
TYPE-BASED RESOURCE-GUIDED SEARCH
Di Wang

Carnegie Mellon University

ABOUT ME

• I am a doctoral student at Carnegie
Mellon University.

• I am interested in programming
languages and software engineering.

• My focuses are probabilistic
programming and static resource
analysis.

2

RESOURCE ANALYSIS

3

Programs

RESOURCE ANALYSIS

3

Programs Performance

RESOURCE ANALYSIS

3

Programs Performance

• Time
• Memory
• Power
• …

RESOURCE ANALYSIS

3

Programs

Scenarios

Performance

• Time
• Memory
• Power
• …

RESOURCE ANALYSIS

3

• Identifying bottlenecks

Programs

Scenarios

Performance

• Time
• Memory
• Power
• …

RESOURCE ANALYSIS

3

• Identifying bottlenecks

• Timing side channels

Programs

Scenarios

Performance

• Time
• Memory
• Power
• …

RESOURCE ANALYSIS

3

• Identifying bottlenecks

• Timing side channels

• Gas usage in blockchains

Programs

Scenarios

Performance

• Time
• Memory
• Power
• …

RESOURCE ANALYSIS

3

• Identifying bottlenecks

• Timing side channels

• Gas usage in blockchains

• Carbon footprint
Programs

Scenarios

Performance

• Time
• Memory
• Power
• …

STATIC RESOURCE ANALYSIS

4

New Commits

STATIC RESOURCE ANALYSIS

4

New Commits

Code Review

STATIC RESOURCE ANALYSIS

4

New Commits

Code Review

Performance
Tests

STATIC RESOURCE ANALYSIS

4

New Commits

Code Review

Performance
Tests

Possible drawbacks:
• Incomplete test coverage
• Time-consuming

STATIC RESOURCE ANALYSIS

4

New Commits

Code Review

Performance
Tests

STATIC RESOURCE ANALYSIS

4

New Commits

Code Review

Performance
Tests

STATIC RESOURCE ANALYSIS

4

New Commits

Code Review

Performance
Tests

+
Static Analysis

Possible benefits:
• Sound approximations for all inputs
• More efficient if analysis is incremental

STATIC RESOURCE ANALYSIS

4

New Commits

Code Review

Performance
Tests

+
Static Analysis

Analyze resource usage
at compile time!

STATIC RESOURCE ANALYSIS IN INFER

5
Examples come from Infer’s documentation. Available on: https://fbinfer.com/docs/next/checker-cost/.

https://fbinfer.com/docs/next/checker-cost/

STATIC RESOURCE ANALYSIS IN INFER

5
Examples come from Infer’s documentation. Available on: https://fbinfer.com/docs/next/checker-cost/.

https://fbinfer.com/docs/next/checker-cost/

STATIC RESOURCE ANALYSIS IN INFER

5

void loop(ArrayList<Integer> list) {
 for (int i = 0; i <= list.size(); i++) {
 }
}

Examples come from Infer’s documentation. Available on: https://fbinfer.com/docs/next/checker-cost/.

https://fbinfer.com/docs/next/checker-cost/

STATIC RESOURCE ANALYSIS IN INFER

5

void loop(ArrayList<Integer> list) {
 for (int i = 0; i <= list.size(); i++) {
 }
}

8 | list | + 16 = O(| list |)

Examples come from Infer’s documentation. Available on: https://fbinfer.com/docs/next/checker-cost/.

https://fbinfer.com/docs/next/checker-cost/

STATIC RESOURCE ANALYSIS IN INFER

5

void loop(ArrayList<Integer> list) {
 for (int i = 0; i <= list.size(); i++) {
 }
}

void loop(ArrayList<Integer> list) {
 for (int i = 0; i <= list.size(); i++) {
 foo(i); // newly added function call
 }
}

8 | list | + 16 = O(| list |)

Examples come from Infer’s documentation. Available on: https://fbinfer.com/docs/next/checker-cost/.

https://fbinfer.com/docs/next/checker-cost/

STATIC RESOURCE ANALYSIS IN INFER

5

void loop(ArrayList<Integer> list) {
 for (int i = 0; i <= list.size(); i++) {
 }
}

void loop(ArrayList<Integer> list) {
 for (int i = 0; i <= list.size(); i++) {
 foo(i); // newly added function call
 }
}

8 | list | + 16 = O(| list |)

O(| list |2)

Examples come from Infer’s documentation. Available on: https://fbinfer.com/docs/next/checker-cost/.

https://fbinfer.com/docs/next/checker-cost/

STATIC RESOURCE ANALYSIS IN INFER

5

void loop(ArrayList<Integer> list) {
 for (int i = 0; i <= list.size(); i++) {
 }
}

void loop(ArrayList<Integer> list) {
 for (int i = 0; i <= list.size(); i++) {
 foo(i); // newly added function call
 }
}

8 | list | + 16 = O(| list |)

O(| list |2)

Complexity increase!

Examples come from Infer’s documentation. Available on: https://fbinfer.com/docs/next/checker-cost/.

https://fbinfer.com/docs/next/checker-cost/

STATIC RESOURCE ANALYSIS IN RAML

6

RaML

[RaML17] J. Hoffmann, A. Das, and S.-C. Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In POPL’17.

STATIC RESOURCE ANALYSIS IN RAML

6

RaML

[RaML17] J. Hoffmann, A. Das, and S.-C. Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In POPL’17.

let rec append l1 l2 =
 match l1 with
 | [] -> l2
 | x::xs -> x::(append xs l2)

STATIC RESOURCE ANALYSIS IN RAML

6

RaML

[RaML17] J. Hoffmann, A. Das, and S.-C. Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In POPL’17.

let rec append l1 l2 =
 match l1 with
 | [] -> l2
 | x::xs -> x::(append xs l2)

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L9(α) × L0(α),3⟩ → ⟨L0(α),0⟩

STATIC RESOURCE ANALYSIS IN RAML

6

RaML

[RaML17] J. Hoffmann, A. Das, and S.-C. Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In POPL’17.

let rec append l1 l2 =
 match l1 with
 | [] -> l2
 | x::xs -> x::(append xs l2)

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L9(α) × L0(α),3⟩ → ⟨L0(α),0⟩resource-annotated type

STATIC RESOURCE ANALYSIS IN RAML

6

RaML

[RaML17] J. Hoffmann, A. Das, and S.-C. Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In POPL’17.

let rec append l1 l2 =
 match l1 with
 | [] -> l2
 | x::xs -> x::(append xs l2)

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L9(α) × L0(α),3⟩ → ⟨L0(α),0⟩resource-annotated type

9 |ℓ1 | + 3 = O(|ℓ1 |)

Simplified bound:

STATIC RESOURCE ANALYSIS IN RAML

6

RaML

[RaML17] J. Hoffmann, A. Das, and S.-C. Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In POPL’17.

let rec append l1 l2 =
 match l1 with
 | [] -> l2
 | x::xs -> x::(append xs l2)

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L9(α) × L0(α),3⟩ → ⟨L0(α),0⟩resource-annotated type

9 |ℓ1 | + 3 = O(|ℓ1 |)

Simplified bound:

This Talk: Type-Based Automatic Amortized Resource Analysis

OUTLINE

Automatic Amortized Resource Analysis

Type-Guided Worst-Case Input Generation

Resource-Guided Program Synthesis

7

AUTOMATIC AMORTIZED RESOURCE ANALYSIS

8

AUTOMATIC AMORTIZED RESOURCE ANALYSIS

8

AUTOMATIC AMORTIZED RESOURCE ANALYSIS

8

AUTOMATIC AMORTIZED RESOURCE ANALYSIS

8
}

cost

THE POTENTIAL METHOD

9

THE POTENTIAL METHOD

D0 D1 D2 D3 … Dn

D4 D5
…

9

THE POTENTIAL METHOD

D0 D1 D2 D3 … Dn

Di’s are program states

D4 D5
…

9

THE POTENTIAL METHOD

D0 D1 D2 D3 … Dn

Di’s are program states Arcs are transitions
with actual costs

D4 D5
…

9

THE POTENTIAL METHOD

D0 D1 D2 D3 … Dn

Di’s are program states Arcs are transitions
with actual costs

Φ(D0) Φ(D1) Φ(D2) Φ(D3) Φ(Dn)

D4 D5
…

9

THE POTENTIAL METHOD

D0 D1 D2 D3 … Dn

Di’s are program states Arcs are transitions
with actual costs

Φ(D0) Φ(D1) Φ(D2) Φ(D3) Φ(Dn)

The potential function
maps program states to
nonnegative numbers

D4 D5
…

9

THE POTENTIAL METHOD

D0 D1 D2 D3 … Dn

Di’s are program states Arcs are transitions
with actual costs

Φ(D0) Φ(D1) Φ(D2) Φ(D3) Φ(Dn)

The potential function
maps program states to
nonnegative numbers

Φ(D2) ≥ Cost(D2, D3) + Φ(D3)

D4 D5
…

9

THE POTENTIAL METHOD

D0 D1 D2 D3 … Dn

Di’s are program states Arcs are transitions
with actual costs

Φ(D0) Φ(D1) Φ(D2) Φ(D3) Φ(Dn)

The potential function
maps program states to
nonnegative numbers

Φ(D2) ≥ Cost(D2, D3) + Φ(D3)The initial potential is an
upper bound!

D4 D5
…

9

POTENTIAL-AUGMENTED TYPES

10

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

POTENTIAL-AUGMENTED TYPES

10

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

Resource metric:
count recursive calls

POTENTIAL-AUGMENTED TYPES

10

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

Resource metric:
count recursive calls

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L1(α) × L0(α),0⟩ → ⟨L0(α),0⟩ Cost = |ℓ1 |

POTENTIAL-AUGMENTED TYPES

10

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

Resource metric:
count recursive calls

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L1(α) × L0(α),0⟩ → ⟨L0(α),0⟩ Cost = |ℓ1 |

POTENTIAL-AUGMENTED TYPES

10

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

Resource metric:
count recursive calls

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L1(α) × L0(α),0⟩ → ⟨L0(α),0⟩ Cost = |ℓ1 |

POTENTIAL-AUGMENTED TYPES

10

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

Resource metric:
count recursive calls

[l1: L1(a), l2: L0(a)]; 0 units

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L1(α) × L0(α),0⟩ → ⟨L0(α),0⟩ Cost = |ℓ1 |

POTENTIAL-AUGMENTED TYPES

10

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

Resource metric:
count recursive calls

[l1: L1(a), l2: L0(a)]; 0 units
// l1 is consumed

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L1(α) × L0(α),0⟩ → ⟨L0(α),0⟩ Cost = |ℓ1 |

POTENTIAL-AUGMENTED TYPES

10

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

Resource metric:
count recursive calls

[l1: L1(a), l2: L0(a)]; 0 units
// l1 is consumed
[l2: L0(a)]; 0 units

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L1(α) × L0(α),0⟩ → ⟨L0(α),0⟩ Cost = |ℓ1 |

POTENTIAL-AUGMENTED TYPES

10

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

Resource metric:
count recursive calls

[l1: L1(a), l2: L0(a)]; 0 units
// l1 is consumed
[l2: L0(a)]; 0 units
// l2 is consumed. Type-checked!

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L1(α) × L0(α),0⟩ → ⟨L0(α),0⟩ Cost = |ℓ1 |

POTENTIAL-AUGMENTED TYPES

10

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

Resource metric:
count recursive calls

[l1: L1(a), l2: L0(a)]; 0 units
// l1 is consumed
[l2: L0(a)]; 0 units
// l2 is consumed. Type-checked!

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L1(α) × L0(α),0⟩ → ⟨L0(α),0⟩ Cost = |ℓ1 |

�;@ ` 41 : � �,G⌘ : g,GC : !? (g) ;@ + ? ` 42 : �
�,G : !? (g) ;@ ` matL {41;G⌘,GC .42 }(G) : �

(L:M��L)

POTENTIAL-AUGMENTED TYPES

10

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

Resource metric:
count recursive calls

[l1: L1(a), l2: L0(a)]; 0 units
// l1 is consumed
[l2: L0(a)]; 0 units
// l2 is consumed. Type-checked!

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L1(α) × L0(α),0⟩ → ⟨L0(α),0⟩ Cost = |ℓ1 |

�;@ ` 41 : � �,G⌘ : g,GC : !? (g) ;@ + ? ` 42 : �
�,G : !? (g) ;@ ` matL {41;G⌘,GC .42 }(G) : �

(L:M��L)

POTENTIAL-AUGMENTED TYPES

10

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

Resource metric:
count recursive calls

[l1: L1(a), l2: L0(a)]; 0 units
// l1 is consumed
[l2: L0(a)]; 0 units
// l2 is consumed. Type-checked!
[l2: L0(a), x: a, xs: L1(a)]; 1 unit

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L1(α) × L0(α),0⟩ → ⟨L0(α),0⟩ Cost = |ℓ1 |

�;@ ` 41 : � �,G⌘ : g,GC : !? (g) ;@ + ? ` 42 : �
�,G : !? (g) ;@ ` matL {41;G⌘,GC .42 }(G) : �

(L:M��L)

POTENTIAL-AUGMENTED TYPES

10

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

Resource metric:
count recursive calls

[l1: L1(a), l2: L0(a)]; 0 units
// l1 is consumed
[l2: L0(a)]; 0 units
// l2 is consumed. Type-checked!
[l2: L0(a), x: a, xs: L1(a)]; 1 unit
[l2: L0(a), x: a, xs: L1(a)]; 0 units

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L1(α) × L0(α),0⟩ → ⟨L0(α),0⟩ Cost = |ℓ1 |

�;@ ` 41 : � �,G⌘ : g,GC : !? (g) ;@ + ? ` 42 : �
�,G : !? (g) ;@ ` matL {41;G⌘,GC .42 }(G) : �

(L:M��L)

POTENTIAL-AUGMENTED TYPES

10

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

Resource metric:
count recursive calls

[l1: L1(a), l2: L0(a)]; 0 units
// l1 is consumed
[l2: L0(a)]; 0 units
// l2 is consumed. Type-checked!
[l2: L0(a), x: a, xs: L1(a)]; 1 unit
[l2: L0(a), x: a, xs: L1(a)]; 0 units
[x: a, rest: L0(a)]; 0 units

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L1(α) × L0(α),0⟩ → ⟨L0(α),0⟩ Cost = |ℓ1 |

�;@ ` 41 : � �,G⌘ : g,GC : !? (g) ;@ + ? ` 42 : �
�,G : !? (g) ;@ ` matL {41;G⌘,GC .42 }(G) : �

(L:M��L)

POTENTIAL-AUGMENTED TYPES

10

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

Resource metric:
count recursive calls

[l1: L1(a), l2: L0(a)]; 0 units
// l1 is consumed
[l2: L0(a)]; 0 units
// l2 is consumed. Type-checked!
[l2: L0(a), x: a, xs: L1(a)]; 1 unit
[l2: L0(a), x: a, xs: L1(a)]; 0 units
[x: a, rest: L0(a)]; 0 units
// x and rest are consumed. Type-checked!

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L1(α) × L0(α),0⟩ → ⟨L0(α),0⟩ Cost = |ℓ1 |

�;@ ` 41 : � �,G⌘ : g,GC : !? (g) ;@ + ? ` 42 : �
�,G : !? (g) ;@ ` matL {41;G⌘,GC .42 }(G) : �

(L:M��L)

POTENTIAL-AUGMENTED TYPES

10

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

Resource metric:
count recursive calls

[l1: L1(a), l2: L0(a)]; 0 units
// l1 is consumed
[l2: L0(a)]; 0 units
// l2 is consumed. Type-checked!
[l2: L0(a), x: a, xs: L1(a)]; 1 unit
[l2: L0(a), x: a, xs: L1(a)]; 0 units
[x: a, rest: L0(a)]; 0 units
// x and rest are consumed. Type-checked!

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L1(α) × L0(α),0⟩ → ⟨L0(α),0⟩ Cost = |ℓ1 |

Principle: The potential at a program point is defined
by a static type annotation of data structures.

AUTOMATION VIA LP SOLVING

11

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

AUTOMATION VIA LP SOLVING

11

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨Lp(α) × Lq(α), r⟩ → ⟨Ls(α), t⟩

AUTOMATION VIA LP SOLVING

11

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨Lp(α) × Lq(α), r⟩ → ⟨Ls(α), t⟩

p,q,r,s,t are unknown
numeric variables

AUTOMATION VIA LP SOLVING

11

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

p≥0,q≥0,r≥0,s≥0,t≥0𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨Lp(α) × Lq(α), r⟩ → ⟨Ls(α), t⟩

p,q,r,s,t are unknown
numeric variables Linear Constraints

AUTOMATION VIA LP SOLVING

11

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

[l1: Lp(a), l2: Lq(a)]; r units
p≥0,q≥0,r≥0,s≥0,t≥0𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨Lp(α) × Lq(α), r⟩ → ⟨Ls(α), t⟩

p,q,r,s,t are unknown
numeric variables Linear Constraints

AUTOMATION VIA LP SOLVING

11

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

[l1: Lp(a), l2: Lq(a)]; r units
// l1 is consumed

p≥0,q≥0,r≥0,s≥0,t≥0𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨Lp(α) × Lq(α), r⟩ → ⟨Ls(α), t⟩

p,q,r,s,t are unknown
numeric variables Linear Constraints

AUTOMATION VIA LP SOLVING

11

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

[l1: Lp(a), l2: Lq(a)]; r units
// l1 is consumed
[l2: Lq(a)]; r units

p≥0,q≥0,r≥0,s≥0,t≥0𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨Lp(α) × Lq(α), r⟩ → ⟨Ls(α), t⟩

p,q,r,s,t are unknown
numeric variables Linear Constraints

AUTOMATION VIA LP SOLVING

11

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

[l1: Lp(a), l2: Lq(a)]; r units
// l1 is consumed
[l2: Lq(a)]; r units
// l2 is consumed

p≥0,q≥0,r≥0,s≥0,t≥0𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨Lp(α) × Lq(α), r⟩ → ⟨Ls(α), t⟩

p,q,r,s,t are unknown
numeric variables Linear Constraints

AUTOMATION VIA LP SOLVING

11

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

[l1: Lp(a), l2: Lq(a)]; r units
// l1 is consumed
[l2: Lq(a)]; r units
// l2 is consumed

p≥0,q≥0,r≥0,s≥0,t≥0

q≥s,r≥t

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨Lp(α) × Lq(α), r⟩ → ⟨Ls(α), t⟩

p,q,r,s,t are unknown
numeric variables Linear Constraints

AUTOMATION VIA LP SOLVING

11

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

[l1: Lp(a), l2: Lq(a)]; r units
// l1 is consumed
[l2: Lq(a)]; r units
// l2 is consumed
[l2: Lq(a), x: a, xs: Lp(a)]; r+p units

p≥0,q≥0,r≥0,s≥0,t≥0

q≥s,r≥t

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨Lp(α) × Lq(α), r⟩ → ⟨Ls(α), t⟩

p,q,r,s,t are unknown
numeric variables Linear Constraints

AUTOMATION VIA LP SOLVING

11

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

[l1: Lp(a), l2: Lq(a)]; r units
// l1 is consumed
[l2: Lq(a)]; r units
// l2 is consumed
[l2: Lq(a), x: a, xs: Lp(a)]; r+p units
[l2: Lq(a), x: a, xs: Lp(a)]; r+p-1 units

p≥0,q≥0,r≥0,s≥0,t≥0

q≥s,r≥t

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨Lp(α) × Lq(α), r⟩ → ⟨Ls(α), t⟩

p,q,r,s,t are unknown
numeric variables Linear Constraints

AUTOMATION VIA LP SOLVING

11

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

[l1: Lp(a), l2: Lq(a)]; r units
// l1 is consumed
[l2: Lq(a)]; r units
// l2 is consumed
[l2: Lq(a), x: a, xs: Lp(a)]; r+p units
[l2: Lq(a), x: a, xs: Lp(a)]; r+p-1 units

p≥0,q≥0,r≥0,s≥0,t≥0

q≥s,r≥t

r+p-1≥0

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨Lp(α) × Lq(α), r⟩ → ⟨Ls(α), t⟩

p,q,r,s,t are unknown
numeric variables Linear Constraints

AUTOMATION VIA LP SOLVING

11

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

[l1: Lp(a), l2: Lq(a)]; r units
// l1 is consumed
[l2: Lq(a)]; r units
// l2 is consumed
[l2: Lq(a), x: a, xs: Lp(a)]; r+p units
[l2: Lq(a), x: a, xs: Lp(a)]; r+p-1 units
[x: a, rest: Ls(a)]; p-1+t units

p≥0,q≥0,r≥0,s≥0,t≥0

q≥s,r≥t

r+p-1≥0

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨Lp(α) × Lq(α), r⟩ → ⟨Ls(α), t⟩

p,q,r,s,t are unknown
numeric variables Linear Constraints

AUTOMATION VIA LP SOLVING

11

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

[l1: Lp(a), l2: Lq(a)]; r units
// l1 is consumed
[l2: Lq(a)]; r units
// l2 is consumed
[l2: Lq(a), x: a, xs: Lp(a)]; r+p units
[l2: Lq(a), x: a, xs: Lp(a)]; r+p-1 units
[x: a, rest: Ls(a)]; p-1+t units

p≥0,q≥0,r≥0,s≥0,t≥0

q≥s,r≥t

r+p-1≥0
p≥p,q≥q,r+p-1≥r

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨Lp(α) × Lq(α), r⟩ → ⟨Ls(α), t⟩

p,q,r,s,t are unknown
numeric variables Linear Constraints

AUTOMATION VIA LP SOLVING

11

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

[l1: Lp(a), l2: Lq(a)]; r units
// l1 is consumed
[l2: Lq(a)]; r units
// l2 is consumed
[l2: Lq(a), x: a, xs: Lp(a)]; r+p units
[l2: Lq(a), x: a, xs: Lp(a)]; r+p-1 units
[x: a, rest: Ls(a)]; p-1+t units
// x and rest are consumed

p≥0,q≥0,r≥0,s≥0,t≥0

q≥s,r≥t

r+p-1≥0
p≥p,q≥q,r+p-1≥r

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨Lp(α) × Lq(α), r⟩ → ⟨Ls(α), t⟩

p,q,r,s,t are unknown
numeric variables Linear Constraints

AUTOMATION VIA LP SOLVING

11

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

[l1: Lp(a), l2: Lq(a)]; r units
// l1 is consumed
[l2: Lq(a)]; r units
// l2 is consumed
[l2: Lq(a), x: a, xs: Lp(a)]; r+p units
[l2: Lq(a), x: a, xs: Lp(a)]; r+p-1 units
[x: a, rest: Ls(a)]; p-1+t units
// x and rest are consumed

p≥0,q≥0,r≥0,s≥0,t≥0

q≥s,r≥t

r+p-1≥0
p≥p,q≥q,r+p-1≥r
p-1+t≥s+t

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨Lp(α) × Lq(α), r⟩ → ⟨Ls(α), t⟩

p,q,r,s,t are unknown
numeric variables Linear Constraints

AUTOMATION VIA LP SOLVING

11

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

[l1: Lp(a), l2: Lq(a)]; r units
// l1 is consumed
[l2: Lq(a)]; r units
// l2 is consumed
[l2: Lq(a), x: a, xs: Lp(a)]; r+p units
[l2: Lq(a), x: a, xs: Lp(a)]; r+p-1 units
[x: a, rest: Ls(a)]; p-1+t units
// x and rest are consumed

p≥0,q≥0,r≥0,s≥0,t≥0

q≥s,r≥t

r+p-1≥0
p≥p,q≥q,r+p-1≥r
p-1+t≥s+t

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨Lp(α) × Lq(α), r⟩ → ⟨Ls(α), t⟩

p,q,r,s,t are unknown
numeric variables Linear Constraints

p=1, q=r=s=t=0

AUTOMATION VIA LP SOLVING

11

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

[l1: Lp(a), l2: Lq(a)]; r units
// l1 is consumed
[l2: Lq(a)]; r units
// l2 is consumed
[l2: Lq(a), x: a, xs: Lp(a)]; r+p units
[l2: Lq(a), x: a, xs: Lp(a)]; r+p-1 units
[x: a, rest: Ls(a)]; p-1+t units
// x and rest are consumed

p≥0,q≥0,r≥0,s≥0,t≥0

q≥s,r≥t

r+p-1≥0
p≥p,q≥q,r+p-1≥r
p-1+t≥s+t

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨Lp(α) × Lq(α), r⟩ → ⟨Ls(α), t⟩

p,q,r,s,t are unknown
numeric variables Linear Constraints

p=1, q=r=s=t=0𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L1(α) × L0(α),0⟩ → ⟨L0(α),0⟩

AUTOMATION VIA LP SOLVING

11

let rec append l1 l2 =
 match l1 with
 | [] ->
 l2
 | x::xs ->
 let () = tick(1) in
 let rest = append xs l2 in
 x::rest

[l1: Lp(a), l2: Lq(a)]; r units
// l1 is consumed
[l2: Lq(a)]; r units
// l2 is consumed
[l2: Lq(a), x: a, xs: Lp(a)]; r+p units
[l2: Lq(a), x: a, xs: Lp(a)]; r+p-1 units
[x: a, rest: Ls(a)]; p-1+t units
// x and rest are consumed

p≥0,q≥0,r≥0,s≥0,t≥0

q≥s,r≥t

r+p-1≥0
p≥p,q≥q,r+p-1≥r
p-1+t≥s+t

𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨Lp(α) × Lq(α), r⟩ → ⟨Ls(α), t⟩

p,q,r,s,t are unknown
numeric variables Linear Constraints

p=2, q=s=1, r=t=3𝖺𝗉𝗉𝖾𝗇𝖽 : ⟨L2(α) × L1(α),3⟩ → ⟨L1(α),3⟩

THE FRONTIER OF AARA

12

[RaML17] Multivariate polynomial bounds, amortized complexity (binary counters, …)

[Atkey10] Imperative programs, heaps, separation logic

[JHL+10] Higher-order functions

[HM18] Logarithmic amortized complexity (splay trees, …)

[KH20] Exponential bounds

[Atkey10] R. Atkey. 2010. Amortised Resource Analysis with Separation Logic. In ESOP’10.
[JHL+10] S. Jost, K. Hammond, H.-W. Loidl, and M. Hofmann. 2010. Static Determination of Quantitative Resource Usage for Higher-Order Programs. In POPL’10.
[HM18] M. Hofmann and G. Moser. 2018. Analysis of Logarithmic Amortised Complexity. Available on: https://arxiv.org/abs/1807.08242.
[KH20] D. M. Kahn and J. Hoffmann. 2020. Exponential Automatic Amortized Resource Analysis. In FoSSaCS’20.

https://arxiv.org/abs/1807.08242

13

Can we use the type information from AARA to guide other tasks?

TYPE-BASED RESOURCE-GUIDED SEARCH

14

TYPE-BASED RESOURCE-GUIDED SEARCH

14

• Search algorithms are used in many PL-related tasks.

TYPE-BASED RESOURCE-GUIDED SEARCH

14

• Search algorithms are used in many PL-related tasks.

• Symbolic Execution: search for an execution path that satisfies constraints.

TYPE-BASED RESOURCE-GUIDED SEARCH

14

• Search algorithms are used in many PL-related tasks.

• Symbolic Execution: search for an execution path that satisfies constraints.

• Program Synthesis: search for a program that satisfies specifications.

TYPE-BASED RESOURCE-GUIDED SEARCH

14

• Search algorithms are used in many PL-related tasks.

• Symbolic Execution: search for an execution path that satisfies constraints.

• Program Synthesis: search for a program that satisfies specifications.

TYPE-BASED RESOURCE-GUIDED SEARCH

14

• Search algorithms are used in many PL-related tasks.

• Symbolic Execution: search for an execution path that satisfies constraints.

• Program Synthesis: search for a program that satisfies specifications.

• Idea: Resource information can be used to prune the search space.

OUTLINE

Automatic Amortized Resource Analysis

Type-Guided Worst-Case Input Generation

Resource-Guided Program Synthesis

15

EXAMPLE OF WORST-CASE ANALYSIS

PHP

1 CVE - CVE-2011-4885. Available on: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885.
2 PHP 5.3.8 - Hashtables Denial of Service. Available on https://www.exploit-db.com/exploits/18296/.
3 PHP: PHP 5 ChangeLog. Available on http://www.php.net/ChangeLog-5.php#5.3.9.

16

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885
https://www.exploit-db.com/exploits/18296/
http://www.php.net/ChangeLog-5.php#5.3.9

EXAMPLE OF WORST-CASE ANALYSIS

PHP

Potential Denial-of-Service attack1

1 CVE - CVE-2011-4885. Available on: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885.
2 PHP 5.3.8 - Hashtables Denial of Service. Available on https://www.exploit-db.com/exploits/18296/.
3 PHP: PHP 5 ChangeLog. Available on http://www.php.net/ChangeLog-5.php#5.3.9.

16

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885
https://www.exploit-db.com/exploits/18296/
http://www.php.net/ChangeLog-5.php#5.3.9

EXAMPLE OF WORST-CASE ANALYSIS

PHP

Potential Denial-of-Service attack1

Concrete exploits (by hash collisions)2
1 CVE - CVE-2011-4885. Available on: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885.
2 PHP 5.3.8 - Hashtables Denial of Service. Available on https://www.exploit-db.com/exploits/18296/.
3 PHP: PHP 5 ChangeLog. Available on http://www.php.net/ChangeLog-5.php#5.3.9.

16

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885
https://www.exploit-db.com/exploits/18296/
http://www.php.net/ChangeLog-5.php#5.3.9

EXAMPLE OF WORST-CASE ANALYSIS

PHP

Potential Denial-of-Service attack1

Concrete exploits (by hash collisions)2

Bug fixed!3

1 CVE - CVE-2011-4885. Available on: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885.
2 PHP 5.3.8 - Hashtables Denial of Service. Available on https://www.exploit-db.com/exploits/18296/.
3 PHP: PHP 5 ChangeLog. Available on http://www.php.net/ChangeLog-5.php#5.3.9.

16

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885
https://www.exploit-db.com/exploits/18296/
http://www.php.net/ChangeLog-5.php#5.3.9

EXAMPLE OF WORST-CASE ANALYSIS

PHP

Potential Denial-of-Service attack1

Concrete exploits (by hash collisions)2

Bug fixed!3

Worst-case inputs
are instrumental to
understand and fix
performance bugs!

1 CVE - CVE-2011-4885. Available on: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885.
2 PHP 5.3.8 - Hashtables Denial of Service. Available on https://www.exploit-db.com/exploits/18296/.
3 PHP: PHP 5 ChangeLog. Available on http://www.php.net/ChangeLog-5.php#5.3.9.

16

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885
https://www.exploit-db.com/exploits/18296/
http://www.php.net/ChangeLog-5.php#5.3.9

EXISTING APPROACHES

17

EXISTING APPROACHES

• Fuzz testing
• Symbolic execution
• Dynamic worst-case analysis
• …

• Flexible & universal
• Potentially unsound: The

resulting inputs might not
expose the worst-case behavior.

Dynamic

17

EXISTING APPROACHES

• Fuzz testing
• Symbolic execution
• Dynamic worst-case analysis
• …

• Flexible & universal
• Potentially unsound: The

resulting inputs might not
expose the worst-case behavior.

• Type systems
• Abstract interpretation
• …

• Sound upper bounds
• Potentially not tight: No

concrete witness — the bound
might be too conservative.

Dynamic Static

17

TYPE-GUIDED WORST-CASE INPUT
GENERATION

λ
18

D. Wang and J. Hoffmann. 2019. Type-Guided Worst-Case Input Generation. In POPL’19.

TYPE-GUIDED WORST-CASE INPUT
GENERATION

λ Resource Aware ML (RaML)

18

D. Wang and J. Hoffmann. 2019. Type-Guided Worst-Case Input Generation. In POPL’19.

TYPE-GUIDED WORST-CASE INPUT
GENERATION

λ Resource Aware ML (RaML)

18

D. Wang and J. Hoffmann. 2019. Type-Guided Worst-Case Input Generation. In POPL’19.

TYPE-GUIDED WORST-CASE INPUT
GENERATION

λ Resource Aware ML (RaML)

Symbolic Execution

18

D. Wang and J. Hoffmann. 2019. Type-Guided Worst-Case Input Generation. In POPL’19.

TYPE-GUIDED WORST-CASE INPUT
GENERATION

λ Resource Aware ML (RaML)

Symbolic Execution

Guide

18

D. Wang and J. Hoffmann. 2019. Type-Guided Worst-Case Input Generation. In POPL’19.

SYMBOLIC EXECUTION

• Idea: search all execution paths, record path constraints, and
compute resource usage.

γ ⊢ e ⇒ ⟨ψ, S⟩

19

SYMBOLIC EXECUTION

• Idea: search all execution paths, record path constraints, and
compute resource usage.

γ ⊢ e ⇒ ⟨ψ, S⟩
symbolic environment

19

SYMBOLIC EXECUTION

• Idea: search all execution paths, record path constraints, and
compute resource usage.

γ ⊢ e ⇒ ⟨ψ, S⟩
symbolic environment

expression

19

SYMBOLIC EXECUTION

• Idea: search all execution paths, record path constraints, and
compute resource usage.

γ ⊢ e ⇒ ⟨ψ, S⟩
symbolic environment

expression path constraints

19

SYMBOLIC EXECUTION

• Idea: search all execution paths, record path constraints, and
compute resource usage.

γ ⊢ e ⇒ ⟨ψ, S⟩
symbolic environment

expression

symbolic evaluation result

path constraints

19

SYMBOLIC EXECUTION

• Idea: search all execution paths, record path constraints, and
compute resource usage.

γ ⊢ e ⇒ ⟨ψ, S⟩
symbolic environment

expression

symbolic evaluation result

path constraints

19

• Symbolic execution rules for conditional expressions:

SYMBOLIC EXECUTION

• Idea: search all execution paths, record path constraints, and
compute resource usage.

γ ⊢ e ⇒ ⟨ψ, S⟩
symbolic environment

expression

symbolic evaluation result

path constraints

19

γ ⊢ e1 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨γ(e) ∧ ψ, S⟩

γ ⊢ e2 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨¬γ(e) ∧ ψ, S⟩

• Symbolic execution rules for conditional expressions:
Then Else

SYMBOLIC EXECUTION

let rec lpairs l =
 match l with
 | [] -> []
 | x1::xs ->
 match xs with
 | [] -> []
 | x2::xs’ ->
 if x1 < x2 then
 let () = tick(2) in
 (x1,x2)::(lpairs xs’)
 else
 lpairs xs’

20

SYMBOLIC EXECUTION

let rec lpairs l =
 match l with
 | [] -> []
 | x1::xs ->
 match xs with
 | [] -> []
 | x2::xs’ ->
 if x1 < x2 then
 let () = tick(2) in
 (x1,x2)::(lpairs xs’)
 else
 lpairs xs’

20

Worst case: always
enter the then-branch

• An example of worst-case
execution paths for input lists
of length 4:

SYMBOLIC EXECUTION

let rec lpairs l =
 match l with
 | [] -> []
 | x1::xs ->
 match xs with
 | [] -> []
 | x2::xs’ ->
 if x1 < x2 then
 let () = tick(2) in
 (x1,x2)::(lpairs xs’)
 else
 lpairs xs’

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4] ⊢
𝗅𝗉𝖺𝗂𝗋𝗌 ℓ ⇒ ⟨(𝗂𝗇𝗍1 < 𝗂𝗇𝗍2) ∧ (𝗂𝗇𝗍3 < 𝗂𝗇𝗍4),

[(𝗂𝗇𝗍1, 𝗂𝗇𝗍2), (𝗂𝗇𝗍3, 𝗂𝗇𝗍4)]⟩

20

Worst case: always
enter the then-branch

• An example of worst-case
execution paths for input lists
of length 4:

SYMBOLIC EXECUTION

let rec lpairs l =
 match l with
 | [] -> []
 | x1::xs ->
 match xs with
 | [] -> []
 | x2::xs’ ->
 if x1 < x2 then
 let () = tick(2) in
 (x1,x2)::(lpairs xs’)
 else
 lpairs xs’

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4] ⊢
𝗅𝗉𝖺𝗂𝗋𝗌 ℓ ⇒ ⟨(𝗂𝗇𝗍1 < 𝗂𝗇𝗍2) ∧ (𝗂𝗇𝗍3 < 𝗂𝗇𝗍4),

[(𝗂𝗇𝗍1, 𝗂𝗇𝗍2), (𝗂𝗇𝗍3, 𝗂𝗇𝗍4)]⟩

• Invoke an SMT solver to find a
model, e.g., [0,1,0,1].

20

Worst case: always
enter the then-branch

TYPE-GUIDED SYMBOLIC EXECUTION

• Nondeterminism leads to state explosion:
γ ⊢ e1 ⇒ ⟨ψ, S⟩

γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨γ(e) ∧ ψ, S⟩
γ ⊢ e2 ⇒ ⟨ψ, S⟩

γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨¬γ(e) ∧ ψ, S⟩

Then Else

21

TYPE-GUIDED SYMBOLIC EXECUTION

• Nondeterminism leads to state explosion:
γ ⊢ e1 ⇒ ⟨ψ, S⟩

γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨γ(e) ∧ ψ, S⟩
γ ⊢ e2 ⇒ ⟨ψ, S⟩

γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨¬γ(e) ∧ ψ, S⟩

Then Else

21

Use the information about potentials obtained
from resource aware type checking to prune

the search space of symbolic execution.

let rec lpairs l =
 match l with
 | [] -> []
 | x1::xs ->
 match xs with
 | [] -> []
 | x2::xs’ ->
 if x1 < x2 then
 let () = tick(2) in
 (x1,x2)::(lpairs xs’)
 else
 lpairs xs’

22

TYPE-GUIDED SYMBOLIC EXECUTION
⟨L1(𝗂𝗇𝗍),0⟩ → ⟨L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍),0⟩

let rec lpairs l =
 match l with
 | [] -> []
 | x1::xs ->
 match xs with
 | [] -> []
 | x2::xs’ ->
 if x1 < x2 then
 let () = tick(2) in
 (x1,x2)::(lpairs xs’)
 else
 lpairs xs’

22

TYPE-GUIDED SYMBOLIC EXECUTION
⟨L1(𝗂𝗇𝗍),0⟩ → ⟨L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍),0⟩

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

let rec lpairs l =
 match l with
 | [] -> []
 | x1::xs ->
 match xs with
 | [] -> []
 | x2::xs’ ->
 if x1 < x2 then
 let () = tick(2) in
 (x1,x2)::(lpairs xs’)
 else
 lpairs xs’

22

TYPE-GUIDED SYMBOLIC EXECUTION
⟨L1(𝗂𝗇𝗍),0⟩ → ⟨L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍),0⟩

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

x1 ↦ 𝗂𝗇𝗍1, x2 ↦ 𝗂𝗇𝗍2,

xs′ ↦ [𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

let rec lpairs l =
 match l with
 | [] -> []
 | x1::xs ->
 match xs with
 | [] -> []
 | x2::xs’ ->
 if x1 < x2 then
 let () = tick(2) in
 (x1,x2)::(lpairs xs’)
 else
 lpairs xs’

22

TYPE-GUIDED SYMBOLIC EXECUTION

Φ = |xs′ | + 2 = 4

⟨L1(𝗂𝗇𝗍),0⟩ → ⟨L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍),0⟩

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

x1 ↦ 𝗂𝗇𝗍1, x2 ↦ 𝗂𝗇𝗍2,

xs′ ↦ [𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

let rec lpairs l =
 match l with
 | [] -> []
 | x1::xs ->
 match xs with
 | [] -> []
 | x2::xs’ ->
 if x1 < x2 then
 let () = tick(2) in
 (x1,x2)::(lpairs xs’)
 else
 lpairs xs’

22

TYPE-GUIDED SYMBOLIC EXECUTION

Φ = |xs′ | + 2 = 4

⟨L1(𝗂𝗇𝗍),0⟩ → ⟨L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍),0⟩

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

x1 ↦ 𝗂𝗇𝗍1, x2 ↦ 𝗂𝗇𝗍2,

xs′ ↦ [𝗂𝗇𝗍3, 𝗂𝗇𝗍4]
Cost = 2

let rec lpairs l =
 match l with
 | [] -> []
 | x1::xs ->
 match xs with
 | [] -> []
 | x2::xs’ ->
 if x1 < x2 then
 let () = tick(2) in
 (x1,x2)::(lpairs xs’)
 else
 lpairs xs’

22

TYPE-GUIDED SYMBOLIC EXECUTION

Φ = |xs′ | + 2 = 4

Φ′ = |xs′ | = 2

⟨L1(𝗂𝗇𝗍),0⟩ → ⟨L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍),0⟩

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

x1 ↦ 𝗂𝗇𝗍1, x2 ↦ 𝗂𝗇𝗍2,

xs′ ↦ [𝗂𝗇𝗍3, 𝗂𝗇𝗍4]
Cost = 2

let rec lpairs l =
 match l with
 | [] -> []
 | x1::xs ->
 match xs with
 | [] -> []
 | x2::xs’ ->
 if x1 < x2 then
 let () = tick(2) in
 (x1,x2)::(lpairs xs’)
 else
 lpairs xs’

22

TYPE-GUIDED SYMBOLIC EXECUTION

Φ = |xs′ | + 2 = 4

Φ′ = |xs′ | = 2

⟨L1(𝗂𝗇𝗍),0⟩ → ⟨L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍),0⟩

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

x1 ↦ 𝗂𝗇𝗍1, x2 ↦ 𝗂𝗇𝗍2,

xs′ ↦ [𝗂𝗇𝗍3, 𝗂𝗇𝗍4]
Cost = 2

let rec lpairs l =
 match l with
 | [] -> []
 | x1::xs ->
 match xs with
 | [] -> []
 | x2::xs’ ->
 if x1 < x2 then
 let () = tick(2) in
 (x1,x2)::(lpairs xs’)
 else
 lpairs xs’

22

TYPE-GUIDED SYMBOLIC EXECUTION

Φ = |xs′ | + 2 = 4

Φ′ = |xs′ | = 2

⟨L1(𝗂𝗇𝗍),0⟩ → ⟨L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍),0⟩

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

x1 ↦ 𝗂𝗇𝗍1, x2 ↦ 𝗂𝗇𝗍2,

xs′ ↦ [𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

Waste!

Cost = 2

let rec lpairs l =
 match l with
 | [] -> []
 | x1::xs ->
 match xs with
 | [] -> []
 | x2::xs’ ->
 if x1 < x2 then
 let () = tick(2) in
 (x1,x2)::(lpairs xs’)
 else
 lpairs xs’

22

TYPE-GUIDED SYMBOLIC EXECUTION

Φ = |xs′ | + 2 = 4

Φ′ = |xs′ | = 2

⟨L1(𝗂𝗇𝗍),0⟩ → ⟨L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍),0⟩

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

x1 ↦ 𝗂𝗇𝗍1, x2 ↦ 𝗂𝗇𝗍2,

xs′ ↦ [𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

If an execution path does
not have potential waste,
it must expose the worst-

case resource usage.

Waste!

Cost = 2

let rec lpairs l =
 match l with
 | [] -> []
 | x1::xs ->
 match xs with
 | [] -> []
 | x2::xs’ ->
 if x1 < x2 then
 let () = tick(2) in
 (x1,x2)::(lpairs xs’)
 else
 lpairs xs’

22

TYPE-GUIDED SYMBOLIC EXECUTION

Φ = |xs′ | + 2 = 4

Φ′ = |xs′ | = 2

⟨L1(𝗂𝗇𝗍),0⟩ → ⟨L0(𝗂𝗇𝗍 × 𝗂𝗇𝗍),0⟩

ℓ ↦ [𝗂𝗇𝗍1, 𝗂𝗇𝗍2, 𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

x1 ↦ 𝗂𝗇𝗍1, x2 ↦ 𝗂𝗇𝗍2,

xs′ ↦ [𝗂𝗇𝗍3, 𝗂𝗇𝗍4]

If an execution path does
not have potential waste,
it must expose the worst-

case resource usage.

Waste!

Cost = 2 Prune the search space!

THEORETICAL RESULTS

Soundness: If the algorithm generates an input, then the input
will cause the program to consume exactly the same amount
of resource as the inferred upper bound (by RaML).

23

24

γ ⊢ e1 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨γ(e) ∧ ψ, S⟩

γ ⊢ e2 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨¬γ(e) ∧ ψ, S⟩

Then Else

SPEED UP INPUT GENERATION

• How about eliminating some generation rules?

24

γ ⊢ e1 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨γ(e) ∧ ψ, S⟩

γ ⊢ e2 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨¬γ(e) ∧ ψ, S⟩

Then Else

SPEED UP INPUT GENERATION

• How about eliminating some generation rules?

24

γ ⊢ e1 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨γ(e) ∧ ψ, S⟩

γ ⊢ e2 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨¬γ(e) ∧ ψ, S⟩

Then Else

SPEED UP INPUT GENERATION

• How about eliminating some generation rules?

24

γ ⊢ e1 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨γ(e) ∧ ψ, S⟩

γ ⊢ e2 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨¬γ(e) ∧ ψ, S⟩

Then Else

Still Sound!

SPEED UP INPUT GENERATION

• How about eliminating some generation rules?

24

γ ⊢ e1 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨γ(e) ∧ ψ, S⟩

γ ⊢ e2 ⇒ ⟨ψ, S⟩
γ ⊢ 𝗂𝖿 e 𝗍𝗁𝖾𝗇 e1 𝖾𝗅𝗌𝖾 e2 ⇒ ⟨¬γ(e) ∧ ψ, S⟩

Then Else

Still Sound!

SPEED UP INPUT GENERATION

• Generalization: enforce all the calls with the same shape of inputs
execute the same path in the function body.

EXAMPLE:
QUICKSORT

EXAMPLE:
QUICKSORT

OUTLINE

Automatic Amortized Resource Analysis

Type-Guided Worst-Case Input Generation

Resource-Guided Program Synthesis

26

TYPE-DIRECTED SYNTHESIS

27

TYPE-DIRECTED SYNTHESIS

27

Specification

TYPE-DIRECTED SYNTHESIS

27

Synthesizer

Specification

TYPE-DIRECTED SYNTHESIS

27

Synthesizer

Specification

Executable program

TYPE-DIRECTED SYNTHESIS

27

Synthesizer

Specification

Executable program

Type-Directed Synthesizer

Target type

Well-typed program

28

TYPE-DIRECTED SYNTHESIS

Type-Directed Synthesizer

Target type

Well-typed program

28

TYPE-DIRECTED SYNTHESIS

Type-Directed Synthesizer

Target type

Well-typed program

id : a -> a

28

TYPE-DIRECTED SYNTHESIS

Type-Directed Synthesizer

Target type

Well-typed program

id : a -> a

let id x = x

28

TYPE-DIRECTED SYNTHESIS

Type-Directed Synthesizer

Target type

Well-typed program

rep : int -> a -> List a

28

TYPE-DIRECTED SYNTHESIS

Type-Directed Synthesizer

Target type

Well-typed program

rep : int -> a -> List a

let rep n x = []

28

TYPE-DIRECTED SYNTHESIS

Type-Directed Synthesizer

Target type

Well-typed program

rep : int -> a -> List a

let rep n x = []

28

TYPE-DIRECTED SYNTHESIS

Type-Directed Synthesizer

Target type

Well-typed program

does not implement
the replicate function

LIQUID TYPES

29
[RKJ08] P. M. Rondon, M. Kawaguchi, and R. Jhala. 2008. Liquid Types. In PLDI’08.

LIQUID TYPES

29

{ v: B | Ψ } A value v of type B that satisfies Ψ

[RKJ08] P. M. Rondon, M. Kawaguchi, and R. Jhala. 2008. Liquid Types. In PLDI’08.

LIQUID TYPES

29

{ v: B | Ψ }

{ Int | v ≥ 0 }

A value v of type B that satisfies Ψ

A non-negative integer

[RKJ08] P. M. Rondon, M. Kawaguchi, and R. Jhala. 2008. Liquid Types. In PLDI’08.

LIQUID TYPES

29

{ v: B | Ψ }

{ Int | v ≥ 0 }

(xs: List a) -> { List a | len(v) = len(xs) + 1 }

A value v of type B that satisfies Ψ

A non-negative integer

A function that returns a list whose length is one plus the length of its input

[RKJ08] P. M. Rondon, M. Kawaguchi, and R. Jhala. 2008. Liquid Types. In PLDI’08.

SYNTHESIS WITH LIQUID TYPES

30

rep : (n: int) -> a ->
{ List a | len(v) = n }

SYNTHESIS WITH LIQUID TYPES

30

rep : (n: int) -> a ->
{ List a | len(v) = n }

let rec rep n x =
 if n <= 0
 then []
 else x::(rep (n - 1) x)

SYNTHESIS WITH LIQUID TYPES

30

rep : (n: int) -> a ->
{ List a | len(v) = n }

let rec rep n x =
 if n <= 0
 then []
 else x::(rep (n - 1) x)

Reduce the synthesis problem to
finding an inhabitant of the target type

SYNTHESIS WITH LIQUID TYPES

30

rep : (n: int) -> a ->
{ List a | len(v) = n }

let rec rep n x =
 if n <= 0
 then []
 else x::(rep (n - 1) x)

Reduce the synthesis problem to
finding an inhabitant of the target type

Use type rules to reject incomplete
programs during the search

31

SYNTHESIS WITH LIQUID TYPES
common : (xs: SList a) -> (ys: SList a) ->

{ SList a | elems(v) = elems(xs) ∩ elems(ys) }

31

SYNTHESIS WITH LIQUID TYPES
common : (xs: SList a) -> (ys: SList a) ->

{ SList a | elems(v) = elems(xs) ∩ elems(ys) }

let rec common xs ys =
 match xs with
 | [] -> []
 | x::xt ->
 if not (member x ys)
 then common xt ys
 else x::(common xt ys)

Type-Directed Synthesizer

31

SYNTHESIS WITH LIQUID TYPES
common : (xs: SList a) -> (ys: SList a) ->

{ SList a | elems(v) = elems(xs) ∩ elems(ys) }

let rec common xs ys =
 match xs with
 | [] -> []
 | x::xt ->
 if not (member x ys)
 then common xt ys
 else x::(common xt ys)

Type-Directed Synthesizer

Quadratic Complexity!
(#function calls)

RESYN: LIQUID TYPES + LINEAR POTENTIALS

32

{ v: B | Ψ }φ

Refinement: boolean

Potential: numeric

T. Knoth, D. Wang, N. Polikarpova, and J. Hoffmann. 2019. Resource-Guided Program Synthesis. In PLDI’19.

RESYN: LIQUID TYPES + LINEAR POTENTIALS

32

{ v: B | Ψ }φ

Refinement: boolean

Potential: numeric
{ Int | v ≥ 0 }5·v

A non-negative integer carrying potential
equal to 5 times of its value

T. Knoth, D. Wang, N. Polikarpova, and J. Hoffmann. 2019. Resource-Guided Program Synthesis. In PLDI’19.

RESYN: LIQUID TYPES + LINEAR POTENTIALS

32

{ v: B | Ψ }φ

Refinement: boolean

Potential: numeric
{ Int | v ≥ 0 }5·v

A non-negative integer carrying potential
equal to 5 times of its value

List aite(v≥0,1,0)

A list of numbers carrying potential
equal to #non-negative elements in it

T. Knoth, D. Wang, N. Polikarpova, and J. Hoffmann. 2019. Resource-Guided Program Synthesis. In PLDI’19.

RESYN: LIQUID TYPES + LINEAR POTENTIALS

32

{ v: B | Ψ }φ

Refinement: boolean

Potential: numeric
{ Int | v ≥ 0 }5·v

A non-negative integer carrying potential
equal to 5 times of its value

List aite(v≥0,1,0)

A list of numbers carrying potential
equal to #non-negative elements in it

T. Knoth, D. Wang, N. Polikarpova, and J. Hoffmann. 2019. Resource-Guided Program Synthesis. In PLDI’19.

Type-checking is reduced to constraint
solving in Presburger arithmetic.

RESOURCE-GUIDED SYNTHESIS

33

common : (xs: SList a1) -> (ys: SList a1) ->
{ SList a | elems(v) = elems(xs) ∩ elems(ys) }

member : (z: a) -> (zs: SList a1) ->
{ Bool | v = (z ∈ elems(zs) }

RESOURCE-GUIDED SYNTHESIS

33

common : (xs: SList a1) -> (ys: SList a1) ->
{ SList a | elems(v) = elems(xs) ∩ elems(ys) }

member : (z: a) -> (zs: SList a1) ->
{ Bool | v = (z ∈ elems(zs) }

RESOURCE-GUIDED SYNTHESIS

33

common : (xs: SList a1) -> (ys: SList a1) ->
{ SList a | elems(v) = elems(xs) ∩ elems(ys) }

each element in the list carries one unit of potential,
thus the complexity must be linear in the list length

member : (z: a) -> (zs: SList a1) ->
{ Bool | v = (z ∈ elems(zs) }

34

RESOURCE-GUIDED SYNTHESIS
common : (xs: SList a1) -> (ys: SList a1) ->

{ SList a | elems(v) = elems(xs) ∩ elems(ys) }

34

RESOURCE-GUIDED SYNTHESIS
common : (xs: SList a1) -> (ys: SList a1) ->

{ SList a | elems(v) = elems(xs) ∩ elems(ys) }

let rec common xs ys =
 ??

34

RESOURCE-GUIDED SYNTHESIS
common : (xs: SList a1) -> (ys: SList a1) ->

{ SList a | elems(v) = elems(xs) ∩ elems(ys) }

let rec common xs ys =
 match xs with
 | [] -> []
 | x::xt ->
 if not (member x ys)
 then common xt ys
 else ??

34

RESOURCE-GUIDED SYNTHESIS
common : (xs: SList a1) -> (ys: SList a1) ->

{ SList a | elems(v) = elems(xs) ∩ elems(ys) }

let rec common xs ys =
 match xs with
 | [] -> []
 | x::xt ->
 if not (member x ys)
 then common xt ys
 else ??

ys: List ap <: List a1
ys: List aq <: List a1

34

RESOURCE-GUIDED SYNTHESIS
common : (xs: SList a1) -> (ys: SList a1) ->

{ SList a | elems(v) = elems(xs) ∩ elems(ys) }

let rec common xs ys =
 match xs with
 | [] -> []
 | x::xt ->
 if not (member x ys)
 then common xt ys
 else ??

ys: List ap <: List a1
ys: List aq <: List a1

[p ≥ 1]
[q ≥ 1]

34

RESOURCE-GUIDED SYNTHESIS
common : (xs: SList a1) -> (ys: SList a1) ->

{ SList a | elems(v) = elems(xs) ∩ elems(ys) }

let rec common xs ys =
 match xs with
 | [] -> []
 | x::xt ->
 if not (member x ys)
 then common xt ys
 else ??

ys: List ap <: List a1
ys: List aq <: List a1

[p ≥ 1]
[q ≥ 1]

Potential Sharing

34

RESOURCE-GUIDED SYNTHESIS
common : (xs: SList a1) -> (ys: SList a1) ->

{ SList a | elems(v) = elems(xs) ∩ elems(ys) }

let rec common xs ys =
 match xs with
 | [] -> []
 | x::xt ->
 if not (member x ys)
 then common xt ys
 else ??

ys: List ap <: List a1
ys: List aq <: List a1

[p ≥ 1]
[q ≥ 1]

Potential Sharing [1 ≥ p+q]

34

RESOURCE-GUIDED SYNTHESIS
common : (xs: SList a1) -> (ys: SList a1) ->

{ SList a | elems(v) = elems(xs) ∩ elems(ys) }

let rec common xs ys =
 match xs with
 | [] -> []
 | x::xt ->
 if not (member x ys)
 then common xt ys
 else ??

ys: List ap <: List a1
ys: List aq <: List a1

[p ≥ 1]
[q ≥ 1]

Potential Sharing [1 ≥ p+q]

Infeasible!

35

common : (xs: SList a1) -> (ys: SList a1) ->
{ SList a | elems(v) = elems(xs) ∩ elems(ys) }

RESOURCE-GUIDED SYNTHESIS

let rec common xs ys =
 match xs with
 | [] -> []
 | x::xt ->
 match ys with
 | [] -> []
 | y::yt ->
 if x < y then common xt ys
 else if y < x then common xs yt
 else x::(common xt yt)

EXAMPLE:
LIST APPEND

EXAMPLE:
LIST APPEND

OUTLINE

Automatic Amortized Resource Analysis

Type-Guided Worst-Case Input Generation

Resource-Guided Program Synthesis

37

