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• I am a doctoral student at Carnegie 
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• I am interested in programming 
languages and software engineering.

• My focuses are probabilistic 
programming and static resource 
analysis.
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Possible drawbacks:
• Incomplete test coverage
• Time-consuming
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Possible benefits:
• Sound approximations for all inputs
• More efficient if analysis is incremental
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Analyze resource usage 
at compile time!
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This Talk: Type-Based Automatic Amortized Resource Analysis



OUTLINE

Automatic Amortized Resource Analysis

Type-Guided Worst-Case Input Generation

Resource-Guided Program Synthesis
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Can we use the type information from AARA to guide other tasks?
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• Search algorithms are used in many PL-related tasks.

• Symbolic Execution: search for an execution path that satisfies constraints.

• Program Synthesis:  search for a program that satisfies specifications.

• Idea: Resource information can be used to prune the search space.



OUTLINE

Automatic Amortized Resource Analysis

Type-Guided Worst-Case Input Generation

Resource-Guided Program Synthesis
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Bug fixed!3

Worst-case inputs 
are instrumental to 
understand and fix 
performance bugs!
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EXISTING APPROACHES

• Fuzz testing
• Symbolic execution
• Dynamic worst-case analysis
• …

• Flexible & universal
• Potentially unsound: The 

resulting inputs might not 
expose the worst-case behavior.

• Type systems
• Abstract interpretation
• …

• Sound upper bounds
• Potentially not tight: No 

concrete witness — the bound 
might be too conservative.

Dynamic Static

17
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γ ⊢ e1 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨γ(e) ∧ ψ, S⟩

γ ⊢ e2 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨¬γ(e) ∧ ψ, S⟩

• Symbolic execution rules for conditional expressions:
Then Else
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Use the information about potentials obtained 
from resource aware type checking to prune 

the search space of symbolic execution.
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THEORETICAL RESULTS

Soundness: If the algorithm generates an input, then the input 
will cause the program to consume exactly the same amount 
of resource as the inferred upper bound (by RaML).
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• Generalization: enforce all the calls with the same shape of inputs 
execute the same path in the function body. 
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Type-Guided Worst-Case Input Generation

Resource-Guided Program Synthesis
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TYPE-DIRECTED SYNTHESIS

Type-Directed Synthesizer

Target type

Well-typed program

does not implement 
the replicate function
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LIQUID TYPES

29

{ v: B | Ψ }

{ Int | v ≥ 0 }

(xs: List a) -> { List a | len(v) = len(xs) + 1 } 

A value v of type B that satisfies Ψ

A non-negative integer

A function that returns a list whose length is one plus the length of its input 

[RKJ08] P. M. Rondon, M. Kawaguchi, and R. Jhala. 2008. Liquid Types. In PLDI’08.
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rep : (n: int) -> a -> 
{ List a | len(v) = n }

let rec rep n x = 
  if n <= 0 
  then [] 
  else x::(rep (n - 1) x)

Reduce the synthesis problem to 
finding an inhabitant of the target type

Use type rules to reject incomplete 
programs during the search
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common : (xs: SList a) -> (ys: SList a) -> 
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  match xs with 
  | [] -> [] 
  | x::xt -> 
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Type-Directed Synthesizer

Quadratic Complexity!
(#function calls)
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{ v: B | Ψ }φ

Refinement: boolean

Potential: numeric
{ Int | v ≥ 0 }5·v

A non-negative integer carrying potential
equal to 5 times of its value 

List aite(v≥0,1,0) 

A list of numbers carrying potential
equal to #non-negative elements in it 

T. Knoth, D. Wang, N. Polikarpova, and J. Hoffmann. 2019. Resource-Guided Program Synthesis. In PLDI’19.

Type-checking is reduced to constraint 
solving in Presburger arithmetic.
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common : (xs: SList a1) -> (ys: SList a1) -> 
{ SList a | elems(v) = elems(xs) ∩ elems(ys) }

each element in the list carries one unit of potential, 
thus the complexity must be linear in the list length

member : (z: a) -> (zs: SList a1) -> 
{ Bool | v = (z ∈ elems(zs) }
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let rec common xs ys = 
  match xs with 
  | [] -> [] 
  | x::xt -> 
    if not (member x ys) 
    then common xt ys 
    else ??

ys: List ap <: List a1 
ys: List aq <: List a1 

[p ≥ 1] 
[q ≥ 1] 

Potential Sharing [1 ≥ p+q] 

Infeasible!
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common : (xs: SList a1) -> (ys: SList a1) -> 
{ SList a | elems(v) = elems(xs) ∩ elems(ys) }

RESOURCE-GUIDED SYNTHESIS

let rec common xs ys = 
  match xs with 
  | [] -> [] 
  | x::xt -> 
    match ys with 
    | [] -> [] 
    | y::yt -> 
      if x < y then common xt ys 
      else if y < x then common xs yt 
      else x::(common xt yt)
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