferred upper bound (by RaML).

Relative completeness: If there is an input of some given shape that 
causes the program to consume exactly the same amount of 
resource as the inferred upper bound (by RaML), then the algorithm 
is able to find a corresponding execution path.
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γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨¬γ(e) ∧ ψ, S⟩

Then Else

Still Sound!

SPEED UP INPUT GENERATION

Generalization: enforce all the calls with the same shape of inputs 
execute the same path in the function body. 
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IMPLEMENTATION
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We implemented the generation algorithm for a purely functional 
fragment of Resource Aware ML (RaML), including higher-order 
functions, user-defined data structures, and polynomial resource 
bounds.

We used the off-the-shelf SMT solver Z3.



BENCHMARKS (SELECTED)
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Description Shape ALG ALG+H1 ALG+H2

Insertion sort 200 integers 7.74s 6.97s 94.81s

Quicksort 200 integers T/O 53.23s 157.21s

Lexicographic quicksort Lists of length 100, 99, …, 1 439.35s 438.79s T/O

Functional queue 200 operations 444.64s T/O T/O

Zigzag on a tree 200 internal nodes T/O T/O 4.87s

Hash table for 8-char strings 64 insertions 7.64s 7.62s 181.74s
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EXAMPLE: HASH TABLE

Customized resource metric: count for hash collisions

Use a hash function from a vulnerable PHP implementation

The program inserts 64 strings into an empty hash table

Our algorithm “realizes” that it should find 64 strings with the same 
hash key, in order to trigger the most collisions
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Limitations:
Purely functional programs
Only work for tight bounds
Depend on RaML

Future work:
Support side effects
Interact with resource analysis
General theory for worst-
case analysisλ
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