$\operatorname{Re}^{2}:$ A Type System for Refinements and Resources

Tristan Knoth ${ }^{1}$ Di Wang ${ }^{2}$ Nadia Polikarpova ${ }^{1}$ Jan Hoffmann ${ }^{2}$

${ }^{1}$ University of California, San Diego

${ }^{2}$ Carnegie Mellon University

$\underline{\text { Refinements: Functional Specification }}$

Dependent Types

- Martin-Löf's Type Theory (underlying NuPRL)
- Calculus of Inductive Constructions (underlying Coq)

Some Restricted Forms of Dependent Types

	Features
$[$ FP9 $]]$	Regular-tree based refinements for datatypes.
$[H P S 96]$	Sized types. Only support "primitive" recursion.
$[X P 99]$	Dependent ML. Indexed types with refinement sorts.
$[\mathrm{CW00}]$	Indexed types with inductive kinds and type-level computation.
$[\mathrm{VH04}]$	Sized types. Support general recursion.
$[\mathrm{RKJ08}]$	Liquid types. Predicate-abstraction refinements for base types.
$[\mathrm{WWC17}]$	TiML. Indexed types with refinement kinds. Proved in Coq.

Refinements: Functional Specification

Dependent Types

- Martin-Löf's Type Theory (underlying NuPRL)
- Calculus of Inductive Constructions (underlying Coq)

Some Restricted Forms of Dependent Types

	Features
[FP91] $]$	Regular-tree based refinements for datatypes.
$[$ HPS96 $]$	Sized types. Only support "primitive" recursion.
$[$ XP99 $]$	Dependent ML. Indexed types with refinement sorts.
$[$ CW00 $]$	Indexed types with inductive kinds and type-level computation.
$[$ VH04 $]$	Sized types. Support general recursion.
[RKJ08]	Liquid types. Predicate-abstraction refinements for base types.
[WWC17 $]$	TiML. Indexed types with refinement kinds. Proved in Coq.

Resources: Complexity Specification

Automatic Amortized Resource Analysis (AARA)

- Introduced by Hofmann and Jost in 2003 [HJ03].
- Extended to OCaml by Hoffmann et al. in 2017 [HDW17].

Some Restricted Forms of Dependent Types

Features

[CW00]
[VH04]
Indexed types with inductive kinds and type-level computation. Sized types. Support general recursion.
[WWC17] TiML. Indexed types with refinement kinds. Proved in Coq.

Resources: Complexity Specification

Automatic Amortized Resource Analysis (AARA)

- Introduced by Hofmann and Jost in 2003 [HJ03].
- Extended to OCaml by Hoffmann et al. in 2017 [HDW17].

Some Restricted Forms of Dependent Types

	Features
$[$ FP91 $]$	Regular-tree based refinements for datatypes.
$[\mathrm{HPS} 96]$	Sized types. Only support "primitive" recursion.
$[\mathrm{XP99}]$	Dependent ML. Indexed types with refinement sorts.
$[\mathrm{CW} 00]$	Indexed types with inductive kinds and type-level computation.
$[$ VH04 $]$	Sized types. Support general recursion.
$[$ RKJ08 $]$	Liquid types. Predicate-abstraction refinements for base types.
[WWC17 $]$	TiML. Indexed types with refinement kinds. Proved in Coq.

Re^{2} : Liquid Types + AARA

Features

- Polymorphic refinement types over logical qualifiers.
- Affine types with linear potential annotations.
- Potentials are expressed in the same refinement language.
- Limited by the capability of liquid types and AARA.
- Liquid types: Rely on decidable refinement logic.
- AARA: Currently limited to polynomial (and exponential) complexity.

Re^{2} : Liquid Types + AARA

Features

- Polymorphic refinement types over logical qualifiers.
- Affine types with linear potential annotations.
- Potentials are expressed in the same refinement language.

Limitations

- Limited by the capability of liquid types and AARA.
- Liquid types: Rely on decidable refinement logic.
- AARA: Currently limited to polynomial (and exponential) complexity.

A Running Example: List Append

$$
\text { append }:: \forall \alpha . L(\alpha) \rightarrow L(\alpha) \rightarrow L(\alpha)
$$

append $\ell_{1} \ell_{2}=$ match ℓ_{1} with

$$
\begin{aligned}
& \mid[] \rightarrow \ell_{2} \\
& \mid x:: x s \rightarrow \text { let } y s=\text { append } x s \ell_{2} \text { in }(x:: y s)
\end{aligned}
$$

- Functionality: size of $\operatorname{append}\left(\ell_{1}\right)\left(\ell_{2}\right)$ is the sum of sizes of ℓ_{1} and ℓ_{2}
- Complexity: append $\left(\ell_{1}\right)\left(\ell_{2}\right)$ makes $2 \cdot\left|\ell_{1}\right|$ function calls

Review of Liquid Types

$$
\begin{aligned}
B::= & \text { bool } \\
& L(T) \\
& \alpha \\
T:= & \{v: B \mid \psi\} \\
& x: T_{x} \rightarrow T \\
S:= & T \\
& \forall \alpha \cdot S \\
\psi:= & \star \leq v|v<\star| v<\operatorname{size}(\star) \mid \cdots \\
& \psi_{1} \wedge \psi_{2}
\end{aligned}
$$

base type of Booleans
base type of lists
type variable
refinement type
dependent arrow type
monomorphic type polymorphic type
logical qualifier
conjunction

Review of Liquid Types

$$
\text { append }:: \forall \alpha \cdot \ell_{1}: L(\alpha) \rightarrow \ell_{2}: L(\alpha) \rightarrow\left\{v: L(\alpha) \mid \operatorname{size}(v)=\operatorname{size}\left(\ell_{1}\right)+\operatorname{size}\left(\ell_{2}\right)\right\}
$$ append $\ell_{1} \ell_{2}=$ match ℓ_{1} with

$$
\begin{aligned}
& \mid[] \rightarrow \\
& \left\{\ell_{2}: L(\alpha) ; \operatorname{size}\left(\ell_{1}\right)=0\right\} \\
& \\
& \ell_{2} \\
& \left\{v: L(\alpha) \mid \operatorname{size}(v)=\operatorname{size}\left(\ell_{2}\right)\right\}<:\left\{v: L(\alpha) \mid \operatorname{size}(v)=\operatorname{size}\left(\ell_{1}\right)+\operatorname{size}\left(\ell_{2}\right)\right\} \\
& \mid x:: x s \rightarrow \\
& \left\{\ell_{2}: L(\alpha), x: \alpha, x s: L(\alpha) ; \operatorname{size}\left(\ell_{1}\right)=\operatorname{size}(x s)+1\right\} \\
& \text { let } y s=\text { append } x s \ell_{2} \text { in } \\
& \left\{x: \alpha, y s:\left\{v: L(\alpha) \mid \operatorname{size}(v)=\operatorname{size}(x s)+\operatorname{size}\left(\ell_{2}\right)\right\} ; \operatorname{size}\left(\ell_{1}\right)=\operatorname{size}(x s)+1\right\} \\
& (x: y s) \\
& \{v: L(\alpha) \mid \operatorname{size}(v)=\operatorname{size}(y s)+1\} \\
& <:\left\{v: L(\alpha) \mid \operatorname{size}(v)=\operatorname{size}(x s)+\operatorname{size}\left(\ell_{2}\right)+1\right\} \\
& \quad<:\left\{v: L(\alpha) \mid \operatorname{size}(v)=\operatorname{size}\left(\ell_{1}\right)+\operatorname{size}\left(\ell_{2}\right)\right\}
\end{aligned}
$$

Review of AARA

$$
\begin{aligned}
B::= & \text { bool } \\
& L(R) \\
T:= & B \\
& R_{1} \rightarrow R_{2} \\
R:== & T^{q}
\end{aligned}
$$

base type of Booleans base type of lists
base type
arrow type
resource-annotated type

Review of AARA

$$
\text { append }:: L\left(\text { bool }^{2}\right) \rightarrow L\left(\text { bool }^{0}\right) \rightarrow L\left(\text { bool }^{0}\right)
$$

append $\ell_{1} \ell_{2}=$ match ℓ_{1} with

$$
\begin{aligned}
& \mid[] \rightarrow \\
& \left\{\ell_{2}: L\left(\text { bool }^{0}\right) ; 0\right\} \\
& \ell_{2} \\
& L\left(\text { bool }^{0}\right) \\
& \mid x:: x s \rightarrow \\
& \left\{\ell_{2}: L\left(\text { bool }^{0}\right), x: \text { bool, } x s: L\left(\text { bool }^{2}\right) ; 2\right\}
\end{aligned}
$$

let $y s=$ append $x s \ell_{2}$ in
$\left\{x\right.$: bool, $y s: L\left(\right.$ bool $\left.\left.^{0}\right) ; 0\right\}$
($x:: y s$)
$L\left(\right.$ bool $\left.^{0}\right)$

Liquid Types + AARA

Re^{2} : Liquid Types + AARA

$B:=$	bool
	$L(R)$
	α
$T:=$	$\{v: B \mid \psi\}$
	$x: R_{x} \rightarrow R$
$R::=$	T^{ϕ}
$S:=$	R
	$\forall \alpha . S$
$\psi::=$	$\star \leq v\|v<\star\| v<\operatorname{size}(\star) \mid \cdots$
	$\psi_{1} \wedge \psi_{2}$
$\phi:=$	$v\|\star\| \operatorname{size}(\star) \mid \cdots$
	$\phi_{1}+\phi_{2}$

base type of Booleans base type of lists
type variable
refinement type
dependent arrow type
resource-annotated type
monomorphic type
polymorphic type
logical qualifier
conjunction
numeric qualifier
addition

Re^{2} : Liquid Types + AARA

$$
\text { append }:: \forall \alpha \cdot \ell_{1}: L\left(\alpha^{2}\right) \rightarrow \ell_{2}: L\left(\alpha^{0}\right) \rightarrow\left\{v: L\left(\alpha^{0}\right) \mid \operatorname{size}(v)=\operatorname{size}\left(\ell_{1}\right)+\operatorname{size}\left(\ell_{2}\right)\right\}
$$ append $\ell_{1} \ell_{2}=$ match ℓ_{1} with

$$
\begin{aligned}
& \mid[] \rightarrow \\
& \quad\left\{\ell_{2}: L\left(\alpha^{0}\right) ; \operatorname{size}\left(\ell_{1}\right)=0 ; 0\right\}
\end{aligned}
$$

$$
\ell_{2}
$$

$$
\left\{v: L\left(\alpha^{0}\right) \mid \operatorname{size}(v)=\operatorname{size}\left(\ell_{2}\right)\right\}<:\left\{v: L\left(\alpha^{0}\right) \mid \operatorname{size}(v)=\operatorname{size}\left(\ell_{1}\right)+\operatorname{size}\left(\ell_{2}\right)\right\}
$$

$$
\mid x:: x s \rightarrow
$$

$$
\left\{\ell_{2}: L\left(\alpha^{0}\right), x: \alpha, x s: L\left(\alpha^{2}\right) ; \operatorname{size}\left(\ell_{1}\right)=\operatorname{size}(x s)+1 ; 2\right\}
$$

let $y s=$ append $x s \ell_{2}$ in

$$
\begin{aligned}
& \left\{x: \alpha, y s:\left\{v: L\left(\alpha^{0}\right) \mid \operatorname{size}(v)=\operatorname{size}(x s)+\operatorname{size}\left(\ell_{2}\right)\right\} ; \operatorname{size}\left(\ell_{1}\right)=\operatorname{size}(x s)+1 ; 0\right\} \\
& (x:: y s) \\
& \left\{v: L\left(\alpha^{0}\right) \mid \operatorname{size}(v)=\operatorname{size}(y s)+1\right\} \\
& <:\left\{v: L\left(\alpha^{0}\right) \mid \operatorname{size}(v)=\operatorname{size}(x s)+\operatorname{size}\left(\ell_{2}\right)+1\right\} \\
& <:\left\{v: L\left(\alpha^{0}\right) \mid \operatorname{size}(v)=\operatorname{size}\left(\ell_{1}\right)+\operatorname{size}\left(\ell_{2}\right)\right\}
\end{aligned}
$$

Re^{2} : Liquid Types + AARA

$$
\begin{aligned}
& \text { append }:: \forall \alpha \cdot \ell_{1}: L\left(\alpha^{2}\right) \rightarrow \ell_{2}: L\left(\alpha^{0}\right) \rightarrow\left\{v: L\left(\alpha^{0}\right) \mid \operatorname{size}(v)=\operatorname{size}\left(\ell_{1}\right)+\operatorname{size}\left(\ell_{2}\right)\right\} \\
& \text { append }:: \forall \alpha \cdot \ell_{1}: L(\alpha)^{2 \cdot \operatorname{size}(v)} \rightarrow \ell_{2}: L(\alpha) \rightarrow\left\{v: L(\alpha) \mid \operatorname{size}(v)=\operatorname{size}\left(\ell_{1}\right)+\operatorname{size}\left(\ell_{2}\right)\right\} \\
& \text { append }:: \forall \alpha \cdot \ell_{1}: L(\alpha) \rightarrow \ell_{2}: L(\alpha)^{2 \cdot \operatorname{size}\left(\ell_{1}\right)} \rightarrow\left\{v: L(\alpha) \mid \operatorname{size}(v)=\operatorname{size}\left(\ell_{1}\right)+\operatorname{size}\left(\ell_{2}\right)\right\}
\end{aligned}
$$

Dynamic Semantics: Resource-Aware, Small-Step

$$
\langle e, p\rangle \mapsto\left\langle e^{\prime}, p^{\prime}\right\rangle
$$

(E:Тіск)

Dynamic Semantics: Resource-Aware, Small-Step

$$
\langle e, p\rangle \mapsto\left\langle e^{\prime}, p^{\prime}\right\rangle
$$

(Е:Тіск)

$$
\frac{p \geq 0 \quad p-c \geq 0}{\langle\text { tick } c \text { in } e, p\rangle \mapsto\langle e, p-c\rangle}
$$

Static Semantics

Language Design

Expressions in Re^{2} are in A-Normal-Form, i.e., syntactic forms in non-tail positions allow only variables and values.

Static Semantics

Language Design

Expressions in Re^{2} are in A-Normal-Form, i.e., syntactic forms in non-tail positions allow only variables and values.

$$
\Gamma ; \Psi ; \Phi \vdash e: S
$$

Static Semantics

Language Design

Expressions in Re^{2} are in A-Normal-Form, i.e., syntactic forms in non-tail positions allow only variables and values.

$$
\Gamma ; \Psi ; \Phi \vdash e: S
$$

(T:True)
$\Gamma ; \Psi ; \Phi \vdash$ true $:\{v:$ bool $\| v=\top\}$
(T:NiL)
$\frac{\Gamma \vdash R \text { type }}{\Gamma ; \Psi ; \Phi \vdash \text { nil }:\{v: L(R) \mid \operatorname{size}(v)=0\}}$

Static Semantics

(T:Cond)

$$
\frac{\Gamma(x)=\text { bool } \quad \Gamma ; \Psi \wedge x ; \Phi \vdash e_{1}: R \quad \Gamma ; \Psi \wedge \neg x ; \Phi \vdash e_{2}: R}{\Gamma ; \Psi ; \Phi \vdash \text { if } x \text { then } e_{1} \text { else } e_{2}: R}
$$

Static Semantics

(T:Cond)

$$
\Gamma(x)=\text { bool } \quad \Gamma ; \Psi \wedge x ; \Phi \vdash e_{1}: R \quad \Gamma ; \Psi \wedge \neg x ; \Phi \vdash e_{2}: R
$$

$\Gamma ; \Psi ; \Phi \vdash$ if x then e_{1} else $e_{2}: R$
(T:AppFO)

$$
\frac{\Gamma\left(x_{1}\right)=x:\{v: B \mid \psi\}^{\phi} \rightarrow R \quad \Gamma\left(x_{2}\right)=\{v: B \mid \psi\}}{\Gamma ; \mathrm{T} ;\left[x_{2} / v\right] \phi \vdash x_{1}\left(x_{2}\right): R}
$$

Static Semantics

(T:Cond)

$$
\Gamma(x)=\text { bool } \quad \Gamma ; \Psi \wedge x ; \Phi \vdash e_{1}: R \quad \Gamma ; \Psi \wedge \neg x ; \Phi \vdash e_{2}: R
$$

$\Gamma ; \Psi ; \Phi \vdash$ if x then e_{1} else $e_{2}: R$
(T:AppFO)

$$
\frac{\Gamma\left(x_{1}\right)=x:\{v: B \mid \psi\}^{\phi} \rightarrow R \quad \Gamma\left(x_{2}\right)=\{v: B \mid \psi\}}{\Gamma ; \mathrm{\top} ;\left[x_{2} / v\right] \phi \vdash x_{1}\left(x_{2}\right): R}
$$

(T:MatL)

$$
\Gamma(x)=L\left(T^{\phi}\right) \quad \Gamma ; \Psi \wedge \operatorname{size}(x)=0 ; \Phi \vdash e_{1}: R^{\prime}
$$

$\Gamma, x_{1}: T, x_{2}: L\left(T^{\phi}\right) ; \Psi \wedge \operatorname{size}(x)=\operatorname{size}\left(x_{2}\right)+1 ; \Phi+\left[x_{1} / v\right] \phi \vdash e_{2}: R^{\prime}$
$\Gamma ; \Psi ; \Phi \vdash$ match x with $\left\{[] \hookrightarrow e_{1} \mid x_{1}:: x_{2} \hookrightarrow e_{2}\right\}: R^{\prime}$

Meta Theory

Progress

If $\cdot ; \cdot ; q \vdash e: S$ and $p \geq q$, then either e is a value or there exist e^{\prime} and p^{\prime} such that $\langle e, p\rangle \mapsto\left\langle e^{\prime}, p^{\prime}\right\rangle$.

Preservation

Consistency

If $\cdot \cdot \cdot q$ เ $e: S$ and e is a value, then e satisfies the conditions indicated by S and q is greater than or equal to the potential stored in v with respect to S.

Meta Theory

Progress

If $\cdot ; \cdot ; q \vdash e: S$ and $p \geq q$, then either e is a value or there exist e^{\prime} and p^{\prime} such that $\langle e, p\rangle \mapsto\left\langle e^{\prime}, p^{\prime}\right\rangle$.

Preservation
If $\cdot ; \cdot ; q \vdash e: S, p \geq q$, and $\langle e, p\rangle \mapsto\left\langle e^{\prime}, p^{\prime}\right\rangle$, then $\cdot ; \cdot ; p^{\prime} \vdash e^{\prime}: S$.

Meta Theory

Progress

If $\cdot ; \cdot ; q \vdash e: S$ and $p \geq q$, then either e is a value or there exist e^{\prime} and p^{\prime} such that $\langle e, p\rangle \mapsto\left\langle e^{\prime}, p^{\prime}\right\rangle$.

Preservation

If $\cdot ; \cdot ; q \vdash e: S, p \geq q$, and $\langle e, p\rangle \mapsto\left\langle e^{\prime}, p^{\prime}\right\rangle$, then $\cdot ; \cdot ; p^{\prime} \vdash e^{\prime}: S$.

Consistency

If $\cdot ; \cdot ; q \vdash e: S$ and e is a value, then e satisfies the conditions indicated by S and q is greater than or equal to the potential stored in v with respect to S.

Interpretation into Refinement Logic

Ideas

- Reflect interpretable values in the refinement logic.
- Booleans are interpreted as $\{T, \perp\}$. Lists are interpreted as sizes.
- Develop a denotational semantics for the refinement and resource annotations.

Interpretation into Refinement Logic

$$
\begin{aligned}
\mathcal{I}(\text { true }) & =\top & \mathcal{I}(\text { nil }) & =0 \\
\mathcal{I}(\text { false }) & =\perp & \mathcal{I}\left(\boldsymbol{\operatorname { c o n s } (v _ { 1 } , v _ { 2 }))}\right. & =\mathcal{I}\left(v_{2}\right)+1
\end{aligned}
$$

Interpretation into Refinement Logic

$$
\begin{aligned}
\mathcal{I}(\text { true }) & =\top \\
\mathcal{I}(\text { false }) & =\perp
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{I}(\mathbf{n i l}) & =0 \\
\mathcal{I}\left(\boldsymbol{\operatorname { c o n s } (v _ { 1 } , v _ { 2 }))}\right. & =\mathcal{I}\left(v_{2}\right)+1
\end{aligned}
$$

- $\vdash b:\{v:$ bool $\mid \psi\}$ indicates that $=[\mathcal{I}(b) / v] \psi$.
- $\vdash\left[b_{1}, \cdots, b_{n}\right]:\left\{v: L\left(\left\{v:\right.\right.\right.$ bool $\left.\left.\left.\mid \psi^{\prime}\right\}\right) \mid \psi\right\}$ indicates that $\vDash[n / \operatorname{size}(v)] \psi \wedge \bigwedge_{i=1}^{n}\left[\mathcal{I}\left(b_{i}\right) / v\right] \psi^{\prime}$.

Interpretation into Refinement Logic

Consistency: Intuition
If $\cdot ; \cdot ; q \vdash e: S$ and e is a value, then v satisfies the conditions indicated by S and q is greater than or equal to the potential stored in v with respect to S.

Consistency: Formalization
If $\cdot \cdot \cdot q$ 上 $e: S$ and e is a value the logical refinement of S is ψ, and the resource annotation of S is ϕ, then $\vDash[\mathcal{I}(e) / v] \psi$ and also $\mid=q \geq[\mathcal{I}(e) / v] \phi$.

Interpretation into Refinement Logic

Consistency: Intuition

If $\cdot ; \cdot ; q \vdash e: S$ and e is a value, then v satisfies the conditions indicated by S and q is greater than or equal to the potential stored in v with respect to S.

Consistency: Formalization

If $\cdot ; \cdot ; q \vdash e: S$ and e is a value, the logical refinement of S is ψ, and the resource annotation of S is ϕ, then $\vDash[\mathcal{I}(e) / v] \psi$ and also $\vDash q \geq[\mathcal{I}(e) / v] \phi$.

