W

TYPE-GUIDED WORST-CASE INPUT GENERATION
Di Wang, |]an Hoffmann

Carnegie Mellon University

RESOURCE ANALYSIS

Programs

RESOURCE ANALYSIS

Programs Performance

RESOURCE ANALYSIS

Programs Performance

RESOURCE ANALYSIS

Performance bottlenecks
Worst-Case

Analysis l

Algorithmic complexity

vulnerabilities

lIming side channels
Programs Performance

EXAMPLE OF WORST-CASE ANALYSIS

I CVE - CVE-201 [-4885. Avallable on: https://cve.mitre.org/cgi-bin/cvename.cgilname=CVE-201 [-4885.
2 PHP 5.3.8 - Hashtables Denial of Service. Available on https://www.exploit-db.com/exploits/ | 8296/.

3 PHP: PHP 5 Changel.og. Available on http://www.php.net/Changel og-5.php#5.3.9.
3

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885
https://www.exploit-db.com/exploits/18296/
http://www.php.net/ChangeLog-5.php#5.3.9

EXAMPLE OF WORST-CASE ANALYSIS

» QPotential Denial-of-Service attack!

I CVE - CVE-201 [-4885. Avallable on: https://cve.mitre.org/cgi-bin/cvename.cgilname=CVE-201 [-4885.
2 PHP 5.3.8 - Hashtables Denial of Service. Available on https://www.exploit-db.com/exploits/ | 8296/.

3 PHP: PHP 5 Changel.og. Available on http://www.php.net/Changel og-5.php#5.3.9.
3

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885
https://www.exploit-db.com/exploits/18296/
http://www.php.net/ChangeLog-5.php#5.3.9

EXAMPLE OF WORST-CASE ANALYSIS

Concrete exploits (by hash collisions)?

I CVE - CVE-201 [-4885. Avallable on: https://cve.mitre.org/cgi-bin/cvename.cgilname=CVE-201 [-4885.
2 PHP 5.3.8 - Hashtables Denial of Service. Available on https://www.exploit-db.com/exploits/ | 8296/.
3 PHP: PHP 5 Changel.og. Available on http://www.php.net/Changel og-5.php#5.3.9.

3

” QPotential Denial-of-Service attack!

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885
https://www.exploit-db.com/exploits/18296/
http://www.php.net/ChangeLog-5.php#5.3.9

vV
2 PH
3 PH

EXAMPLE OF WORST-CASE ANALYSIS

Bug fixed!3

” QPotential Denial-of-Service attack!

Concrete exploits (by hash collisions)?

- - CVE-201 1-4885. Avallable on: https://cve.mitre.org/cgi-bin/cvename.cgiiname=CVE-201 [-4885.
P 5.3.8 - Hashtables Denial of Service. Availlable on https://www.exploit-db.com/exploits/ | 8296/,

P PHP 5 Changel og. Avallable on http://www.php.net/Changel og->.php#5.3.9.
3

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885
https://www.exploit-db.com/exploits/18296/
http://www.php.net/ChangeLog-5.php#5.3.9

EXAMPLE OF WORST-CASE ANALYSIS

VVorst-case inputs
are instrumental to
understand and fix
performance bugs!

I CVE - CVE-201 [-4885. Avallable on: https://cve.mitre.org/cgi-bin/cvename.cgilname=CVE-201 [-4885.
2 PHP 5.3.8 - Hashtables Denial of Service. Available on https://www.exploit-db.com/exploits/ | 8296/.
3 PHP: PHP 5 Changel.og. Available on http://www.php.net/Changel og-5.php#5.3.9.

3

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885
https://www.exploit-db.com/exploits/18296/
http://www.php.net/ChangeLog-5.php#5.3.9

EXISTING APPROACHES

EXISTING APPROACHES

Dynamic

» Fuzz testing
Symbolic execution
Dynamic worst-case analysis

» Flexible & universal

» Potentially unsound: The resulting
inputs might not expose the
worst-case behavior.

EXISTING APPROACHES

Dynamic Static

% Fuzz testing
» Symbolic execution + lype systems

,, Dynamic worst-case ana|ysis # Abstract Interpretation

 Flexible & universal # Sound upper bounds

 Potentially unsound:The resulting # Potentially not tight: No concrete
inputs might not expose the witness — the bound might be
worst-case behavior. too conservative.

CONTRIBUTIONS

% A type-guided worst-case input generation algorithm

Proof of soundness and relative completeness

Heuristics to improve scalability

e e

CONTRIBUTIONS

% A type-guided worst-case input generation algorithm

Proof of soundness and relative completeness

Heuristics to improve scalability

CONTRIBUTIONS

% A type-guided worst-case input generation algorithm

Proof of soundness and relative completeness

Heuristics to improve scalability

A@ ﬁ Resource Aware ML (RaML)

CONTRIBUTIONS

% A type-guided worst-case input generation algorithm

Proof of soundness and relative completeness

Heuristics to improve scalability

q Resource Aware ML (RaML) m
)\ :

CONTRIBUTIONS

% A type-guided worst-case input generation algorithm

Proof of soundness and relative completeness

Heuristics to improve scalability

q Resource Aware ML (RaML) n
)\ :

Qﬂ q Symbolic Execution

CONTRIBUTIONS

% A type-guided worst-case input generation algorithm

Proof of soundness and relative completeness

Heuristics to improve scalability

Resource Aware ML (RaML)
L’
Guide

Symbolic Execution

N

OVERVIEW

o1
0 Resource Aware ML (RaML)
a0 Type-Guided Worst-Case Input Generation

0 Evaluation

AMORTIZED RESOURCE ANALYSIS

% | he potential methoda

AMORTIZED RESOURCE ANALYSIS
% | he potential methoda

A O—t
Q—>.—>.—>.—> —@

AMORTIZED RESOURCE ANALYSIS

% | he potential methoda
0-».\

0—>.—>0—>.—> —@

AMORTIZED RESOURCE ANALYSIS

% | he pOterma\ method W|th actual costs
.—»0
Q—>Q—>O—>Q—> —>.

AMORTIZED RESOURCE ANALYSIS

% | he poterma\ method W|th actual costs
.—».
.—>.—>Q—>Q—> —>.

<1><Do> <I><Dl> <I><D2> <I><D3> <I><D>

AMORTIZED RESOURCE ANALYSIS

Arrows are transitions
% | he poterma\ method with actual costs

Q—>.—>.—>.—> —>.

<1><Do> <I><Dl> <I><D2> <I><D3> <I><D>

The potential function

maps program states to
nonnegative numbers

AMORTIZED RESOURCE ANALYSIS

--
% | he poterma\ method with actual costs

Arrows are transitions

.—>.—>.—>0—> —>Q

ll

<1><Do> <I><Do <I><D2> <I><03> <I><D>

ll

O(D,) > Cost(D,, D;) + ®(D;) The potential function
maps program states to

nonnegative numbers

AMORTIZED RESOURCE ANALYSIS

--
% | he pOterma\ method with actual costs

Arrows are transitions

lllllllllllllllllllllllllllllll

ll

<1><Do> <I><D1> <I><D2> <I><D3> <I><D>

ll

O(D,) > Cost(D», D3) + ®(D,) The potential function
maps program states to

The initial potential is an
upper bound!

nonnegative numbers

1T YPE-BASED ANALYSIS

let rec lpairs L =
match 1 with
| ->
[L] (i X5 —>
match xs with
| ->
| X2 :: X5 ->
A (xl:1nt
Xl 2
else
Lpailrs Xxs'’

<

x2:1nt) then

2 Ibalrks x5

%+ |he potential at a

brogram polint I1s definec

by a static annotation of

data structures.

A list of length n annotatec
with a nonnegative humber

g has g-n units of potential.

1T YPE-BASED ANALYSIS

let rec lpairs L =
match 1 with
| ->
[L] (i X5 —>
match xs with
| ->
| X2 :: X5 ->
1F (x1:iht) < (x2:1int) then
X1 x2) :: lpalrs xs’
else
Lpailrs Xxs'’

Eachof [], ::,(,) consumes 2 memory cells.

%+ |he potential at a

brogram polint I1s definec

by a static annotation of

data structures.

A list of length n annotatec
with a nonnegative humber

g has g-n units of potential.

1T YPE-BASED ANALYSIS

(o5t =2 || +2

let rec lpairs L =
match 1 with
| ->
[L] (i X5 —>
match xs with
| ->
| X2 :: X5 ->
1F (x1:iht) < (x2:1int) then
X1 x2) :: lpalrs xs’
else
Lpailrs Xxs'’

Eachof [], ::,(,) consumes 2 memory cells.

%+ |he potential at a

brogram polint I1s definec

by a static annotation of

cdata stelctlie:

A list of length n annotatec
with a nonnegative humber

g has g-n units of potential.

1T YPE-BASED ANALYSIS

L2(int) 25 LO%int x int)

let rec lpairs L =
match 1 with

| ->
[L] (i X5 —>
match xs with
| ->
| X2 :: X5 ->
aF (xl:int) < (x2:int) then
X1 x2) :: lpalrs xs’
else
Lpailrs Xxs'’
Eachof [], ::,(,) consumes 2 memory cells.

L

%+ |he potential at a

brogram polint I1s definec

by a static annotation of

cdata stelctlie:

A list of length n annotatec
with a nonnegative humber

g has g-n units of potential.

1T YPE-BASED ANALYSIS

L*(int) = L%(int X int)
%+ |he potential at a

L8L rec lpairs | = 5 -
match 1 with o Rt e brogram polint I1s definec
E = . .
I T G by a static annotation of
TatCh ¢ with data structures.
[X2 1 X5 ->
if (x1:int) < (x2:1int) then # A list of length n annotatec
Xt X2 :: lpairs xs . .
e with a nonnegative number
s S g has g-n units of potential.
Eachof [], : :, (,) consumes 2 memory cells.

w

1T YPE-BASED ANALYSIS

L2(int) 25 LO%int x int)

let rec lpairs Ll = &
B it QoA
s Il ————Cost =2
[L] (i X5 —>
match xs with
| —>
[X2 1 X5 ->
af (xl:int) < (x2:int) then
X1 x2) :: lpalrs xs’
else
Lpailrs Xxs'’
Eachof [], ::,(,) consumes 2 memory cells.

%+ |he potential at a

brogram polint I1s definec

by a static annotation of

cdata stelctlie:

A list of length n annotatec
with a nonnegative humber

g has g-n units of potential.

1T YPE-BASED ANALYSIS

L2(int) 25 LO%int x int)

let rec lpairs L =
match 1 with

| ->
f &1 1 X5 —> -
natch xs with ol L
| —>
[X2 1 X5 ->
af (x1:int) < (x2:int) then
X1 x2) :: lpalrs xs’
else
Lpailrs Xxs'’
Eachof [], ::,(,) consumes 2 memory cells.

w

%+ |he potential at a

brogram polint I1s definec

by a static annotation of

cdata stelctlie:

A list of length n annotatec
with a nonnegative humber

g has g-n units of potential.

1T YPE-BASED ANALYSIS

L2(int) 25 LO%int x int)

let rec lpairs L =
match 1 with

| L
[L] (i X5 —>
match xs with
\ =
P x5 > _— DO, =2 .|{x5|+60
iF (<l:int) <= (x2:1int) then

X1 x2) :: lpalrs xs’
else
Lpailrs Xxs'’
Eachof [], ::,(,) consumes 2 memory cells.

w

%+ |he potential at a

brogram polint I1s definec

by a static annotation of

cdata stelctlie:

A list of length n annotatec
with a nonnegative humber

g has g-n units of potential.

1T YPE-BASED ANALYSIS

2/0

L(int) = LY(int X int)

let rec lpairs L =
match 1 with

| =

[L] (i X5 —>
match xs with
| =

e i Xs > — D, =2.|xs|+0

Ak [xl: lnt < (x2:int then

TRt)L
Cost = 4 (X1, X2)iii:i lpalrs Xs’
V\EIV
Lpatirs xs’
Eachof [|, : :, (,) consumes 2 memory cells.

8

%+ |he potential at a

brogram polint I1s definec

by a static annotation of

cdata stelctlie:

A list of length n annotatec
with a nonnegative humber

g has g-n units of potential.

1T YPE-BASED ANALYSIS

2/0

L(int) = LY(int X int)

let rec lpairs L =

match 1 with
| ->
[L] (i X5 —>
match xs with
| ->
P s > — D, =2 x|+ 6
R ixi:1nt) = (x2:1int then

— e
7 4& """" e ,
(I)3 e 2 % |XS ‘ ‘I‘ 2
tpatrs Xxs.
Eachof [], ::,(,) consumes 2 memory cells.

T

%+ |he potential at a

brogram polint I1s definec

by a static annotation of

cdata stelctlie:

A list of length n annotatec
with a nonnegative humber

g has g-n units of potential.

1T YPE-BASED ANALYSIS

i L (int X int)

L(int) =

% :
let rec lpairs 1 = Ihe potential at a

match 1 with e : T brogram point Is definec
| e : D q+p . . ,
1 xs > ot i e by a static annotation of
match xs with FafB=LP(T)bmatl(x,el,wh-xt-ez)rT Avfaciriohie
| . |
s > — D, =0 . |xs'|+6
Af(xl:int) < (x2:int) then # A list of length n annotatec
Cost = 4 (X1, X2)iit:; lpairs xs' T " X
,\el_V (& - with a nonnegative number
tpatrs Xxs.

g has g-n units of potential.

Eachof [], ::,(,) consumes 2 memory cells.

OVERVIEW

o}
o}
0 Type-Guided Worst-Case Input Generation

0 Evaluation

SYMBOLIC EXECUTION

ldea: search all execution paths, record path constraints, ana

compute resource usage

ye=(y,S)

SYMBOLIC EXECUTION

ldea: search all execution paths, record path constraints, ana

compute resource usage

i e U

symbolic environment

SYMBOLIC EXECUTION

ldea: search all execution paths, record path constraints, and

compute resource usage

yFe=(y.S)
symbolic environment et l

expression

SYMBOLIC EXECUTION

ldea: search all execution paths, record path constraints, ana

compute resource usage

L e = L Y)
symbolic environment l
expression path constraints

SYMBOLIC EXECUTION

ldea: search all execution paths, record path constraints, and

compute resource usage

y e = (y,S) symbolic evaluation result
symbolic environment - l J

s b path constraints

SYMBOLIC EXECUTION

ldea: search all execution paths, record path constraints, and

compute resource usage

y e = (y,S) symbolic evaluation result
symbolic environment </ l \J

s b path constraints

Symbolic execution rules for conditional expressions

SYMBOLIC EXECUTION

ldea: search all execution paths, record path constraints, ana

compute resource usage

y e = (y,S) symbolic evaluation result
symbolic environment </ l \J

s b path constraints

Symbolic execution rules for conditional expressions

ko= W) ke W)

y I if e then ¢, else e, = (y(e) Ay, S) y I if e then ¢, else e, = (y(e) Ay, S)

SYMBOLIC EXECUTION

let rec lpairs L =
match 1 with

| ->
f X1 :: X5 ->
match xs with
| —>
f W2 XS ->
aF (xl:int) < (x2:int) then
X1, %2) :: lpairs xs’
else

‘pales xXs

SYMBOLIC EXECUTION

_ # An example of worst-case
let rec lpairs L =

match 1 with execution paths for input lists
| ->
[X1 :: X5 -> of\ength .
TatCh_ZS With ¢ [int!, int?, int’, int*] -
e pairs £ = ((int' < int”) A (int’ < int"),
if (x1:int) < (x2:int) then [(int', int®), (int’, int*)])
X1, %2) :: lpairs xs’
else

‘pales xXs

SYMBOLIC EXECUTION

let rec lpairs L =
match 1 with
| ->
f X1 :: X5 ->
match xs with
| ->
f W2 XS ->
AL (xl:int
x|l . o7
else
‘pales xXs

An example of worst-case
execution paths for input lists
of length 4

£ — [int!, int%, int”, int*] -+

pairs £ = ((int' < int*) A (int’ < int"),
< (x2:int) then [(int, int?), (int’, int")])

. lpalrs x5

% |nvoke an SMT solver to find a

model,e.g, [0,1,0,1]

TYPE-GUIDED SYMBOLIC EXECUTION

Nondeterminism leads to state explosion

y F e =y, S) y e =y, S)

y = if e then ¢; else e, = (y(e) Ay, S) y - if e then ¢; else e, = (y(e) Ay, S)

TYPE-GUIDED SYMBOLIC EXECUTION

Nondeterminism leads to state explosion

e) ey)

y = if e then ¢; else e, = (y(e) Ay, S) y - if e then ¢; else e, = (y(e) Ay, S)

Use the information about potentials obtained
from resource aware type checking to prune
the search space of symbolic execution.

TYPE-GUIDED SYMBOLIC EXECUTION

L2(int) 25 LO%int x int)

let rec lpairs L =
match 1 with

| ->
[L] (i X5 —>
match xs with
| —>
| X2 :: X5 ->
af (xl:int) < (x2:int) then
X1 x2) :: lpalrs xs’
else

Lpailrs Xxs'’

TYPE-GUIDED SYMBOLIC EXECUTION

L2(int) 25 LO%int x int)

let rec lpairs 1 = L — [intl,intz,int3,int4]
match 1 with
| ->
[L] (i X5 —>
match xs with
| ->
| X2 :: X5 ->
af (l:int) < {(x2:int) then
X1 x2) :: lpalrs xs’
else
Lpailrs Xxs'’

TYPE-GUIDED SYMBOLIC EXECUTION

L2(int) 25 LO%int x int)

let rec lpairs 1 = L — [intl,intz,int3,int4]
match 1| with
| ->
[L] (i X5 —>
match xs with
| it o Sl L
| X2 :: xs' -> X = Int,x, & InthXs — [int”, int’]
af (l:int) < {(x2:int) then
X1 x2) :: lpalrs xs’
else

Lpailrs Xxs'’

TYPE-GUIDED SYMBOLIC EXECUTION

L2(int) 25 LO%int x int)

let rec lpairs 1 = L — [intl,intz,int3,int4]
match 1 with
| —>
4] i X5 —>
match xs with D, =2-jxs|+6=10
| _> .) ; o
[2 s Xy = Int,x, = Int", xs' = [Int”, Int’]
af (xl:int) < (x2:int) then
X1 x2) :: lpalrs xs’
else

Lpailrs Xxs'’

TYPE-GUIDED SYMBOLIC EXECUTION

L2(int) 25 LO%int x int)
let rec lpairs 1 = L — [intl,intz,int3,int4]

match 1 with

| ->

f &1 ¢ X5 —>
match xs with @©,=2:|xs'|4+6=10
| _> .) ; o
| X2 :: xs' -> /X P> Int,x = intt, xs — [int”, Int’]

Af (x1:int) < (x2:int) then
Cost = 4 (x1, x2)iir: lpairs Xs’

folse———

Lpailrs Xxs'’

TYPE-GUIDED SYMBOLIC EXECUTION

L(int) > i L (int X int)
let rec lpairs 1 = L — [intl,intz,int3,int4]

match | with

| ->

[X1 i X5 —>
match xs with @©,=2:|xs'|4+6=10
I _> .) ; o
| X2 :: xs' -> /X P> Int,x = intt, xs — [int”, Int’]

Af (x1:int) < (x2:int) then
Cost = 4 (x1, x2)ii::ilpairs Xs’

e

Lpairs xs'’ D;=2:|xs'|+2=06

TYPE-GUIDED SYMBOLIC EXECUTION

L(int) > i L (int X int)
let rec lpairs 1 = L — [intl,intz,int3,int4]

match 1| with

| =

[X1 i X5 —>
match xs with @©,=2:|xs'|4+6=10
| _> .) ; o
[x5 > Xy = Int',x, = Int%, xs’" = [Int”, Int’]

Af (x1:int) s (x2:int) then
Cost = 4 (X1, x2)iiiiipatrs Xs’

U

D, =2:|xs'| +2=6

@IFSV

TYPE-GUIDED SYMBOLIC EXECUTION

L(int) > i L (int X int)
let rec lpairs 1 = £ — [intl,intz,int3,int4]
match 1 with
| ->
f k] it X5 >
match xs with @©,=2:|xs'|4+6=10
| o] . ; .2
| X2 :: xs' -> /X = Int,x, > Int%Xs — [Int”, Int’]
Af (x1:int) < (x2:int) then
C ost = 4 Xl,XZ Qa-'lrs XS’
‘\e.LV /
' ’ @3:2‘)&9‘4‘2:6

TYPE-GUIDED SYMBOLIC EXECUTION

L(int) > i L (int X int) .
L If an execution path does
1e;a;‘2; %pitif. L= ¢ [lint,inthint,int’] Kot have potential waste,
| - it must expose the worst-
[] i x5 > case resource usage.
match xs with @©,=2:|xs'|4+6=10
I o] . ; .2
f) o xs! s Xy = Int',x, = Int%, xs’" = [Int”, Int’]
Af (x1:int) .5 (x2:int) then
(ost =4 X1,X2 «lpairs xs’
v\e@/ K

O, =2 |xs'|+2=6

TYPE-GUIDED SYMBOLIC EXECUTION

L(int) > i L (int X int) .
o If an execution path does
o ¢ = [int,int%int%, int"] not have potential waste,
| o it must expose the worst-
[1 x5 > case resource usage.
match xs with @©,=2:|xs'|4+6=10
| = - 2 a
| x2 :: xs' -> /X P Int,x = nttxs' = int int]
Af (x1:int) .5 (x2:int) then
. ((x1, x2)iii:iglpairs xs’ 4.
Cost 4~\91V K T, ~ |7 e: T= (1, S)

Oy =2-|xs'| +2=6

SOUNDNESS & COMPLETENESS

SOUNDNESS & COMPLETENESS

Soundness: It the algorithm generates an input, then the input will
cause the program to consume exactly the same amount of

resource as the inferred upper bound (by RaML).

SOUNDNESS & COMPLETENESS

Soundness: It the algorithm generates an input, then the input will
cause the program to consume exactly the same amount of
resource as the inferred upper bound (by RaML).

Relative completeness: If there is an input of some given shape that
causes the program to consume exactly the same amount of
resource as the inferred upper bound (by RaML), then the algorithm
s able to find a corresponding execution path.

14

SPEED UP INPUT (GENERATION

y F e =y, S) y e =y, S)

y = if e then ¢; else e, = (y(e) Ay, S) y - if e then ¢; else e, = (y(e) Ay, S)

SPEED UP INPUT (GENERATION

% How about eliminating some generation rules!

e) ey)

y = if e then ¢; else e, = (y(e) Ay, S) y - if e then ¢; else e, = (y(e) Ay, S)

SPEED UP INPUT (GENERATION

% How about eliminating some generation rules!

e)

y k= if e then e, else e, = (y(e) Ay, S)

SPEED UP INPUT (GENERATION

% How about eliminating some generation rules!

e)

y k= if e then e, else e, = (y(e) Ay, S)

Still Sound!

SPEED UP INPUT (GENERATION

% How about eliminating some generation rules!

e)

y k= if e then e, else e, = (y(e) Ay, S)

Still Sound!

Generalization: enforce all the calls with the same sha

e of INputs

execute the same path In the function boay.

OVERVIEW

ol
ol

ol

0 Evaluation

IMPLEMENTATION

VVe implemented the generation algorithm for a purely functional

fragment of Resource Aware ML (RaML), including higher-order
functions, user-defined data structures, and polynomial resource

bounds.

VVe used the off-the-shelf SMT solver /3.

BENCHMARKS (SELECTED)

Description ALG+HI ALG+HZ
Insertion sort 200 Integers 1./45 6.97s 94.81s
Quicksort 200 Integers e 53.23s |5/
i e quicksort . {Lists of length 100,99, ..., || 439.35s 438.79s e
Functional queue 200 operations 444.64s O)
Zigzag on a tree 200 internal nodes T e 4.87s
Hash table for 8-char strings 64 Insertions .64 /.62s | 817458

| 8

EXAMPLE: HASH | ABLE

EXAMPLE: HASH | ABLE

% Customized resource metric: count for hash collisions

EXAMPLE: HASH | ABLE

% Customized resource metric: count for hash collisions

Use a hash function from a vulnerable PHP implementation

EXAMPLE: HASH | ABLE

Customized resource metric: count for hash collisions
Use a hash function from a vulnerable PHP implementation

[he program Inserts 64 strings into an empty hash table

EXAMPLE: HASH | ABLE

Customized resource metric: count for hash collisions
Use a hash function from a vulnerable PHP implementation

[he program Inserts 64 strings into an empty hash table

% Our algorithm “realizes’ that it should find 64 strings with the same
nash key, In order to trigger the most collisions

19

SUMMARY

X

TYPE-GUIDED SYMBOLIC EXECUTION
FOR WORST-CASE INPUT GENERATION

SUMMARY

O
Ve

TYPE-GUIDED SYMBOLIC EXECUTION
FOR WORST-CASE INPUT GENERATION

rormally developed algorithm
Soundness & relative completeness

Theoretical Results
20

SUMMARY

Q

W

TYPE-GUIDED SYMBOLIC EXECUTION
FOR WORST-CASE INPUT GENERATION

rormally developed algorithm

Soundness & relative comp

eteness

Theoretical Results

20

Experimental Results

Limitations: S U M MARY

Purely functional programs

#» Only work for tight bounds
Depend on RaML

W

TYPE-GUIDED SYMBOLIC EXECUTION
FOR WORST-CASE INPUT GENERATION

Formally developed algorithm - Integrated with RaM

Soundness & relative completeness Effective on 22 benchmark programs

Theoretical Results Experimental Results
20

Limitations: S U M MARY Bt

Purely functional programs

Support side effects

Interact with resource ar

General theory for worst
case analysis

#» Only work for tight bounds
Depend on RaML

W

TYPE-GUIDED SYMBOLIC EXECUTION
FOR WORST-CASE INPUT GENERATION

Formally developed algorithm - Integrated with RaM

Soundness & relative completeness Effective on 22 benchmark programs

Theoretical Results Experimental Results
20

