TYpe-Based Resource-Guided Search

Di Wang
Carnegie Mellon University

ABOUT ME

- I am a doctoral student at Carnegie Mellon University.
- I am interested in programming languages and software engineering.
- My focuses are probabilistic programming and static resource analysis.

Resource Analysis

Programs

Resource Analysis

Resource Analysis

Resource Analysis

Resource Analysis

- Identifying bottlenecks

Resource Analysis

Resource Analysis

- Identifying bottlenecks
- Timing side channels
- Gas usage in blockchains

Resource Analysis

- Identifying bottlenecks
- Timing side channels
- Gas usage in blockchains
- Carbon footprint

Static Resource Analysis

Static Resource Analysis

Code Review

Static Resource Analysis

Static Resource Analysis

Static Resource Analysis

Code Review

Possible drawbacks:

- Incomplete test coverage
- Time-consuming

Static Resource Analysis

Code Review

Static Resource Analysis

Code Review

Static Analysis

Performance

Tests

Static Resource Analysis

Code Review

Static Analysis

Analyze resource usage at compile time!

New Commits

Possible benefits:

- Sound approximations for all inputs
- More efficient if analysis is incremental

Static Resource Analysis in Infer

Static Resource Analysis in Infer

Static Resource Analysis in Infer

Static Resource Analysis in Infer

```
void loop(ArrayList<Integer> list) \{
    for (int i = 0; i <= list.size(); i++) \{
    \}
\(8|l i s t|+16=O(\mid\) list \(\mid)\)
```


Static Resource Analysis in Infer

void loop(ArrayList<Integer> list) \{
for (int i = 0; i <= list.size(); i++) \{
\}
$8|l i s t|+16=O(\mid$ list $\mid)$
\}
void loop(ArrayList<Integer> list) \{
for (int i = 0; i <= list.size(); i++) \{
foo(i); // newly added function call
\}
\}

Static Resource Analysis in Infer

void loop(ArrayList<Integer> list) \{
for (int i = 0; i <= list.size(); i++) \{
\}
$8|l i s t|+16=O(\mid$ list $\mid)$
\}
void loop(ArrayList<Integer> list) \{
for (int i = 0; i <= list.size(); i++) \{
foo(i); // newly added function call
\}
\}

Static Resource Analysis in INfer

Static Resource Analysis in RamL

RaML

Static Resource Analysis in RamL

let rec append $1112=$ match 11 with

RaML

| x::xs -> x:: (append xs 12)

Static Resource Analysis in RamL

let rec append $1112=$ match 11 with
| [] -> 12 | x::xs -> x:: (append xs 12)
[RaML17] J. Hoffmann, A. Das, and S.-C. Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In POPL'17.

Static Resource Analysis in RamL

let rec append 1112 = match 11 with
| [] -> 12 | X:: Xs -> x:: (append xs 12)
[RaML17] J. Hoffmann, A. Das, and S.-C. Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In POPL'17.

Static Resource Analysis in RaML

let rec append $1112=$ match 11 with
| [] -> 12
| x::xs -> x:: (append xs 12)

Static Resource Analysis in RamL

This Talk: Type-Based Automatic Amortized Resource Analysis

OUTLINE

- Automatic Amortized Resource Analysis

- Type-Guided Worst-Case Input Generation
- Resource-Guided Program Synthesis

Automatic Amortized Resource Analysis

Automatic Amortized Resource Analysis

Automatic Amortized Resource Analysis

Automatic Amortized Resource Analysis

cost

The Potential Method

The Potential Method

The Potential Method

The Potential Method

The Potential Method

The Potential Method

The Potential Method

The Potential Method

POTENTIAL-AUGMENTED TYPES

```
let rec append l1 l2 =
    match l1 with
    | [] ->
        12
    | x::xs ->
        let () = tick(1) in
        let rest = append xs l2 in
        x:.rest
```


Potential-Augmented Types

let rec append $1112=$
match 11 with
| [] ->
12
Resource metric:
count recursive calls
| X:: Xs ->
let ()$=\operatorname{tick}(1)$ in
let rest $=$ append $x s 12$ in
x:"rest

Potential-Augmented Types

$$
\begin{aligned}
& \text { append: }\left\langle L^{1}(\alpha) \times L^{0}(\alpha), 0\right\rangle \rightarrow\left\langle L^{0}(\alpha), 0\right\rangle \text { Cost }=\left|\ell_{1}\right| \\
& \text { let rec append } 1112= \\
& \text { match l1 with } \\
& \mid \text { [] -> } \\
& 12 \\
& |x:: x s-\rangle \\
& \text { let }()=\text { tick }(1) \text { in } \\
& \text { let rest }=\text { append xs } 12 \text { in } \\
& \text { x::rest }
\end{aligned}
$$

Resource metric:

Potential-Augmented Types

let rec append $1112=$
match 11 with
| [] ->
12

Potential-Augmented Types

$$
\begin{aligned}
& \text { append: }\left\langle L^{1}(\alpha) \times L^{0}(\alpha), 0\right\rangle \rightarrow\left\langle L^{0}(\alpha), 0\right\rangle \text { Cost }=\left|\ell_{1}\right| \\
& \text { let rec append } 1112= \\
& \text { match l1 with } \\
& \mid \text { [] -> } \\
& 12 \\
& |x:: x s-\rangle \\
& \text { let }()=\text { tick }(1) \text { in } \\
& \text { let rest }=\text { append xs } 12 \text { in } \\
& \text { x::rest }
\end{aligned}
$$

Resource metric:

Potential-Augmented Types

match 11 with
| [] ->

$$
12
$$

Resource metric: count recursive calls

Cost $=\left|\ell_{1}\right|$
[11: L$\left.(a), ~ 12: ~ L^{0}(a)\right] ; 0$ units

Potential-Augmented Types

match 11 with
| [] ->

12

Resource metric: count recursive calls

Cost $=\left|\ell_{1}\right|$
[11: L$(a), ~ 12: ~ L 0(a)] ; ~ 0 ~ u n i t s ~$ // l1 is consumed

Potential-Augmented Types

```
append: }\langle\mp@subsup{L}{}{1}(\alpha)\times\mp@subsup{L}{}{0}(\alpha),0\rangle->\langle\mp@subsup{L}{}{0}(\alpha),0\rangle\quad Cost=|\ell | |
    let rec append l1 12 =
        match l1 with
        | [] ->
            l2
    | x::xs ->
            let () = tick(1) in
            let rest = append xs l2 in
            x:.rest
```

[11: L¹(a), 12: L®(a)]; 0 units // l1 is consumed
[12: L®(a)]; 0 units
Resource metric:
count recursive calls

Potential-Augmented Types

match 11 with
| [] ->

12

| x::xs ->
let ()$=\operatorname{tick}(1)$ in
let rest $=$ append $x s 12$ in x: :rest

Cost $=\left|\ell_{1}\right|$
[11: L¹(a), 12: L0(a)]; 0 units // l1 is consumed
[12: L®(a)]; 0 units
// 12 is consumed. Type-checked!

Potential-Augmented Types

```
    append: }\langle\mp@subsup{L}{}{1}(\alpha)\times\mp@subsup{L}{}{0}(\alpha),0\rangle->\langle\mp@subsup{L}{}{0}(\alpha),0\rangle\quad\mathrm{ Cost = | 恠
    let rec append l1 l2 =
        match l1 with
        | [] ->
            12
    [11: L1(a), 12: L0(a)]; 0 units
    // l1 is consumed
    [12: L0(a)]; 0 units
    // l2 is consumed. Type-checked!
```


$$
\frac{\Gamma ; q+e_{1}: A \quad \Gamma, x_{h}: \tau, x_{t}: L^{p}(\tau) ; q+p \vdash e_{2}: A}{\Gamma, x: L^{p}(\tau) ; q \vdash \operatorname{mat}_{\mathrm{L}}\left\{e_{1} ; x_{h}, x_{t} \cdot e_{2}\right\}(x): A}(\mathrm{~L}: \text { MATL })
$$

Potential-Augmented Types

```
    append: }\langle\mp@subsup{L}{}{1}(\alpha)\times\mp@subsup{L}{}{0}(\alpha),0\rangle->\langle\mp@subsup{L}{}{0}(\alpha),0\rangle\quad Cost=|\ell | |
    let rec append l1 l2 =
        match l1 with
        | [] ->
            l2
    | x::xs ->
            let () = tick(1) in
                        let rest = append xs l2 in
                        x:"rest
                            [11: L^(a), 12: L0(a)]; 0 units
                                    // l1 is consumed
                                    [12: L0(a)]; 0 units
                                    // l2 is consumed. Type-checked!
```

$$
\left.\frac{\Gamma ; q+e_{1}: A}{\Gamma, x: L^{p}(\tau)} \quad \Gamma, x_{n}:(\tau) x_{t}: L^{p}(\tau) ; q+p\right)+e_{2}: A(\mathrm{~L}: \mathrm{MATL})
$$

Potential-Augmented Types

$$
\frac{\Gamma ; q \vdash e_{1}: A}{\Gamma, x: L^{p}(\tau)} \frac{\Gamma, x_{1}:(\tau) x_{t}:}{\left.L^{p}(\tau) ; q+p\right) \vdash e_{2}: A}(\mathrm{~L}: \mathrm{MATL})
$$

Potential-Augmented Types

$$
\frac{\Gamma ; q \vdash e_{1}: A}{\Gamma, x: L^{p}(\tau)} \frac{\Gamma, x_{1}:(\tau) x_{t}:}{\left.L^{p}(\tau) ; q+p\right) \vdash e_{2}: A}(\mathrm{~L}: \mathrm{MATL})
$$

Potential-Augmented Types

$$
\frac{\Gamma ; q \vdash e_{1}: A}{\Gamma, x: L^{p}(\tau)} \frac{\Gamma, x_{1}:(\tau) x_{t}:}{\left.L^{p}(\tau) ; q+p\right) \vdash e_{2}: A}(\mathrm{~L}: \mathrm{MATL})
$$

POTENTIAL-AUGMENTED TYPES

$$
\frac{\Gamma ; q+e_{1}: A}{\Gamma, x: L^{p}(\tau)} \frac{\left.\left.\Gamma, x_{1}: \tau\right) x_{t}: L^{p}(\tau) ; q+p\right)+e_{2}: A}{\left(\mathrm{mat}\left\{e_{1} ; x_{h}, x_{t} \ell_{2}\right\}(x): A\right.}(\mathrm{L}: \mathrm{MATL})
$$

Potential-Augmented Types

Principle: The potential at a program point is defined by a static type annotation of data structures.

Automation via LP Solving

let rec append $1112=$
match 11 with
| [] ->
12
| x::xs ->
let () = tick(1) in
let rest = append xs 12 in x: :rest

Automation via LP Solving

```
append: }\langle\mp@subsup{L}{}{p}(\alpha)\times\mp@subsup{L}{}{q}(\alpha),r\rangle->\langle\mp@subsup{L}{}{s}(\alpha),t
    let rec append l1 l2 =
    match l1 with
    | [] ->
        12
    | x::xs ->
        let () = tick(1) in
        let rest = append xs l2 in
        x::rest
```


Automation via LP Solving

```
p,q,r,s,t are unknown numeric variables
```

```
append: <L\mp@subsup{L}{}{p}(\alpha)\times\mp@subsup{L}{}{q}(\alpha),r\rangle->\langle\mp@subsup{L}{}{s}(\alpha),t\rangle
```

append: <L\mp@subsup{L}{}{p}(\alpha)\times\mp@subsup{L}{}{q}(\alpha),r\rangle->\langle\mp@subsup{L}{}{s}(\alpha),t\rangle
let rec append l1 12 =
match 11 with
| [] ->
12
| x::xs ->
let () = tick(1) in
let rest = append xs 12 in
x::rest

```

\section*{Automation via LP Solving}
\(p, q, r, s, t\) are unknown numeric variables
append: }\langle\mp@subsup{L}{}{p}(\alpha)\times\mp@subsup{L}{}{q}(\alpha),r\rangle->\langle\mp@subsup{L}{}{s}(\alpha),t
append: }\langle\mp@subsup{L}{}{p}(\alpha)\times\mp@subsup{L}{}{q}(\alpha),r\rangle->\langle\mp@subsup{L}{}{s}(\alpha),t
    let rec append \(1112=\)
    match 11 with
    | [] ->
        12
        | x::xs ->
            let () = tick(1) in
        let rest = append xs 12 in
        x: :rest

Linear Constraints
```

p\geq0,q\geq0,r\geq0,s\geq0,t\geq0

```
```

p\geq0,q\geq0,r\geq0,s\geq0,t\geq0

```

\section*{Automation via LP Solving}
\(p, q, r, s, t\) are unknown numeric variables
append: }\langle\mp@subsup{L}{}{p}(\alpha)\times\mp@subsup{L}{}{q}(\alpha),r\rangle->\langle\mp@subsup{L}{}{s}(\alpha),t
append: }\langle\mp@subsup{L}{}{p}(\alpha)\times\mp@subsup{L}{}{q}(\alpha),r\rangle->\langle\mp@subsup{L}{}{s}(\alpha),t
    let rec append l1 l2 =
    let rec append l1 l2 =
        match l1 with
        match l1 with
        | [] ->
        | [] ->
            12
            12
        | x::xs ->
        | x::xs ->
            let () = tick(1) in
            let () = tick(1) in
            let rest = append xs l2 in
            let rest = append xs l2 in
            x::rest
            x::rest

Linear Constraints \(p \geq 0, q \geq 0, r \geq 0, s \geq 0, t \geq 0\)

\section*{Automation via LP Solving}


\section*{Automation via LP Solving}
\begin{tabular}{|c|c|c|}
\hline \(p, q, r, s, t\) are unknown
numeric variables & & Linear Constraints \\
\hline append: \(\left\langle L^{p}(\alpha) \times L^{q}(\alpha), r\right\rangle \rightarrow\left\langle L^{s}(\alpha), t\right\rangle\) & & \(p \geq 0, q \geq 0, r \geq 0, s \geq 0, t \geq 0\) \\
\hline let rec append \(1112=\) match 11 with & [11: Lp(a), 12: Lq(a)]; r units // l1 is consumed & \\
\hline | [] -> & [12: Lq(a)]; r units & \\
\hline 12 & // 12 is consumed & \(q \geq 5, r \geq t\) \\
\hline | x::xs -> & [12: Lq(a), x: a, xs: Lp(a)]; r+p units & \\
\hline let () = tick(1) in & [12: Lq(a), x: a, xs: Lp \({ }^{\text {a }}\) ) ]; r+p-1 units & \(r+p-1 \geq 0\) \\
\hline let rest = append xs 12 in & [x: a, rest: Ls(a)]; p-1+t units & \(p \geq p, q \geq q, r+p-1 \geq r\) \\
\hline
\end{tabular}

\section*{Automation via LP Solving}
```

p,q,r,s,t are unknown
numeric variables

```

Linear Constraints \(p \geq 0, q \geq 0, r \geq 0, s \geq 0, t \geq 0\)
[11: Lp(a), 12: Lq(a)]; r units // 11 is consumed
[12: Lq(a)]; r units
// 12 is consumed
[12: Lq(a), x: a, xs: Lp(a)]; r+p units
[12: Lq(a), x: a, xs: Lp(a)]; r+p-1 units \(\Gamma+p-1 \geq 0\)
let () = tick(1) in let rest \(=\) append \(x s 12\) in [x: a, rest: Ls(a)]; p-1+t units x: :rest
\(p \geq p, q \geq q, r+p-1 \geq r\)
\(p-1+t \geq s+t\)
```

// x and rest are consumed

```

\section*{Automation via LP Solving}
```

p,q,r,s,t are unknown numeric variables
Linear Constraints
append: }\langle\mp@subsup{L}{}{p}(\alpha)\times\mp@subsup{L}{}{q}(\alpha),r\rangle->\langle\mp@subsup{L}{}{s}(\alpha),t
let rec append l1 l2 =
match l1 with
[11: Lp(a), 12: Lq(a)]; r units
// l1 is consumed
| [] ->
[12: Lq(a)]; r units
12 // l2 is consumed
| x::xs ->
let () = tick(1) in
let rest = append xs l2 in [x: a, rest: Ls(a)]; p-1+t units P
// x and rest are consumed
p\geq0,q\geq0,r\geq0,s\geq0,t\geq0
// l2 is consumed
[12: Lq(a), x: a, xs: Lp(a)]; r+p units
[12: Lq(a), x: a, xs: Lp(a)]; r+p-1 units r+p-1\geq0
x::rest
p=1,q=r=s=t=0

```

\section*{Automation via LP Solving}
```

p,q,r,s,t are unknown
numeric variables

```
[11: Lp(a), 12: Lq(a)]; r units // 11 is consumed
[12: Lq(a)]; r units
// 12 is consumed
[12: Lq(a), x: a, xs: Lp(a)]; r+p units
[12: Lq(a), x: a, xs: Lp(a)]; r+p-1 units \(\Gamma+p-1 \geq 0\)
let () = tick(1) in let rest \(=\) append \(x s 12\) in [x: a, rest: Ls(a)]; p-1+t units // x and rest are consumed

Linear Constraints
```

$p \geq 0, q \geq 0, r \geq 0, s \geq 0, t \geq 0$

```
                        p\geq0,q\geq0,r\geq0,s\geq0,t\geq0
```

 p\geq0,q\geq0,r\geq0,s\geq0,t\geq0
 q\geqs,r\geqt
 P\geqp,q\geqq,r+p-1\geqr
 p-1+t\geqs+t
    ```
\[
\text { append: }\left\langle L^{1}(\alpha) \times L^{0}(\alpha), 0\right\rangle \rightarrow\left\langle L^{0}(\alpha), 0\right\rangle<\mathrm{p}=1, \quad \mathrm{q}=\mathrm{r}=\mathrm{s}=\mathrm{t}=0
\]

\section*{Automation via LP Solving}
\(p, q, r, s, t\) are unknown numeric variables
Linear Constraints
append: \(\left\langle L^{p}(\alpha) \times L^{q}(\alpha), r\right\rangle \rightarrow\left\langle L^{s}(\alpha), t\right\rangle\)
let rec append \(1112=\)
[11: Lp(a), 12: Lq(a)]; r units
match 11 with
// l1 is consumed
| [] ->
[12: L9(a)]; r units
// 12 is consumed
[12: Lq(a), x: a, xs: Lp(a)]; r+p units
[12: Lq(a), x: a, xs: Lp(a)]; r+p-1 units \(\Gamma+p-1 \geq 0\) let rest \(=\) append \(x s 12\) in [x: a, rest: Ls(a)]; \(p-1+t\) units \(p \geq p, q \geq q, r+p-1 \geq r\) x: :rest
                                    p\geq0,q\geq0,r\geq0,s\geq0,t\geq0
                                    p\geq0,q\geq0,r\geq0,s\geq0,t\geq0
\(q \geq 5, r \geq t\)
    | x::xs ->
        let () = tick(1) in
                    1 x and rest are consumed
\[
\text { append: }\left\langle L^{2}(\alpha) \times L^{1}(\alpha), 3\right\rangle \rightarrow\left\langle L^{1}(\alpha), 3\right\rangle \leftharpoonup \mathrm{p}=2, \quad \mathbf{q}=\mathrm{s}=1, \quad \mathrm{r}=\mathrm{t}=3
\]

\section*{The Frontier of AARA}
\begin{tabular}{c|c|}
\hline\([\) RaML17 \(]\) & Multivariate polynomial bounds, amortized complexity (binary counters, ...) \\
\hline\([\) Atkey10 \(]\) & Imperative programs, heaps, separation logic \\
{\([\) JHL 10\(]\)} & Higher-order functions \\
{\([\) HM18 \(]\)} & Logarithmic amortized complexity (splay trees, ...) \\
\hline\([\mathrm{KH20}]\) & Exponential bounds \\
\hline
\end{tabular}

Can we use the type information from AARA to guide other tasks?

Type-Based Resource-Guided Search

\section*{Type-Based Resource-Guided Search}
- Search algorithms are used in many PL-related tasks.

\section*{Type-Based Resource-Guided Search}
- Search algorithms are used in many PL-related tasks.
- Symbolic Execution: search for an execution path that satisfies constraints.

\section*{Type-Based Resource-Guided Search}
- Search algorithms are used in many PL-related tasks.
- Symbolic Execution: search for an execution path that satisfies constraints.
- Program Synthesis: search for a program that satisfies specifications.

\section*{Type-Based Resource-Guided Search}
- Search algorithms are used in many PL-related tasks.
- Symbolic Execution: search for an execution path that satisfies constraints.
- Program Synthesis: search for a program that satisfies specifications.

\section*{Type-Based Resource-Guided Search}
- Search algorithms are used in many PL-related tasks.
- Symbolic Execution: search for an execution path that satisfies constraints.
- Program Synthesis: search for a program that satisfies specifications.
- Idea: Resource information can be used to prune the search space.

\section*{Outline}

\section*{■ Automatic Amortized Resource Analysis \\ - Type-Guided Worst-Case Input Generation \\ - Resource-Guided Program Synthesis}

\section*{EXAMPLE OF WORST-CASE ANALYSIS}



\section*{EXAMpLE OF WORST-CASE ANALYSIS Potential Denial-of-Service attack \({ }^{1}\)} \({ }^{1}\) CVE - CVE-2011-4885. Available on: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885.
\({ }^{2}\) PHP 5.3.8 - Hashtables Denial of Service. Available on https://www.exploit-db.com/exploits/18296/. \({ }^{3}\) PHP: PHP 5 ChangeLog. Available on http://www.php.net/ChangeLog-5.php\#5.3.9.

\section*{EXAMPLE OF WORST-CASE ANALYSIS Bug fixed!3 Potential Denial-of-Service attack \({ }^{1}\)}

\section*{EXAMPLE OF WORST-CASE ANALYSIS}


\section*{EXISTING APPROACHES}

\section*{EXISTING APPROACHES}

\section*{Dynamic}
- Fuzz testing
- Symbolic execution
- Dynamic worst-case analysis
-...
- Flexible \& universal
- Potentially unsound: The resulting inputs might not expose the worst-case behavior.

\section*{EXISTING APPROACHES}

\section*{Dynamic}
- Fuzz testing
- Symbolic execution
- Dynamic worst-case analysis
- ...
- Flexible \& universal
- Potentially unsound: The resulting inputs might not expose the worst-case behavior.

\section*{Static}
- Type systems
- Abstract interpretation
- ...
- Sound upper bounds
- Potentially not tight: No concrete witness - the bound might be too conservative.

\section*{TYPE-GUIDED WORST-CASE INPUT Generation}
D. Wang and J. Hoffmann. 2019. Type-Guided Worst-Case Input Generation. In POPL'19.
\(\lambda_{0}^{\top}\)

\section*{TYPE-GUIDED WORST-CASE INPUT Generation}
D. Wang and J. Hoffmann. 2019. Type-Guided Worst-Case Input Generation. In POPL'19.


\section*{TYPE-GUIDED WORST-CASE INPUT Generation}
D. Wang and J. Hoffmann. 2019. Type-Guided Worst-Case Input Generation. In POPL'19.

\section*{1 \\ Resource Aware ML (RaML) \\ }

\section*{TYPE-GUIDED WORST-CASE INPUT Generation}
D. Wang and J. Hoffmann. 2019. Type-Guided Worst-Case Input Generation. In POPL'19.


\author{
Symbolic Execution
}

\section*{TYPE-GUIDED WORST-CASE INPUT Generation}
D. Wang and J. Hoffmann. 2019. Type-Guided Worst-Case Input Generation. In POPL'19.


Resource Aware ML (RaML)



\section*{SYMBOLIC EXECUTION}
- Idea: search all execution paths, record path constraints, and compute resource usage.
\[
\gamma \vdash e \Rightarrow\langle\psi, S\rangle
\]

\section*{SYMBOLIC EXECUTION}
- Idea: search all execution paths, record path constraints, and compute resource usage.
symbolic environment \(\gamma \vdash e \Rightarrow\langle\psi, S\rangle\)

\section*{SYMBOLIC EXECUTION}
- Idea: search all execution paths, record path constraints, and compute resource usage.


\section*{SYMBOLIC EXECUTION}
- Idea: search all execution paths, record path constraints, and compute resource usage.


\section*{SYMBOLIC EXECUTION}
- Idea: search all execution paths, record path constraints, and compute resource usage.


\section*{SYMBOLIC EXECUTION}
- Idea: search all execution paths, record path constraints, and compute resource usage.

- Symbolic execution rules for conditional expressions:

\section*{SYMBOLIC EXECUTION}
- Idea: search all execution paths, record path constraints, and compute resource usage.

- Symbolic execution rules for conditional expressions:
\(\frac{\text { Then } \gamma \vdash e_{1} \Rightarrow\langle\psi, S\rangle}{\gamma \vdash \text { if } e \text { then } e_{1} \text { else } e_{2} \Rightarrow\langle\gamma(e) \wedge \psi, S\rangle} \quad\)\begin{tabular}{c} 
Else \\
\(\gamma \vdash\) if \(e\) then \(e_{1}\) else \(e_{2} \Rightarrow\langle\psi, S\rangle\) \\
\hline\(\neg \gamma(e) \wedge \psi, S\rangle\)
\end{tabular}

\section*{SYMBOLIC EXECUTION}
```

let rec lpairs l =
match l with
| [] -> []
| x1::xs ->
match xs with
| [] -> []
| x2::xs' ->
if x1 < x2 then
let () = tick(2) in
(x1,x2)::(1pairs xs')
else
lpairs xs'

```

\section*{SYMBOLIC EXECUTION}
```

let rec lpairs l =
match l with
| [] -> []
| x1::xs ->
match xs with
| [] -> [] enter the then-branch
| x2::xs' ->
if x1< x2 then
let () = tick(2) in
(x1,x2)::(1pairs xs')
else
lpairs xs'

```

\section*{SYMBOLIC EXECUTION}
```

let rec lpairs l =
match l with
| [] -> []
| x1::xs ->
match xs with
| [] -> []
| [] -> []
if x1 < x2 then
let () = tick(2) in
(x1,x2)::(1pairs xs')
else
lpairs xs'

```
- An example of worst-case execution paths for input lists of length 4:
\(\ell \mapsto\left[\right.\) int \(^{1}\), int \(^{2}\), int \(^{3}\), int \(\left.^{4}\right] \vdash\) Ipairs \(\ell \Rightarrow\left\langle\left(\right.\right.\) int \(\left.^{1}<\mathrm{int}^{2}\right) \wedge\left(\right.\) int \(\left.^{3}<\mathrm{int}^{4}\right)\), \(\left.\left[\left(\mathrm{int}^{1}, \mathrm{int}^{2}\right),\left(\mathrm{int}^{3}, \mathrm{int}^{4}\right)\right]\right\rangle\)

\section*{SYMBOLIC EXECUTION}
```

let rec lpairs l =
match l with
| [] -> []
| x1::xs ->
match xs with
| [] -> []
| x2::xs' ->
if x1 < x2 then
let () = tick(2) in
(x1,x2)::(1pairs xs')
else
lpairs xs'

```
- An example of worst-case execution paths for input lists of length 4:
\(\ell \mapsto\left[\right.\) int \(^{1}\), int \(^{2}\), int \(^{3}\), int \(\left.^{4}\right] \vdash\) Ipairs \(\ell \Rightarrow\left\langle\left(\right.\right.\) int \(\left.^{1}<\mathrm{int}^{2}\right) \wedge\left(\right.\) int \(\left.^{3}<\mathrm{int}^{4}\right)\), \(\left.\left[\left(\mathrm{int}^{1}, \mathrm{int}^{2}\right),\left(\mathrm{int}^{3}, \mathrm{int}^{4}\right)\right]\right\rangle\)
- Invoke an SMT solver to find a model, e.g., [0,1,0,1].

\section*{Type-Guided Symbolic Execution}
- Nondeterminism leads to state explosion:
\(\frac{\text { Then } \gamma \vdash e_{1} \Rightarrow\langle\psi, S\rangle}{\gamma \vdash \text { if } e \text { then } e_{1} \text { else } e_{2} \Rightarrow\langle\gamma(e) \wedge \psi, S\rangle} \quad\)\begin{tabular}{c} 
Else \\
\(\gamma \vdash\) if \(e\) then \(e_{1}\) else \(e_{2} \Rightarrow\langle\psi, S\rangle\) \\
\hline\(\neg \gamma(e) \wedge \psi, S\rangle\)
\end{tabular}

\section*{TYpe-GUIDED SYMBOLIC EXECUTION}
- Nondeterminism leads to state explosion:
\(\frac{\text { Then } \gamma \vdash e_{1} \Rightarrow\langle\psi, S\rangle}{\gamma \vdash \text { if } e \text { then } e_{1} \text { else } e_{2} \Rightarrow\langle\gamma(e) \wedge \psi, S\rangle} \quad \frac{\text { Else }}{\text { If }} \quad \gamma \vdash e_{2} \Rightarrow\langle\psi, S\rangle\)

Use the information about potentials obtained from resource aware type checking to prune the search space of symbolic execution.

\section*{TYpe-GUIDED Symbolic EXeCUTION}
```

 <L'(int),0\rangle->\langleL'0
 let rec lpairs l =
match l with
| [] -> []
| x1::xs ->
match xs with
| [] -> []
| x2::xs' ->
if x1 < x2 then
let () = tick(2) in
(x1,x2)::(lpairs xs')
else
lpairs xs'

```

\section*{TYpe-GUIDED Symbolic EXeCUTION}
```

\langleL'(int),0\rangle->\langle\mp@subsup{L}{}{0}(\mathrm{ int }\times\mathrm{ int),0 }
let rec lpairs l = l }\mapsto[int 1, int 2, int 3, int 4]
match l with
| [] -> []
| x1::xs ->
match xs with
| [] -> []
| x2::xs' ->
if x1 < x2 then
let () = tick(2) in
(x1,x2)::(lpairs xs')
else
lpairs xs'

```

\section*{TYPE-GUIDED SYMBOLIC EXECUTION}
```

<L'(int),0\rangle}->\langle\mp@subsup{L}{}{0}(\mathrm{ int }\times\mathrm{ int),0
let rec lpairs l = l }\mapsto[\mathrm{ int }\mp@subsup{}{}{1}\mathrm{ , int }\mp@subsup{}{}{2},\mp@subsup{\mathrm{ int }}{}{3},\mp@subsup{\mathrm{ int }}{}{4}
match l with
| [] -> []
| x1::xs ->
match xs with
| [] -> []
| x2::xs' ->
if x1< x2 thenx\mp@subsup{s}{}{\prime}\mapsto[int}\mp@subsup{}{}{3},\mp@subsup{\mathrm{ int }}{}{4}
let () = tick(2) in
(x1,x2)::(1pairs xs')
else
lpairs xs'

```

\section*{TYPE-GUIDED SYMBOLIC EXECUTION}
\(\left\langle L^{1}\right.\) (int), 0\(\rangle \rightarrow\left\langle L^{0}\right.\) (int \(\times\) int, 0\(\rangle\)
let rec lpairs \(1=\quad \ell \mapsto\left[\right.\) int \({ }^{1}\), int \(^{2}\), int \({ }^{3}\), int \(\left.{ }^{4}\right]\)
match 1 with
| [] -> []
| x1::xs ->
match xs with \(\Phi=\left|x s^{\prime}\right|+2=4\)
| [] -> []
| x2: : \(x s^{\prime}\)->
\(x_{1} \mapsto\) int \(^{1}, x_{2} \mapsto\) int \(^{2}\),
if \(\underline{x 1}<\mathrm{x} 2\) then \(\quad x s^{\prime} \mapsto\left[\right.\) int \(^{3}\), int \(\left.^{4}\right]\)
let () = tick(2) in
(x1,x2):: (1pairs xs')
else
lpairs xs'

\section*{TYPE-GUIDED SYMBOLIC EXECUTION}
\(\left\langle L^{1}\right.\) (int), 0\(\rangle \rightarrow\left\langle L^{0}(\right.\) int \(\times\) int \(\left.), 0\right\rangle\)
let rec lpairs \(l=\quad \ell \mapsto\left[\right.\) int \(^{1}\), int \({ }^{2}\), int \({ }^{3}\), int \(\left.{ }^{4}\right]\)
match l with
| [] -> []
| x1::xs ->
match xs with \(\Phi=\left|x s^{\prime}\right|+2=4\)
| [] -> []
| x2::xs' -> \(\quad x_{1} \mapsto\) int \(^{1}, x_{2} \mapsto\) int \(^{2}\),
if \(\underline{\mathrm{x} 1<\mathrm{x} 2}\) then \(\quad x s^{\prime} \mapsto\left[\mathrm{int}^{3}\right.\), int \(\left.^{4}\right]\)
Cost \(=2 \quad\) let ()\(=\operatorname{tick}(2)\) in
(x1,x2)::(1pairs xs')
else
lpairs xs'

\section*{TYPE-GUIDED SYMBOLIC EXECUTION}
\(\left\langle L^{1}\right.\) (int), 0\(\rangle \rightarrow\left\langle L^{0}(\right.\) int \(\times\) int \(\left.), 0\right\rangle\)
let rec lpairs \(l=\quad \ell \mapsto\left[\right.\) int \({ }^{1}\), int \({ }^{2}\), int \({ }^{3}\), int \(\left.{ }^{4}\right]\)
match l with
| [] -> []
| x1::xs ->
match xs with \(\Phi=\left|x s^{\prime}\right|+2=4\)
| [] -> []
| x2::xs' \(\rightarrow\). \(\quad x_{1} \mapsto\) int \(^{1}, x_{2} \mapsto\) int \(^{2}\),
if \(\underline{\mathrm{x} 1<\mathrm{x} 2}\) then \(\quad x s^{\prime} \mapsto\left[\mathrm{int}^{3}\right.\), int \(\left.^{4}\right]\)
```

Cost =2 let () =tick(2) in
(x1,x2)::(1pairs xs')
else
lpairs xs'
\Phi' = |x\mp@subsup{s}{}{\prime}|=2

```

\section*{TYPE-GUIDED SYMBOLIC EXECUTION}
\(\left\langle L^{1}\right.\) (int), 0\(\rangle \rightarrow\left\langle L^{0}(\right.\) int \(\times\) int \(\left.), 0\right\rangle\)
let rec lpairs \(l=\quad \ell \mapsto\left[\right.\) int \({ }^{1}\), int \({ }^{2}\), int \({ }^{3}\), int \(\left.{ }^{4}\right]\)
match l with
| [] -> []
| x1::xs ->
match xs with \(\Phi=\left|x s^{\prime}\right|+2=4\)
| [] -> []
| x2::xs' -> \(x_{1} \mapsto\) int \(^{1}, x_{2} \mapsto\) int \(^{2}\),
if \(\underline{\mathrm{x} 1<\mathrm{x} 2}\) then \(\quad x s^{\prime} \mapsto\left[\mathrm{int}^{3}\right.\), int \(\left.^{4}\right]\)
Cost \(=2 \quad\) let ()\(=\operatorname{tick}(2)\) in
(x1,x2)::(1pairs xs')
else
clpairs xs' \(\quad \Phi^{\prime}=\left|x s^{\prime}\right|=2\)

\section*{TYpe-GUIDED SYMBOLIC EXECUTION}
\(\left\langle L^{1}\right.\) (int), 0\(\rangle \rightarrow\left\langle L^{0}(\right.\) int \(\times\) int \(\left.), 0\right\rangle\)
let rec lairs \(l=\quad \ell \mapsto\left[\right.\) int \({ }^{1}\), int \({ }^{2}\), int \({ }^{3}\), int \(\left.{ }^{4}\right]\)
match l with
| [] -> []
| xi:: xs ->
match xs with \(\Phi=\left|x s^{\prime}\right|+2=4\)
| [] -> []
| x2:: xs' -> \(x_{1} \mapsto\) int \(^{1}, x_{2} \mapsto\) int \(^{2}\),
if \(\underline{\mathrm{x} 1<\mathrm{x} 2}\) then \(\quad x s^{\prime} \mapsto\left[\mathrm{int}^{3}\right.\), int \(\left.^{4}\right]\)
Cost \(=2\) let ( \()=\operatorname{tick}(2)\) in
( \(\mathrm{x} 1, \mathrm{x} 2\) ): :(pairs xs ')
Waste!
else

\section*{TYpe-GUIDED SYMBOLIC EXECUTION}
\(\left\langle L^{1}\right.\) (int), 0\(\rangle \rightarrow\left\langle L^{0}\right.\) (int \(\times\) int \(\left.), 0\right\rangle\)
let rec lpairs \(1=\quad \ell \mapsto\left[\right.\) int \({ }^{1}\), int \(^{2}\), int \({ }^{3}\), int \(\left.{ }^{4}\right]\)
match 1 with
| [] -> []
| x1:: xs ->
match xs with \(\Phi=\left|x s^{\prime}\right|+2=4\)
\(\left|\begin{array}{l}{[]->[]} \\ \mid x 2:: x^{\prime} \gg\end{array}\right| \quad x_{1} \mapsto\) int \(^{1}, x_{2} \mapsto\) int \(^{2}\),
if \(\underline{x 1<x 2}\) then \(\quad x s^{\prime} \mapsto\left[i n t^{3}, i n t^{4}\right]\)
Cost \(=2, \quad\) let ()\(=\operatorname{tick}(2)\) in
(x1, x2): :(1pairs xs')
else
Waste! , lpairs xs’

If an execution path does not have potential waste, it must expose the worstcase resource usage.

\section*{TYpe-GUIDED SYMBOLIC EXECUTION}
```

\langleL'(int),0\rangle -> <L ((int }\times\mathrm{ int),0

```
let rec lpairs \(l=\quad \ell \mapsto\left[\right.\) int \({ }^{1}\), int \(^{2}\), int \({ }^{3}\), int \(\left.{ }^{4}\right]\) match 1 with
| [] -> []
| x1:: xs ->
match xs with \(\Phi=\left|x s^{\prime}\right|+2=4\)

if \(\underline{x 1<x 2}\) then \(\quad x s^{\prime} \mapsto\left[i n t^{3}\right.\), int \(\left.^{4}\right]\)
Cost \(=2, \quad\) let ()\(=\operatorname{tick}(2)\) in
(x1,x2)::(1pairs xs')
else
Waste! „lpairs xs’

If an execution path does not have potential waste, it must expose the worstcase resource usage.

\section*{Prune the search space!}

\section*{Theoretical Results}

Soundness: If the algorithm generates an input, then the input will cause the program to consume exactly the same amount of resource as the inferred upper bound (by RaML).

\section*{Speed up Input Generation}
\(\frac{\text { Then } \gamma \vdash e_{1} \Rightarrow\langle\psi, S\rangle}{\gamma \vdash \text { if } e \text { then } e_{1} \text { else } e_{2} \Rightarrow\langle\gamma(e) \wedge \psi, S\rangle}\)

\section*{Speed up Input Generation}
- How about eliminating some generation rules?
\(\frac{\text { Then } \gamma \vdash e_{1} \Rightarrow\langle\psi, S\rangle}{\gamma \vdash \text { if } e \text { then } e_{1} \text { else } e_{2} \Rightarrow\langle\gamma(e) \wedge \psi, S\rangle} \quad \frac{\text { Else }}{\gamma \vdash e_{2} \Rightarrow\langle\psi, S\rangle}\)

\section*{Speed up Input Generation}
- How about eliminating some generation rules?
\(\frac{\text { Then } \gamma \vdash e_{1} \Rightarrow\langle\psi, S\rangle}{\gamma \vdash \text { if } e \text { then } e_{1} \text { else } e_{2} \Rightarrow\langle\gamma(e) \wedge \psi, S\rangle} \quad\)\begin{tabular}{c} 
Else \\
\(\gamma \vdash\) if \(e\) ethen \(e_{1}\) else \(e_{2} \Rightarrow\langle\psi,\langle\gamma(e) \wedge \psi, S\rangle\) \\
\hline
\end{tabular}

\section*{Speed up Input Generation}
- How about eliminating some generation rules?
\(\frac{\text { Then } \gamma \vdash e_{1} \Rightarrow\langle\psi, S\rangle}{\gamma \vdash \text { if } e \text { then } e_{1} \text { else } e_{2} \Rightarrow\langle\gamma(e) \wedge \psi, S\rangle} \quad \gamma \vdash e_{2} \Rightarrow\langle\psi, S\rangle\)

\section*{Still Sound!}

\section*{Speed up Input Generation}
- How about eliminating some generation rules?


\section*{Still Sound!}
- Generalization: enforce all the calls with the same shape of inputs execute the same path in the function body.

\section*{EXAMPLE:}

QUICKSORT

\section*{EXAMPLE:}

QUICKSORT

\section*{OUTLINE}

\section*{■ Automatic Amortized Resource Analysis \\ ■ Type-Guided Worst-Case Input Generation \\ - Resource-Guided Program Synthesis}

\section*{TYpe-Directed Synthesis}

\section*{Type-Directed Synthesis}

\author{
Specification
}

\section*{TYpe-Directed Synthesis}

Specification

Synthesizer

\section*{Type-Directed Synthesis}


\section*{TYpe-Directed Synthesis}

Target type


Type-Directed Synthesizer

Well-typed program
rep : int -> a -> List a
does not implement
the replicate function
let rep \(n\) x = []

\section*{LIQUID TYPES}

\section*{LIQUID TYPES}
\(\{\mathrm{v}: \mathrm{B} \mid \psi\}\)
A value \(v\) of type \(B\) that satisfies \(\psi\)

\section*{LIQUID TYPES}
\(\{\mathrm{v}: \mathrm{B} \mid \Psi\}\)
\{ Int | v \(\geq 0\) \} A non-negative integer

\section*{LIQUID TYPES}
\(\{v: B \mid \psi\} \quad\) A value vof type B that satisfies \(\psi\)
\{ Int \(\mid v \geq 0\) \} A non-negative integer

\section*{(xs: List a) -> \{ List a | len(v) = len(xs) + 1 \}}

A function that returns a list whose length is one plus the length of its input

\section*{SYNTHESIS WITH LIQUID TYPES}
```

rep : (n: int) -> a ->
{ List a | len(v) = n }

```

\section*{SYNTHESIS WITH LIQUID TYPES}
```

rep : (n: int) -> a ->
{ List a | len(v) = n }

```
let rec rep n x =
    if \(n<=0\)
    then []
    else x:: (rep (n - 1) x)

\section*{SYNTHESIS WITH LIQUID TYPES}
```

rep : (n: int) -> a ->
{ List a | len(v) = n }

```

Reduce the synthesis problem to finding an inhabitant of the target type
let rec rep \(n\) x = if \(n<=0\)
then []
else x:: (rep (n - 1) x)

\section*{SYNTHESIS WITH LIQUID TYPES}
```

rep : (n: int) -> a ->
{ List a | len(v) = n }

```
let rec rep \(n\) x =
    if n <= 0
    then []
    else x:: (rep (n - 1) x)

Reduce the synthesis problem to finding an inhabitant of the target type

Use type rules to reject incomplete programs during the search

\section*{SYNTHESIS WITH LIQUID TYPES \\ common : (xs: SList a) -> (ys: SList a) -> \\ \{ SList a | elems(v) = elems(xs) n elems(ys) \}}

\section*{SYNTHESIS WITH LIQUID TYPES}
```

 common : (xs: SList a) -> (ys: SList a) ->
 { SList a | elems(v) = elems(xs) n elems(ys) }
Type-Directed Synthesizer
let rec common xs ys =
match xs with
| [] -> []
| x::xt ->
if not (member x ys)
then common xt ys
else x::(common xt ys)

```

\section*{SYNTHESIS WITH LIQUID TYPES}
```

 common : (xs: SList a) -> (ys: SList a) ->
 { SList a | elems(v) = elems(xs) n elems(ys) }
\downarrow
Type-Directed Synthesizer
let rec common xs ys =
match xs with
| [] -> []
| x::xt ->
if not (member x ys)
then common xt ys
else x::(common xt ys)

```

\section*{ReSyn: Liquid Types + Linear Potentials}
T. Knoth, D. Wang, N. Polikarpova, and J. Hoffmann. 2019. Resource-Guided Program Synthesis. In PLDI'19.

\section*{ReSyn: LIquid Types + Linear Potentials}
T. Knoth, D. Wang, N. Polikarpova, and J. Hoffmann. 2019. Resource-Guided Program Synthesis. In PLDI'19.


\section*{ReSyn: LIquid Types + Linear Potentials}
T. Knoth, D. Wang, N. Polikarpova, and J. Hoffmann. 2019. Resource-Guided Program Synthesis. In PLDI'19.

\title{
Potential: numeric \\ B | \\ \{ Int | \(\mathrm{v} \geq 0\}^{5 \cdot v}\) \\ A non-negative integer carrying potential equal to 5 times of its value \\ List aite(v \\ A list of numbers carrying potential equal to \#non-negative elements in it
}

\section*{ReSyn: LIquid Types + Linear Potentials}
T. Knoth, D. Wang, N. Polikarpova, and J. Hoffmann. 2019. Resource-Guided Program Synthesis. In PLDI'19.

\title{
Potential: numeric \\ \(\}^{\phi}\)
} \(\{\text { Int } \mid v \geq 0\}^{-5 \cdot v}\)

A non-negative integer carrying potential equal to 5 times of its value
\[
\text { List } \mathrm{a}^{\text {ite }(v \geq 0,1,0)}
\]

Type-checking is reduced to constraint solving in Presburger arithmetic.

A list of numbers carrying potential equal to \#non-negative elements in it

\section*{Resource-Guided Synthesis}
\[
\begin{gathered}
\text { common : (xs: SList a1) -> (ys: SList a1) -> } \\
\left\{\begin{array}{c}
\text { SList a | elems(v) }=\text { elems(xs) } \cap \text { elems(ys) }\} \\
\text { member : (z: a) -> (zs: SList a}) ~->~ \\
\{\text { Bool | v }=(z \in \operatorname{elems}(z s)\}
\end{array}\right.
\end{gathered}
\]

\section*{Resource-Guided Synthesis}
```

 common : (xs: SListal) -> (ys: SListai:) ->
 { SList a | elems(v) = elems(xs) n elems(ys) }
member : (z: a) -> (zs: SListaa) ->
{ Bool | v = (z \in elems(zs) }

```

\section*{Resource-Guided Synthesis}
```

 common : (xs: SListal) -> (ys: SListal) ->
 { SList a | elems(v) = elems(xs) n elems(ys) }
member : (z: a) -> (zs: SList aa:) ->
{ Bool | v = (z \in elems(zs) }

```
each element in the list carries one unit of potential, thus the complexity must be linear in the list length

\section*{Resource-Guided Synthesis}
common : (xs: SList a1) -> (ys: SList a1) ->
\{ SList a | elems(v) = elems(xs) n elems(ys) \}

\section*{Resource-Guided Synthesis}
common : (xs: SList \(a^{1}\) ) -> (ys: SList \(a^{1}\) ) ->
\{ SList a | elems(v) = elems(xs) n elems(ys) \}
let rec common xs ys = ??

\section*{Resource-Guided Synthesis}
common : (xs: SList a1) -> (ys: SList a1) ->
\{ SList a | elems(v) = elems(xs) n elems(ys) \}
let rec common xs ys =
match xs with
| [] -> []
| x::xt ->
if not (member \(x\) ys)
then common xt ys
else ??

\section*{Resource-Guided Synthesis}
common : (xs: SList a1) -> (ys: SList a1) ->
\{ SList a | elems(v) = elems(xs) n elems(ys) \}
let rec common xs ys = match xs with
| [] -> []
| x::xt ->
if not (member x ys) ys: List ap <: List a then common xt ys ys: List aq <: List a¹ else ??

\section*{Resource-Guided Synthesis}
common : (xs: SList a1) -> (ys: SList a1) ->
\{ SList a | elems(v) = elems(xs) n elems(ys) \}
let rec common xs ys = match xs with
| [] -> []
| x::xt ->
if not (member x ys)
```

ys: List ap <: List a¹

```
\([p \geq 1]\)
then common xt ys
ys: List aq <: List a¹
\([q \geq 1]\) else ??

\section*{Resource-Guided Synthesis}
```

 common : (xs: SList a1) -> (ys: SList a1) ->
 { SList a | elems(v) = elems(xs) n elems(ys) }

```


\section*{Resource-Guided Synthesis}
```

 common : (xs: SList a1) -> (ys: SList a1) ->
 { SList a | elems(v) = elems(xs) n elems(ys) }

```


\section*{Resource-Guided Synthesis}
```

 common : (xs: SList a1) -> (ys: SList a1) ->
 { SList a | elems(v) = elems(xs) n elems(ys) }

```


\section*{Resource-Guided Synthesis}
```

 common : (xs: SList a^1) -> (ys: SList a1) ->
 { SList a | elems(v) = elems(xs) n elems(ys) }

```
let rec common xs ys =
    match xs with
    | [] -> []
    | x::xt ->
        match ys with
        | [] -> []
        | y::yt ->
            if \(x<y\) then common \(x t y s\)
            else if \(y<x\) then common \(x s y t\)
            else x:: (common xt yt)

\section*{EXAMPLE: LIST ApPEND}

\section*{T2 ReSyn - resource-guided program synthesis}


\footnotetext{
triple \(=\backslash x s\). appendSwap (appendSwap xs
}

\section*{EXAMPLE: LIST ApPEND}

\section*{T2 ReSyn - resource-guided program synthesis}


\footnotetext{
triple \(=\backslash x s\). appendSwap (appendSwap xs
}

\section*{Outline}

『 Automatic Amortized Resource Analysis

■ Type-Guided Worst-Case Input Generation
■ Resource-Guided Program Synthesis```

