
TYPE-GUIDED WORST-CASE INPUT GENERATION

Di Wang, Jan Hoffmann
Carnegie Mellon University

λ

RESOURCE ANALYSIS

Programs

 2

RESOURCE ANALYSIS

Programs

 2

Performance

RESOURCE ANALYSIS

Programs

 2

Performance

Time
Memory
Power
…

RESOURCE ANALYSIS

Programs

Worst-Case
Analysis

Performance bottlenecks

Algorithmic complexity
vulnerabilities

Timing side channels

 2

Performance

Time
Memory
Power
…

EXAMPLE OF WORST-CASE ANALYSIS

PHP

1 CVE - CVE-2011-4885. Available on: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885.
2 PHP 5.3.8 - Hashtables Denial of Service. Available on https://www.exploit-db.com/exploits/18296/.
3 PHP: PHP 5 ChangeLog. Available on http://www.php.net/ChangeLog-5.php#5.3.9.

 3

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885
https://www.exploit-db.com/exploits/18296/
http://www.php.net/ChangeLog-5.php#5.3.9

EXAMPLE OF WORST-CASE ANALYSIS

PHP

Potential Denial-of-Service attack1

1 CVE - CVE-2011-4885. Available on: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885.
2 PHP 5.3.8 - Hashtables Denial of Service. Available on https://www.exploit-db.com/exploits/18296/.
3 PHP: PHP 5 ChangeLog. Available on http://www.php.net/ChangeLog-5.php#5.3.9.

 3

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885
https://www.exploit-db.com/exploits/18296/
http://www.php.net/ChangeLog-5.php#5.3.9

EXAMPLE OF WORST-CASE ANALYSIS

PHP

Potential Denial-of-Service attack1

Concrete exploits (by hash collisions)2
1 CVE - CVE-2011-4885. Available on: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885.
2 PHP 5.3.8 - Hashtables Denial of Service. Available on https://www.exploit-db.com/exploits/18296/.
3 PHP: PHP 5 ChangeLog. Available on http://www.php.net/ChangeLog-5.php#5.3.9.

 3

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885
https://www.exploit-db.com/exploits/18296/
http://www.php.net/ChangeLog-5.php#5.3.9

EXAMPLE OF WORST-CASE ANALYSIS

PHP

Potential Denial-of-Service attack1

Concrete exploits (by hash collisions)2

Bug fixed!3

1 CVE - CVE-2011-4885. Available on: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885.
2 PHP 5.3.8 - Hashtables Denial of Service. Available on https://www.exploit-db.com/exploits/18296/.
3 PHP: PHP 5 ChangeLog. Available on http://www.php.net/ChangeLog-5.php#5.3.9.

 3

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885
https://www.exploit-db.com/exploits/18296/
http://www.php.net/ChangeLog-5.php#5.3.9

EXAMPLE OF WORST-CASE ANALYSIS

PHP

Potential Denial-of-Service attack1

Concrete exploits (by hash collisions)2

Bug fixed!3

Worst-case inputs
are instrumental to
understand and fix
performance bugs!

1 CVE - CVE-2011-4885. Available on: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885.
2 PHP 5.3.8 - Hashtables Denial of Service. Available on https://www.exploit-db.com/exploits/18296/.
3 PHP: PHP 5 ChangeLog. Available on http://www.php.net/ChangeLog-5.php#5.3.9.

 3

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885
https://www.exploit-db.com/exploits/18296/
http://www.php.net/ChangeLog-5.php#5.3.9

EXISTING APPROACHES

 4

EXISTING APPROACHES

Fuzz testing
Symbolic execution
Dynamic worst-case analysis
…

Flexible & universal
Potentially unsound: The resulting
inputs might not expose the
worst-case behavior.

Dynamic

 4

EXISTING APPROACHES

Fuzz testing
Symbolic execution
Dynamic worst-case analysis
…

Flexible & universal
Potentially unsound: The resulting
inputs might not expose the
worst-case behavior.

Type systems
Abstract interpretation
…

Sound upper bounds
Potentially not tight: No concrete
witness — the bound might be
too conservative.

Dynamic Static

 4

CONTRIBUTIONS
A type-guided worst-case input generation algorithm

Proof of soundness and relative completeness

Heuristics to improve scalability

 5

CONTRIBUTIONS

λ

A type-guided worst-case input generation algorithm

Proof of soundness and relative completeness

Heuristics to improve scalability

 5

CONTRIBUTIONS

λ

A type-guided worst-case input generation algorithm

Proof of soundness and relative completeness

Heuristics to improve scalability

Resource Aware ML (RaML)

 5

CONTRIBUTIONS

λ

A type-guided worst-case input generation algorithm

Proof of soundness and relative completeness

Heuristics to improve scalability

Resource Aware ML (RaML)

 5

CONTRIBUTIONS

λ

A type-guided worst-case input generation algorithm

Proof of soundness and relative completeness

Heuristics to improve scalability

Resource Aware ML (RaML)

Symbolic Execution

 5

CONTRIBUTIONS

λ

A type-guided worst-case input generation algorithm

Proof of soundness and relative completeness

Heuristics to improve scalability

Resource Aware ML (RaML)

Symbolic Execution

Guide

 5

OVERVIEW
Motivation

Resource Aware ML (RaML)

Type-Guided Worst-Case Input Generation

Evaluation

 6

AMORTIZED RESOURCE ANALYSIS

The potential method

 7

AMORTIZED RESOURCE ANALYSIS

The potential method

D0 D1 D2 D3 … Dn

 7

D4 D5
…

AMORTIZED RESOURCE ANALYSIS

The potential method

D0 D1 D2 D3 … Dn

Di’s are program states

 7

D4 D5
…

AMORTIZED RESOURCE ANALYSIS

The potential method

D0 D1 D2 D3 … Dn

Di’s are program states Arrows are transitions
with actual costs

 7

D4 D5
…

AMORTIZED RESOURCE ANALYSIS

The potential method

D0 D1 D2 D3 … Dn

Di’s are program states Arrows are transitions
with actual costs

Φ(D0) Φ(D1) Φ(D2) Φ(D3) Φ(Dn)

 7

D4 D5
…

AMORTIZED RESOURCE ANALYSIS

The potential method

D0 D1 D2 D3 … Dn

Di’s are program states Arrows are transitions
with actual costs

Φ(D0) Φ(D1) Φ(D2) Φ(D3) Φ(Dn)

The potential function
maps program states to
nonnegative numbers

 7

D4 D5
…

AMORTIZED RESOURCE ANALYSIS

The potential method

D0 D1 D2 D3 … Dn

Di’s are program states Arrows are transitions
with actual costs

Φ(D0) Φ(D1) Φ(D2) Φ(D3) Φ(Dn)

The potential function
maps program states to
nonnegative numbers

Φ(D2) ≥ Cost(D2, D3) + Φ(D3)

 7

D4 D5
…

AMORTIZED RESOURCE ANALYSIS

The potential method

D0 D1 D2 D3 … Dn

Di’s are program states Arrows are transitions
with actual costs

Φ(D0) Φ(D1) Φ(D2) Φ(D3) Φ(Dn)

The potential function
maps program states to
nonnegative numbers

Φ(D2) ≥ Cost(D2, D3) + Φ(D3)The initial potential is an
upper bound!

 7

D4 D5
…

TYPE-BASED ANALYSIS

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

The potential at a
program point is defined
by a static annotation of
data structures.

A list of length n annotated
with a nonnegative number
q has q·n units of potential.

 8

TYPE-BASED ANALYSIS

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

The potential at a
program point is defined
by a static annotation of
data structures.

A list of length n annotated
with a nonnegative number
q has q·n units of potential.

Each of [], ::, (,) consumes 2 memory cells.

 8

TYPE-BASED ANALYSIS

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

The potential at a
program point is defined
by a static annotation of
data structures.

A list of length n annotated
with a nonnegative number
q has q·n units of potential.

Each of [], ::, (,) consumes 2 memory cells.

 8

Cost = 2 ⋅ |ℓ | + 2

TYPE-BASED ANALYSIS

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

The potential at a
program point is defined
by a static annotation of
data structures.

A list of length n annotated
with a nonnegative number
q has q·n units of potential.

L2(𝗂𝗇𝗍) 2/0 L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍)

Each of [], ::, (,) consumes 2 memory cells.

 8

TYPE-BASED ANALYSIS

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

The potential at a
program point is defined
by a static annotation of
data structures.

A list of length n annotated
with a nonnegative number
q has q·n units of potential.

L2(𝗂𝗇𝗍) 2/0 L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍)

Each of [], ::, (,) consumes 2 memory cells.

Φ0 = 2 ⋅ |ℓ | + 2

 8

TYPE-BASED ANALYSIS

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

The potential at a
program point is defined
by a static annotation of
data structures.

A list of length n annotated
with a nonnegative number
q has q·n units of potential.

L2(𝗂𝗇𝗍) 2/0 L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍)

Each of [], ::, (,) consumes 2 memory cells.

Φ0 = 2 ⋅ |ℓ | + 2
Cost = 2

 8

TYPE-BASED ANALYSIS

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

The potential at a
program point is defined
by a static annotation of
data structures.

A list of length n annotated
with a nonnegative number
q has q·n units of potential.

L2(𝗂𝗇𝗍) 2/0 L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍)

Each of [], ::, (,) consumes 2 memory cells.

Φ1 = 2 ⋅ |xs | + 4

 8

TYPE-BASED ANALYSIS

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

The potential at a
program point is defined
by a static annotation of
data structures.

A list of length n annotated
with a nonnegative number
q has q·n units of potential.

L2(𝗂𝗇𝗍) 2/0 L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍)

Each of [], ::, (,) consumes 2 memory cells.

Φ2 = 2 ⋅ |xs′�| + 6

 8

TYPE-BASED ANALYSIS

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

The potential at a
program point is defined
by a static annotation of
data structures.

A list of length n annotated
with a nonnegative number
q has q·n units of potential.

L2(𝗂𝗇𝗍) 2/0 L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍)

Each of [], ::, (,) consumes 2 memory cells.

Φ2 = 2 ⋅ |xs′�| + 6

Cost = 4

 8

TYPE-BASED ANALYSIS

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

The potential at a
program point is defined
by a static annotation of
data structures.

A list of length n annotated
with a nonnegative number
q has q·n units of potential.

L2(𝗂𝗇𝗍) 2/0 L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍)

Each of [], ::, (,) consumes 2 memory cells.

Φ2 = 2 ⋅ |xs′�| + 6

Φ3 = 2 ⋅ |xs′�| + 2
Cost = 4

 8

TYPE-BASED ANALYSIS

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

The potential at a
program point is defined
by a static annotation of
data structures.

A list of length n annotated
with a nonnegative number
q has q·n units of potential.

L2(𝗂𝗇𝗍) 2/0 L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍)

Each of [], ::, (,) consumes 2 memory cells.

Φ2 = 2 ⋅ |xs′�| + 6

Φ3 = 2 ⋅ |xs′�| + 2
Cost = 4

 8

OVERVIEW
Motivation

Resource Aware ML (RaML)

Type-Guided Worst-Case Input Generation

Evaluation

 9

SYMBOLIC EXECUTION

Idea: search all execution paths, record path constraints, and
compute resource usage

γ ⊢ e ⇒ ⟨ψ, S⟩

SYMBOLIC EXECUTION

Idea: search all execution paths, record path constraints, and
compute resource usage

γ ⊢ e ⇒ ⟨ψ, S⟩
symbolic environment

SYMBOLIC EXECUTION

Idea: search all execution paths, record path constraints, and
compute resource usage

γ ⊢ e ⇒ ⟨ψ, S⟩
symbolic environment

expression

SYMBOLIC EXECUTION

Idea: search all execution paths, record path constraints, and
compute resource usage

γ ⊢ e ⇒ ⟨ψ, S⟩
symbolic environment

expression path constraints

SYMBOLIC EXECUTION

Idea: search all execution paths, record path constraints, and
compute resource usage

γ ⊢ e ⇒ ⟨ψ, S⟩
symbolic environment

expression

symbolic evaluation result

path constraints

SYMBOLIC EXECUTION

Idea: search all execution paths, record path constraints, and
compute resource usage

γ ⊢ e ⇒ ⟨ψ, S⟩
symbolic environment

expression

symbolic evaluation result

path constraints

Symbolic execution rules for conditional expressions

SYMBOLIC EXECUTION

Idea: search all execution paths, record path constraints, and
compute resource usage

γ ⊢ e ⇒ ⟨ψ, S⟩
symbolic environment

expression

symbolic evaluation result

path constraints

 10

γ ⊢ e1 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨γ(e) ∧ ψ, S⟩

γ ⊢ e2 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨¬γ(e) ∧ ψ, S⟩

Symbolic execution rules for conditional expressions
Then Else

SYMBOLIC EXECUTION

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

 11

An example of worst-case
execution paths for input lists
of length 4

SYMBOLIC EXECUTION

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4] ⊢
𝗅𝗉𝖺𝗂𝗋𝗌 ℓ ⇒ ⟨(𝗂𝗇𝗍1 < 𝗂𝗇𝗍2) ∧ (𝗂𝗇𝗍3 < 𝗂𝗇𝗍4),

[(𝗂𝗇𝗍1, 𝗂𝗇𝗍2), (𝗂𝗇𝗍3, 𝗂𝗇𝗍4)]⟩

 11

An example of worst-case
execution paths for input lists
of length 4

SYMBOLIC EXECUTION

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4] ⊢
𝗅𝗉𝖺𝗂𝗋𝗌 ℓ ⇒ ⟨(𝗂𝗇𝗍1 < 𝗂𝗇𝗍2) ∧ (𝗂𝗇𝗍3 < 𝗂𝗇𝗍4),

[(𝗂𝗇𝗍1, 𝗂𝗇𝗍2), (𝗂𝗇𝗍3, 𝗂𝗇𝗍4)]⟩

Invoke an SMT solver to find a
model, e.g., [0,1,0,1]

 11

TYPE-GUIDED SYMBOLIC EXECUTION

Nondeterminism leads to state explosion
γ ⊢ e1 ⇒ ⟨ψ, S⟩

γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨γ(e) ∧ ψ, S⟩
γ ⊢ e2 ⇒ ⟨ψ, S⟩

γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨¬γ(e) ∧ ψ, S⟩

Then Else

 12

TYPE-GUIDED SYMBOLIC EXECUTION

Nondeterminism leads to state explosion
γ ⊢ e1 ⇒ ⟨ψ, S⟩

γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨γ(e) ∧ ψ, S⟩
γ ⊢ e2 ⇒ ⟨ψ, S⟩

γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨¬γ(e) ∧ ψ, S⟩

Then Else

 12

Use the information about potentials obtained
from resource aware type checking to prune

the search space of symbolic execution.

 13

TYPE-GUIDED SYMBOLIC EXECUTION

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

L2(𝗂𝗇𝗍) 2/0 L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍)

 13

TYPE-GUIDED SYMBOLIC EXECUTION

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

L2(𝗂𝗇𝗍) 2/0 L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍)

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

 13

TYPE-GUIDED SYMBOLIC EXECUTION

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

L2(𝗂𝗇𝗍) 2/0 L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍)

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

x1 ↦ 𝗂𝗇𝗍1, x2 ↦ 𝗂𝗇𝗍2, xs′� ↦ [𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

 13

TYPE-GUIDED SYMBOLIC EXECUTION

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

Φ2 = 2 ⋅ |xs′�| + 6 = 10

L2(𝗂𝗇𝗍) 2/0 L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍)

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

x1 ↦ 𝗂𝗇𝗍1, x2 ↦ 𝗂𝗇𝗍2, xs′� ↦ [𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

 13

TYPE-GUIDED SYMBOLIC EXECUTION

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

Φ2 = 2 ⋅ |xs′�| + 6 = 10

Cost = 4

L2(𝗂𝗇𝗍) 2/0 L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍)

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

x1 ↦ 𝗂𝗇𝗍1, x2 ↦ 𝗂𝗇𝗍2, xs′� ↦ [𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

 13

TYPE-GUIDED SYMBOLIC EXECUTION

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

Φ2 = 2 ⋅ |xs′�| + 6 = 10

Φ3 = 2 ⋅ |xs′�| + 2 = 6
Cost = 4

L2(𝗂𝗇𝗍) 2/0 L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍)

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

x1 ↦ 𝗂𝗇𝗍1, x2 ↦ 𝗂𝗇𝗍2, xs′� ↦ [𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

 13

TYPE-GUIDED SYMBOLIC EXECUTION

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

Φ2 = 2 ⋅ |xs′�| + 6 = 10

Φ3 = 2 ⋅ |xs′�| + 2 = 6
Cost = 4

L2(𝗂𝗇𝗍) 2/0 L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍)

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

x1 ↦ 𝗂𝗇𝗍1, x2 ↦ 𝗂𝗇𝗍2, xs′� ↦ [𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

 13

TYPE-GUIDED SYMBOLIC EXECUTION

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

Φ2 = 2 ⋅ |xs′�| + 6 = 10

Φ3 = 2 ⋅ |xs′�| + 2 = 6
Cost = 4

L2(𝗂𝗇𝗍) 2/0 L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍)

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

x1 ↦ 𝗂𝗇𝗍1, x2 ↦ 𝗂𝗇𝗍2, xs′� ↦ [𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

Waste!

 13

TYPE-GUIDED SYMBOLIC EXECUTION

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

Φ2 = 2 ⋅ |xs′�| + 6 = 10

Φ3 = 2 ⋅ |xs′�| + 2 = 6
Cost = 4

L2(𝗂𝗇𝗍) 2/0 L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍)

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

x1 ↦ 𝗂𝗇𝗍1, x2 ↦ 𝗂𝗇𝗍2, xs′� ↦ [𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

If an execution path does
not have potential waste,
it must expose the worst-

case resource usage.

Waste!

 13

TYPE-GUIDED SYMBOLIC EXECUTION

let rec lpairs l =
 match l with
 | [] -> []
 | x1 :: xs ->
 match xs with
 | [] -> []
 | x2 :: xs’ ->
 if (x1:int) < (x2:int) then
 (x1, x2) :: lpairs xs’
 else
 lpairs xs’

Φ2 = 2 ⋅ |xs′�| + 6 = 10

Φ3 = 2 ⋅ |xs′�| + 2 = 6
Cost = 4

L2(𝗂𝗇𝗍) 2/0 L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍)

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

x1 ↦ 𝗂𝗇𝗍1, x2 ↦ 𝗂𝗇𝗍2, xs′� ↦ [𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

If an execution path does
not have potential waste,
it must expose the worst-

case resource usage.

Waste!

SOUNDNESS & COMPLETENESS

 14

SOUNDNESS & COMPLETENESS

Soundness: If the algorithm generates an input, then the input will
cause the program to consume exactly the same amount of
resource as the inferred upper bound (by RaML).

 14

SOUNDNESS & COMPLETENESS

Soundness: If the algorithm generates an input, then the input will
cause the program to consume exactly the same amount of
resource as the inferred upper bound (by RaML).

Relative completeness: If there is an input of some given shape that
causes the program to consume exactly the same amount of
resource as the inferred upper bound (by RaML), then the algorithm
is able to find a corresponding execution path.

 14

 15

γ ⊢ e1 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨γ(e) ∧ ψ, S⟩

γ ⊢ e2 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨¬γ(e) ∧ ψ, S⟩

Then Else

SPEED UP INPUT GENERATION

How about eliminating some generation rules?

 15

γ ⊢ e1 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨γ(e) ∧ ψ, S⟩

γ ⊢ e2 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨¬γ(e) ∧ ψ, S⟩

Then Else

SPEED UP INPUT GENERATION

How about eliminating some generation rules?

 15

γ ⊢ e1 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨γ(e) ∧ ψ, S⟩

γ ⊢ e2 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨¬γ(e) ∧ ψ, S⟩

Then Else

SPEED UP INPUT GENERATION

How about eliminating some generation rules?

 15

γ ⊢ e1 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨γ(e) ∧ ψ, S⟩

γ ⊢ e2 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨¬γ(e) ∧ ψ, S⟩

Then Else

Still Sound!

SPEED UP INPUT GENERATION

How about eliminating some generation rules?

 15

γ ⊢ e1 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨γ(e) ∧ ψ, S⟩

γ ⊢ e2 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨¬γ(e) ∧ ψ, S⟩

Then Else

Still Sound!

SPEED UP INPUT GENERATION

Generalization: enforce all the calls with the same shape of inputs
execute the same path in the function body.

OVERVIEW
Motivation

Resource Aware ML (RaML)

Type-Guided Worst-Case Input Generation

Evaluation

 16

IMPLEMENTATION

 17

We implemented the generation algorithm for a purely functional
fragment of Resource Aware ML (RaML), including higher-order
functions, user-defined data structures, and polynomial resource
bounds.

We used the off-the-shelf SMT solver Z3.

BENCHMARKS (SELECTED)

 18

Description Shape ALG ALG+H1 ALG+H2

Insertion sort 200 integers 7.74s 6.97s 94.81s

Quicksort 200 integers T/O 53.23s 157.21s

Lexicographic quicksort Lists of length 100, 99, …, 1 439.35s 438.79s T/O

Functional queue 200 operations 444.64s T/O T/O

Zigzag on a tree 200 internal nodes T/O T/O 4.87s

Hash table for 8-char strings 64 insertions 7.64s 7.62s 181.74s

 19

EXAMPLE: HASH TABLE

 19

EXAMPLE: HASH TABLE

Customized resource metric: count for hash collisions

 19

EXAMPLE: HASH TABLE

Customized resource metric: count for hash collisions

Use a hash function from a vulnerable PHP implementation

 19

EXAMPLE: HASH TABLE

Customized resource metric: count for hash collisions

Use a hash function from a vulnerable PHP implementation

The program inserts 64 strings into an empty hash table

 19

EXAMPLE: HASH TABLE

Customized resource metric: count for hash collisions

Use a hash function from a vulnerable PHP implementation

The program inserts 64 strings into an empty hash table

Our algorithm “realizes” that it should find 64 strings with the same
hash key, in order to trigger the most collisions

SUMMARY

 20

λ
TYPE-GUIDED SYMBOLIC EXECUTION
FOR WORST-CASE INPUT GENERATION

SUMMARY

 20

λ
TYPE-GUIDED SYMBOLIC EXECUTION
FOR WORST-CASE INPUT GENERATION

Formally developed algorithm
Soundness & relative completeness

Theoretical Results

SUMMARY

 20

λ
TYPE-GUIDED SYMBOLIC EXECUTION
FOR WORST-CASE INPUT GENERATION

Integrated with RaML
Effective on 22 benchmark programs

Formally developed algorithm
Soundness & relative completeness

Theoretical Results Experimental Results

SUMMARY

 20

Limitations:
Purely functional programs
Only work for tight bounds
Depend on RaML λ

TYPE-GUIDED SYMBOLIC EXECUTION
FOR WORST-CASE INPUT GENERATION

Integrated with RaML
Effective on 22 benchmark programs

Formally developed algorithm
Soundness & relative completeness

Theoretical Results Experimental Results

SUMMARY

 20

Limitations:
Purely functional programs
Only work for tight bounds
Depend on RaML

Future work:
Support side effects
Interact with resource analysis
General theory for worst-
case analysisλ

TYPE-GUIDED SYMBOLIC EXECUTION
FOR WORST-CASE INPUT GENERATION

Integrated with RaML
Effective on 22 benchmark programs

Formally developed algorithm
Soundness & relative completeness

Theoretical Results Experimental Results

