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Programs Performance



EXAMPLE OF WORST-CASE ANALYSIS

I CVE - CVE-201 [-4885. Avallable on: https://cve.mitre.org/cgi-bin/cvename.cgilname=CVE-201 [-4885.
2 PHP 5.3.8 - Hashtables Denial of Service. Available on https://www.exploit-db.com/exploits/ | 8296/.

3 PHP: PHP 5 Changel.og. Available on http://www.php.net/Changel og-5.php#5.3.9.
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Concrete exploits (by hash collisions)?
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Bug fixed!3

” QPotential Denial-of-Service attack!

Concrete exploits (by hash collisions)?

- - CVE-201 1-4885. Avallable on: https://cve.mitre.org/cgi-bin/cvename.cgiiname=CVE-201 [ -4885.
P 5.3.8 - Hashtables Denial of Service. Availlable on https://www.exploit-db.com/exploits/ | 8296/,

P PHP 5 Changel og. Avallable on http://www.php.net/Changel og->.php#5.3.9.
3


https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885
https://www.exploit-db.com/exploits/18296/
http://www.php.net/ChangeLog-5.php#5.3.9

EXAMPLE OF WORST-CASE ANALYSIS

VVorst-case inputs
are instrumental to
understand and fix
performance bugs!

I CVE - CVE-201 [-4885. Avallable on: https://cve.mitre.org/cgi-bin/cvename.cgilname=CVE-201 [-4885.
2 PHP 5.3.8 - Hashtables Denial of Service. Available on https://www.exploit-db.com/exploits/ | 8296/.
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» Flexible & universal
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inputs might not expose the
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EXISTING APPROACHES

Dynamic Static

% Fuzz testing
» Symbolic execution + lype systems

,, Dynamic worst-case ana|ysis # Abstract Interpretation

 Flexible & universal # Sound upper bounds

 Potentially unsound:The resulting # Potentially not tight: No concrete
inputs might not expose the witness — the bound might be
worst-case behavior. too conservative.
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% A type-guided worst-case input generation algorithm

# Proof of soundness and relative completeness

# Heuristics to improve scalability

Resource Aware ML (RaML)
L’
Guide

Symbolic Execution
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AMORTIZED RESOURCE ANALYSIS

--
% | he pOterma\ method with actual costs

Arrows are transitions
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<1><Do> <I><D1> <I><D2> <I><D3> <I><D>

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

O(D,) > Cost(D», D3) + ®(D,) The potential function
maps program states to

-------------------------------

The initial potential is an
upper bound!

nonnegative numbers
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SYMBOLIC EXECUTION

# ldea: search all execution paths, record path constraints, ana

compute resource usage

y e = (y,S) symbolic evaluation result
symbolic environment </ l \J

s b path constraints

# Symbolic execution rules for conditional expressions
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SYMBOLIC EXECUTION

let rec lpairs L =
match 1 with
| ->
f X1 :: X5 ->
match xs with
| ->
f W2 XS ->
AL (xl:int
x|l . o7
else
‘pales xXs

# An example of worst-case
execution paths for input lists
of length 4

£ — [int!, int%, int”, int*] -+

pairs £ = ((int' < int*) A (int’ < int"),
< (x2:int) then [(int, int?), (int’, int")])

. lpalrs x5

% |nvoke an SMT solver to find a

model,e.g, [0,1,0,1]
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TYPE-GUIDED SYMBOLIC EXECUTION

# Nondeterminism leads to state explosion

e ) ey )

y = if e then ¢; else e, = (y(e) Ay, S) y - if e then ¢; else e, = (y(e) Ay, S)

Use the information about potentials obtained
from resource aware type checking to prune
the search space of symbolic execution.
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L(int) > i L (int X int)
let rec lpairs 1 = £ — [intl,intz,int3,int4]
match 1 with
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L(int) > i L (int X int) .
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L(int) > i L (int X int) .
o If an execution path does
o ¢ = [int,int%int%, int"]  not have potential waste,
| o it must expose the worst-
[ 1 x5 > case resource usage.
match xs with @©,=2:|xs'|4+6=10
| = - 2 a
| x2 :: xs' -> /X P Int,x = nttxs' = int int]
Af (x1:int) .5 (x2:int) then
. ((x1, x2)iii:iglpairs xs’ 4.
Cost 4~\91V ..... K T, ~ |7 e: T= (1, S)

Oy =2-|xs'| +2=6
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SOUNDNESS & COMPLETENESS

# Soundness: It the algorithm generates an input, then the input will
cause the program to consume exactly the same amount of
resource as the inferred upper bound (by RaML).

# Relative completeness: If there is an input of some given shape that
causes the program to consume exactly the same amount of
resource as the inferred upper bound (by RaML), then the algorithm
s able to find a corresponding execution path.
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SPEED UP INPUT (GENERATION

% How about eliminating some generation rules!

e )

y k= if e then e, else e, = (y(e) Ay, S)

Still Sound!

# Generalization: enforce all the calls with the same sha

e of INputs

execute the same path In the function boay.
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IMPLEMENTATION

# VVe implemented the generation algorithm for a purely functional

fragment of Resource Aware ML (RaML), including higher-order
functions, user-defined data structures, and polynomial resource

bounds.

# VVe used the off-the-shelf SMT solver /3.



BENCHMARKS (SELECTED)

Description ALG+HI  ALG+HZ
Insertion sort 200 Integers 1./45 6.97s 94.81s
Quicksort 200 Integers e 53.23s |5/
i e quicksort . {Lists of length 100,99, ..., || 439.35s 438.79s e
Functional queue 200 operations 444.64s O )
Zigzag on a tree 200 internal nodes T e 4.87s
Hash table for 8-char strings 64 Insertions .64 /.62s | 817458

| 8
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# Customized resource metric: count for hash collisions
# Use a hash function from a vulnerable PHP implementation

# [he program Inserts 64 strings into an empty hash table




EXAMPLE: HASH | ABLE

# Customized resource metric: count for hash collisions
# Use a hash function from a vulnerable PHP implementation

# [he program Inserts 64 strings into an empty hash table

% Our algorithm “realizes’ that it should find 64 strings with the same
nash key, In order to trigger the most collisions
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